1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright 2025 NXP
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/rtc.h>
#define RTCC_OFFSET 0x4ul
#define RTCS_OFFSET 0x8ul
#define APIVAL_OFFSET 0x10ul
/* RTCC fields */
#define RTCC_CNTEN BIT(31)
#define RTCC_APIEN BIT(15)
#define RTCC_APIIE BIT(14)
#define RTCC_CLKSEL_MASK GENMASK(13, 12)
#define RTCC_DIV512EN BIT(11)
#define RTCC_DIV32EN BIT(10)
/* RTCS fields */
#define RTCS_INV_API BIT(17)
#define RTCS_APIF BIT(13)
#define APIVAL_MAX_VAL GENMASK(31, 0)
#define RTC_SYNCH_TIMEOUT (100 * USEC_PER_MSEC)
/*
* S32G2 and S32G3 SoCs have RTC clock source1 reserved and
* should not be used.
*/
#define RTC_CLK_SRC1_RESERVED BIT(1)
/*
* S32G RTC module has a 512 value and a 32 value hardware frequency
* divisors (DIV512 and DIV32) which could be used to achieve higher
* counter ranges by lowering the RTC frequency.
*/
enum {
DIV1 = 1,
DIV32 = 32,
DIV512 = 512,
DIV512_32 = 16384
};
static const char *const rtc_clk_src[] = {
"source0",
"source1",
"source2",
"source3"
};
struct rtc_priv {
struct rtc_device *rdev;
void __iomem *rtc_base;
struct clk *ipg;
struct clk *clk_src;
const struct rtc_soc_data *rtc_data;
u64 rtc_hz;
time64_t sleep_sec;
int irq;
u32 clk_src_idx;
};
struct rtc_soc_data {
u32 clk_div;
u32 reserved_clk_mask;
};
static const struct rtc_soc_data rtc_s32g2_data = {
.clk_div = DIV512_32,
.reserved_clk_mask = RTC_CLK_SRC1_RESERVED,
};
static irqreturn_t s32g_rtc_handler(int irq, void *dev)
{
struct rtc_priv *priv = platform_get_drvdata(dev);
u32 status;
status = readl(priv->rtc_base + RTCS_OFFSET);
if (status & RTCS_APIF) {
writel(0x0, priv->rtc_base + APIVAL_OFFSET);
writel(status | RTCS_APIF, priv->rtc_base + RTCS_OFFSET);
}
rtc_update_irq(priv->rdev, 1, RTC_IRQF | RTC_AF);
return IRQ_HANDLED;
}
/*
* The function is not really getting time from the RTC since the S32G RTC
* has several limitations. Thus, to setup alarm use system time.
*/
static int s32g_rtc_read_time(struct device *dev,
struct rtc_time *tm)
{
struct rtc_priv *priv = dev_get_drvdata(dev);
time64_t sec;
if (check_add_overflow(ktime_get_real_seconds(),
priv->sleep_sec, &sec))
return -ERANGE;
rtc_time64_to_tm(sec, tm);
return 0;
}
static int s32g_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct rtc_priv *priv = dev_get_drvdata(dev);
u32 rtcc, rtcs;
rtcc = readl(priv->rtc_base + RTCC_OFFSET);
rtcs = readl(priv->rtc_base + RTCS_OFFSET);
alrm->enabled = rtcc & RTCC_APIIE;
if (alrm->enabled)
alrm->pending = !(rtcs & RTCS_APIF);
return 0;
}
static int s32g_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
struct rtc_priv *priv = dev_get_drvdata(dev);
u32 rtcc;
/* RTC API functionality is used both for triggering interrupts
* and as a wakeup event. Hence it should always be enabled.
*/
rtcc = readl(priv->rtc_base + RTCC_OFFSET);
rtcc |= RTCC_APIEN | RTCC_APIIE;
writel(rtcc, priv->rtc_base + RTCC_OFFSET);
return 0;
}
static int s32g_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct rtc_priv *priv = dev_get_drvdata(dev);
unsigned long long cycles;
long long t_offset;
time64_t alrm_time;
u32 rtcs;
int ret;
alrm_time = rtc_tm_to_time64(&alrm->time);
t_offset = alrm_time - ktime_get_real_seconds() - priv->sleep_sec;
if (t_offset < 0)
return -ERANGE;
cycles = t_offset * priv->rtc_hz;
if (cycles > APIVAL_MAX_VAL)
return -ERANGE;
/* APIVAL could have been reset from the IRQ handler.
* Hence, we wait in case there is a synchronization process.
*/
ret = read_poll_timeout(readl, rtcs, !(rtcs & RTCS_INV_API),
0, RTC_SYNCH_TIMEOUT, false, priv->rtc_base + RTCS_OFFSET);
if (ret)
return ret;
writel(cycles, priv->rtc_base + APIVAL_OFFSET);
return read_poll_timeout(readl, rtcs, !(rtcs & RTCS_INV_API),
0, RTC_SYNCH_TIMEOUT, false, priv->rtc_base + RTCS_OFFSET);
}
/*
* Disable the 32-bit free running counter.
* This allows Clock Source and Divisors selection
* to be performed without causing synchronization issues.
*/
static void s32g_rtc_disable(struct rtc_priv *priv)
{
u32 rtcc = readl(priv->rtc_base + RTCC_OFFSET);
rtcc &= ~RTCC_CNTEN;
writel(rtcc, priv->rtc_base + RTCC_OFFSET);
}
static void s32g_rtc_enable(struct rtc_priv *priv)
{
u32 rtcc = readl(priv->rtc_base + RTCC_OFFSET);
rtcc |= RTCC_CNTEN;
writel(rtcc, priv->rtc_base + RTCC_OFFSET);
}
static int rtc_clk_src_setup(struct rtc_priv *priv)
{
u32 rtcc;
rtcc = FIELD_PREP(RTCC_CLKSEL_MASK, priv->clk_src_idx);
switch (priv->rtc_data->clk_div) {
case DIV512_32:
rtcc |= RTCC_DIV512EN;
rtcc |= RTCC_DIV32EN;
break;
case DIV512:
rtcc |= RTCC_DIV512EN;
break;
case DIV32:
rtcc |= RTCC_DIV32EN;
break;
case DIV1:
break;
default:
return -EINVAL;
}
rtcc |= RTCC_APIEN | RTCC_APIIE;
/*
* Make sure the CNTEN is 0 before we configure
* the clock source and dividers.
*/
s32g_rtc_disable(priv);
writel(rtcc, priv->rtc_base + RTCC_OFFSET);
s32g_rtc_enable(priv);
return 0;
}
static const struct rtc_class_ops rtc_ops = {
.read_time = s32g_rtc_read_time,
.read_alarm = s32g_rtc_read_alarm,
.set_alarm = s32g_rtc_set_alarm,
.alarm_irq_enable = s32g_rtc_alarm_irq_enable,
};
static int rtc_clk_dts_setup(struct rtc_priv *priv,
struct device *dev)
{
u32 i;
priv->ipg = devm_clk_get_enabled(dev, "ipg");
if (IS_ERR(priv->ipg))
return dev_err_probe(dev, PTR_ERR(priv->ipg),
"Failed to get 'ipg' clock\n");
for (i = 0; i < ARRAY_SIZE(rtc_clk_src); i++) {
if (priv->rtc_data->reserved_clk_mask & BIT(i))
return -EOPNOTSUPP;
priv->clk_src = devm_clk_get_enabled(dev, rtc_clk_src[i]);
if (!IS_ERR(priv->clk_src)) {
priv->clk_src_idx = i;
break;
}
}
if (IS_ERR(priv->clk_src))
return dev_err_probe(dev, PTR_ERR(priv->clk_src),
"Failed to get rtc module clock source\n");
return 0;
}
static int s32g_rtc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rtc_priv *priv;
unsigned long rtc_hz;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->rtc_data = of_device_get_match_data(dev);
if (!priv->rtc_data)
return -ENODEV;
priv->rtc_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->rtc_base))
return PTR_ERR(priv->rtc_base);
device_init_wakeup(dev, true);
ret = rtc_clk_dts_setup(priv, dev);
if (ret)
return ret;
priv->rdev = devm_rtc_allocate_device(dev);
if (IS_ERR(priv->rdev))
return PTR_ERR(priv->rdev);
ret = rtc_clk_src_setup(priv);
if (ret)
return ret;
priv->irq = platform_get_irq(pdev, 0);
if (priv->irq < 0) {
ret = priv->irq;
goto disable_rtc;
}
rtc_hz = clk_get_rate(priv->clk_src);
if (!rtc_hz) {
dev_err(dev, "Failed to get RTC frequency\n");
ret = -EINVAL;
goto disable_rtc;
}
priv->rtc_hz = DIV_ROUND_UP(rtc_hz, priv->rtc_data->clk_div);
platform_set_drvdata(pdev, priv);
priv->rdev->ops = &rtc_ops;
ret = devm_request_irq(dev, priv->irq,
s32g_rtc_handler, 0, dev_name(dev), pdev);
if (ret) {
dev_err(dev, "Request interrupt %d failed, error: %d\n",
priv->irq, ret);
goto disable_rtc;
}
ret = devm_rtc_register_device(priv->rdev);
if (ret)
goto disable_rtc;
return 0;
disable_rtc:
s32g_rtc_disable(priv);
return ret;
}
static int s32g_rtc_suspend(struct device *dev)
{
struct rtc_priv *priv = dev_get_drvdata(dev);
u32 apival = readl(priv->rtc_base + APIVAL_OFFSET);
if (check_add_overflow(priv->sleep_sec, div64_u64(apival, priv->rtc_hz),
&priv->sleep_sec)) {
dev_warn(dev, "Overflow on sleep cycles occurred. Resetting to 0.\n");
priv->sleep_sec = 0;
}
return 0;
}
static int s32g_rtc_resume(struct device *dev)
{
struct rtc_priv *priv = dev_get_drvdata(dev);
/* The transition from resume to run is a reset event.
* This leads to the RTC registers being reset after resume from
* suspend. It is uncommon, but this behaviour has been observed
* on S32G RTC after issuing a Suspend to RAM operation.
* Thus, reconfigure RTC registers on the resume path.
*/
return rtc_clk_src_setup(priv);
}
static const struct of_device_id rtc_dt_ids[] = {
{ .compatible = "nxp,s32g2-rtc", .data = &rtc_s32g2_data },
{ /* sentinel */ },
};
static DEFINE_SIMPLE_DEV_PM_OPS(s32g_rtc_pm_ops,
s32g_rtc_suspend, s32g_rtc_resume);
static struct platform_driver s32g_rtc_driver = {
.driver = {
.name = "s32g-rtc",
.pm = pm_sleep_ptr(&s32g_rtc_pm_ops),
.of_match_table = rtc_dt_ids,
},
.probe = s32g_rtc_probe,
};
module_platform_driver(s32g_rtc_driver);
MODULE_AUTHOR("NXP");
MODULE_DESCRIPTION("NXP RTC driver for S32G2/S32G3");
MODULE_LICENSE("GPL");
|