1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
|
// SPDX-License-Identifier: GPL-2.0
/*
* mm/mremap.c
*
* (C) Copyright 1996 Linus Torvalds
*
* Address space accounting code <alan@lxorguk.ukuu.org.uk>
* (C) Copyright 2002 Red Hat Inc, All Rights Reserved
*/
#include <linux/mm.h>
#include <linux/mm_inline.h>
#include <linux/hugetlb.h>
#include <linux/shm.h>
#include <linux/ksm.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/capability.h>
#include <linux/fs.h>
#include <linux/swapops.h>
#include <linux/highmem.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/mmu_notifier.h>
#include <linux/uaccess.h>
#include <linux/userfaultfd_k.h>
#include <linux/mempolicy.h>
#include <asm/cacheflush.h>
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"
/* Classify the kind of remap operation being performed. */
enum mremap_type {
MREMAP_INVALID, /* Initial state. */
MREMAP_NO_RESIZE, /* old_len == new_len, if not moved, do nothing. */
MREMAP_SHRINK, /* old_len > new_len. */
MREMAP_EXPAND, /* old_len < new_len. */
};
/*
* Describes a VMA mremap() operation and is threaded throughout it.
*
* Any of the fields may be mutated by the operation, however these values will
* always accurately reflect the remap (for instance, we may adjust lengths and
* delta to account for hugetlb alignment).
*/
struct vma_remap_struct {
/* User-provided state. */
unsigned long addr; /* User-specified address from which we remap. */
unsigned long old_len; /* Length of range being remapped. */
unsigned long new_len; /* Desired new length of mapping. */
unsigned long flags; /* user-specified MREMAP_* flags. */
unsigned long new_addr; /* Optionally, desired new address. */
/* uffd state. */
struct vm_userfaultfd_ctx *uf;
struct list_head *uf_unmap_early;
struct list_head *uf_unmap;
/* VMA state, determined in do_mremap(). */
struct vm_area_struct *vma;
/* Internal state, determined in do_mremap(). */
unsigned long delta; /* Absolute delta of old_len,new_len. */
bool mlocked; /* Was the VMA mlock()'d? */
enum mremap_type remap_type; /* expand, shrink, etc. */
bool mmap_locked; /* Is mm currently write-locked? */
unsigned long charged; /* If VM_ACCOUNT, # pages to account. */
};
static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pgd = pgd_offset(mm, addr);
if (pgd_none_or_clear_bad(pgd))
return NULL;
p4d = p4d_offset(pgd, addr);
if (p4d_none_or_clear_bad(p4d))
return NULL;
pud = pud_offset(p4d, addr);
if (pud_none_or_clear_bad(pud))
return NULL;
return pud;
}
static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
{
pud_t *pud;
pmd_t *pmd;
pud = get_old_pud(mm, addr);
if (!pud)
return NULL;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
return NULL;
return pmd;
}
static pud_t *alloc_new_pud(struct mm_struct *mm, unsigned long addr)
{
pgd_t *pgd;
p4d_t *p4d;
pgd = pgd_offset(mm, addr);
p4d = p4d_alloc(mm, pgd, addr);
if (!p4d)
return NULL;
return pud_alloc(mm, p4d, addr);
}
static pmd_t *alloc_new_pmd(struct mm_struct *mm, unsigned long addr)
{
pud_t *pud;
pmd_t *pmd;
pud = alloc_new_pud(mm, addr);
if (!pud)
return NULL;
pmd = pmd_alloc(mm, pud, addr);
if (!pmd)
return NULL;
VM_BUG_ON(pmd_trans_huge(*pmd));
return pmd;
}
static void take_rmap_locks(struct vm_area_struct *vma)
{
if (vma->vm_file)
i_mmap_lock_write(vma->vm_file->f_mapping);
if (vma->anon_vma)
anon_vma_lock_write(vma->anon_vma);
}
static void drop_rmap_locks(struct vm_area_struct *vma)
{
if (vma->anon_vma)
anon_vma_unlock_write(vma->anon_vma);
if (vma->vm_file)
i_mmap_unlock_write(vma->vm_file->f_mapping);
}
static pte_t move_soft_dirty_pte(pte_t pte)
{
/*
* Set soft dirty bit so we can notice
* in userspace the ptes were moved.
*/
#ifdef CONFIG_MEM_SOFT_DIRTY
if (pte_present(pte))
pte = pte_mksoft_dirty(pte);
else if (is_swap_pte(pte))
pte = pte_swp_mksoft_dirty(pte);
#endif
return pte;
}
static int move_ptes(struct pagetable_move_control *pmc,
unsigned long extent, pmd_t *old_pmd, pmd_t *new_pmd)
{
struct vm_area_struct *vma = pmc->old;
bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
struct mm_struct *mm = vma->vm_mm;
pte_t *old_pte, *new_pte, pte;
pmd_t dummy_pmdval;
spinlock_t *old_ptl, *new_ptl;
bool force_flush = false;
unsigned long old_addr = pmc->old_addr;
unsigned long new_addr = pmc->new_addr;
unsigned long old_end = old_addr + extent;
unsigned long len = old_end - old_addr;
int err = 0;
/*
* When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
* locks to ensure that rmap will always observe either the old or the
* new ptes. This is the easiest way to avoid races with
* truncate_pagecache(), page migration, etc...
*
* When need_rmap_locks is false, we use other ways to avoid
* such races:
*
* - During exec() shift_arg_pages(), we use a specially tagged vma
* which rmap call sites look for using vma_is_temporary_stack().
*
* - During mremap(), new_vma is often known to be placed after vma
* in rmap traversal order. This ensures rmap will always observe
* either the old pte, or the new pte, or both (the page table locks
* serialize access to individual ptes, but only rmap traversal
* order guarantees that we won't miss both the old and new ptes).
*/
if (pmc->need_rmap_locks)
take_rmap_locks(vma);
/*
* We don't have to worry about the ordering of src and dst
* pte locks because exclusive mmap_lock prevents deadlock.
*/
old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
if (!old_pte) {
err = -EAGAIN;
goto out;
}
/*
* Now new_pte is none, so hpage_collapse_scan_file() path can not find
* this by traversing file->f_mapping, so there is no concurrency with
* retract_page_tables(). In addition, we already hold the exclusive
* mmap_lock, so this new_pte page is stable, so there is no need to get
* pmdval and do pmd_same() check.
*/
new_pte = pte_offset_map_rw_nolock(mm, new_pmd, new_addr, &dummy_pmdval,
&new_ptl);
if (!new_pte) {
pte_unmap_unlock(old_pte, old_ptl);
err = -EAGAIN;
goto out;
}
if (new_ptl != old_ptl)
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
flush_tlb_batched_pending(vma->vm_mm);
arch_enter_lazy_mmu_mode();
for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
new_pte++, new_addr += PAGE_SIZE) {
VM_WARN_ON_ONCE(!pte_none(*new_pte));
if (pte_none(ptep_get(old_pte)))
continue;
pte = ptep_get_and_clear(mm, old_addr, old_pte);
/*
* If we are remapping a valid PTE, make sure
* to flush TLB before we drop the PTL for the
* PTE.
*
* NOTE! Both old and new PTL matter: the old one
* for racing with folio_mkclean(), the new one to
* make sure the physical page stays valid until
* the TLB entry for the old mapping has been
* flushed.
*/
if (pte_present(pte))
force_flush = true;
pte = move_pte(pte, old_addr, new_addr);
pte = move_soft_dirty_pte(pte);
if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
pte_clear(mm, new_addr, new_pte);
else {
if (need_clear_uffd_wp) {
if (pte_present(pte))
pte = pte_clear_uffd_wp(pte);
else if (is_swap_pte(pte))
pte = pte_swp_clear_uffd_wp(pte);
}
set_pte_at(mm, new_addr, new_pte, pte);
}
}
arch_leave_lazy_mmu_mode();
if (force_flush)
flush_tlb_range(vma, old_end - len, old_end);
if (new_ptl != old_ptl)
spin_unlock(new_ptl);
pte_unmap(new_pte - 1);
pte_unmap_unlock(old_pte - 1, old_ptl);
out:
if (pmc->need_rmap_locks)
drop_rmap_locks(vma);
return err;
}
#ifndef arch_supports_page_table_move
#define arch_supports_page_table_move arch_supports_page_table_move
static inline bool arch_supports_page_table_move(void)
{
return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
}
#endif
static inline bool uffd_supports_page_table_move(struct pagetable_move_control *pmc)
{
/*
* If we are moving a VMA that has uffd-wp registered but with
* remap events disabled (new VMA will not be registered with uffd), we
* need to ensure that the uffd-wp state is cleared from all pgtables.
* This means recursing into lower page tables in move_page_tables().
*
* We might get called with VMAs reversed when recovering from a
* failed page table move. In that case, the
* "old"-but-actually-"originally new" VMA during recovery will not have
* a uffd context. Recursing into lower page tables during the original
* move but not during the recovery move will cause trouble, because we
* run into already-existing page tables. So check both VMAs.
*/
return !vma_has_uffd_without_event_remap(pmc->old) &&
!vma_has_uffd_without_event_remap(pmc->new);
}
#ifdef CONFIG_HAVE_MOVE_PMD
static bool move_normal_pmd(struct pagetable_move_control *pmc,
pmd_t *old_pmd, pmd_t *new_pmd)
{
spinlock_t *old_ptl, *new_ptl;
struct vm_area_struct *vma = pmc->old;
struct mm_struct *mm = vma->vm_mm;
bool res = false;
pmd_t pmd;
if (!arch_supports_page_table_move())
return false;
if (!uffd_supports_page_table_move(pmc))
return false;
/*
* The destination pmd shouldn't be established, free_pgtables()
* should have released it.
*
* However, there's a case during execve() where we use mremap
* to move the initial stack, and in that case the target area
* may overlap the source area (always moving down).
*
* If everything is PMD-aligned, that works fine, as moving
* each pmd down will clear the source pmd. But if we first
* have a few 4kB-only pages that get moved down, and then
* hit the "now the rest is PMD-aligned, let's do everything
* one pmd at a time", we will still have the old (now empty
* of any 4kB pages, but still there) PMD in the page table
* tree.
*
* Warn on it once - because we really should try to figure
* out how to do this better - but then say "I won't move
* this pmd".
*
* One alternative might be to just unmap the target pmd at
* this point, and verify that it really is empty. We'll see.
*/
if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
return false;
/*
* We don't have to worry about the ordering of src and dst
* ptlocks because exclusive mmap_lock prevents deadlock.
*/
old_ptl = pmd_lock(mm, old_pmd);
new_ptl = pmd_lockptr(mm, new_pmd);
if (new_ptl != old_ptl)
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
pmd = *old_pmd;
/* Racing with collapse? */
if (unlikely(!pmd_present(pmd) || pmd_leaf(pmd)))
goto out_unlock;
/* Clear the pmd */
pmd_clear(old_pmd);
res = true;
VM_BUG_ON(!pmd_none(*new_pmd));
pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
flush_tlb_range(vma, pmc->old_addr, pmc->old_addr + PMD_SIZE);
out_unlock:
if (new_ptl != old_ptl)
spin_unlock(new_ptl);
spin_unlock(old_ptl);
return res;
}
#else
static inline bool move_normal_pmd(struct pagetable_move_control *pmc,
pmd_t *old_pmd, pmd_t *new_pmd)
{
return false;
}
#endif
#if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
static bool move_normal_pud(struct pagetable_move_control *pmc,
pud_t *old_pud, pud_t *new_pud)
{
spinlock_t *old_ptl, *new_ptl;
struct vm_area_struct *vma = pmc->old;
struct mm_struct *mm = vma->vm_mm;
pud_t pud;
if (!arch_supports_page_table_move())
return false;
if (!uffd_supports_page_table_move(pmc))
return false;
/*
* The destination pud shouldn't be established, free_pgtables()
* should have released it.
*/
if (WARN_ON_ONCE(!pud_none(*new_pud)))
return false;
/*
* We don't have to worry about the ordering of src and dst
* ptlocks because exclusive mmap_lock prevents deadlock.
*/
old_ptl = pud_lock(mm, old_pud);
new_ptl = pud_lockptr(mm, new_pud);
if (new_ptl != old_ptl)
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
/* Clear the pud */
pud = *old_pud;
pud_clear(old_pud);
VM_BUG_ON(!pud_none(*new_pud));
pud_populate(mm, new_pud, pud_pgtable(pud));
flush_tlb_range(vma, pmc->old_addr, pmc->old_addr + PUD_SIZE);
if (new_ptl != old_ptl)
spin_unlock(new_ptl);
spin_unlock(old_ptl);
return true;
}
#else
static inline bool move_normal_pud(struct pagetable_move_control *pmc,
pud_t *old_pud, pud_t *new_pud)
{
return false;
}
#endif
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
static bool move_huge_pud(struct pagetable_move_control *pmc,
pud_t *old_pud, pud_t *new_pud)
{
spinlock_t *old_ptl, *new_ptl;
struct vm_area_struct *vma = pmc->old;
struct mm_struct *mm = vma->vm_mm;
pud_t pud;
/*
* The destination pud shouldn't be established, free_pgtables()
* should have released it.
*/
if (WARN_ON_ONCE(!pud_none(*new_pud)))
return false;
/*
* We don't have to worry about the ordering of src and dst
* ptlocks because exclusive mmap_lock prevents deadlock.
*/
old_ptl = pud_lock(mm, old_pud);
new_ptl = pud_lockptr(mm, new_pud);
if (new_ptl != old_ptl)
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
/* Clear the pud */
pud = *old_pud;
pud_clear(old_pud);
VM_BUG_ON(!pud_none(*new_pud));
/* Set the new pud */
/* mark soft_ditry when we add pud level soft dirty support */
set_pud_at(mm, pmc->new_addr, new_pud, pud);
flush_pud_tlb_range(vma, pmc->old_addr, pmc->old_addr + HPAGE_PUD_SIZE);
if (new_ptl != old_ptl)
spin_unlock(new_ptl);
spin_unlock(old_ptl);
return true;
}
#else
static bool move_huge_pud(struct pagetable_move_control *pmc,
pud_t *old_pud, pud_t *new_pud)
{
WARN_ON_ONCE(1);
return false;
}
#endif
enum pgt_entry {
NORMAL_PMD,
HPAGE_PMD,
NORMAL_PUD,
HPAGE_PUD,
};
/*
* Returns an extent of the corresponding size for the pgt_entry specified if
* valid. Else returns a smaller extent bounded by the end of the source and
* destination pgt_entry.
*/
static __always_inline unsigned long get_extent(enum pgt_entry entry,
struct pagetable_move_control *pmc)
{
unsigned long next, extent, mask, size;
unsigned long old_addr = pmc->old_addr;
unsigned long old_end = pmc->old_end;
unsigned long new_addr = pmc->new_addr;
switch (entry) {
case HPAGE_PMD:
case NORMAL_PMD:
mask = PMD_MASK;
size = PMD_SIZE;
break;
case HPAGE_PUD:
case NORMAL_PUD:
mask = PUD_MASK;
size = PUD_SIZE;
break;
default:
BUILD_BUG();
break;
}
next = (old_addr + size) & mask;
/* even if next overflowed, extent below will be ok */
extent = next - old_addr;
if (extent > old_end - old_addr)
extent = old_end - old_addr;
next = (new_addr + size) & mask;
if (extent > next - new_addr)
extent = next - new_addr;
return extent;
}
/*
* Should move_pgt_entry() acquire the rmap locks? This is either expressed in
* the PMC, or overridden in the case of normal, larger page tables.
*/
static bool should_take_rmap_locks(struct pagetable_move_control *pmc,
enum pgt_entry entry)
{
switch (entry) {
case NORMAL_PMD:
case NORMAL_PUD:
return true;
default:
return pmc->need_rmap_locks;
}
}
/*
* Attempts to speedup the move by moving entry at the level corresponding to
* pgt_entry. Returns true if the move was successful, else false.
*/
static bool move_pgt_entry(struct pagetable_move_control *pmc,
enum pgt_entry entry, void *old_entry, void *new_entry)
{
bool moved = false;
bool need_rmap_locks = should_take_rmap_locks(pmc, entry);
/* See comment in move_ptes() */
if (need_rmap_locks)
take_rmap_locks(pmc->old);
switch (entry) {
case NORMAL_PMD:
moved = move_normal_pmd(pmc, old_entry, new_entry);
break;
case NORMAL_PUD:
moved = move_normal_pud(pmc, old_entry, new_entry);
break;
case HPAGE_PMD:
moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
move_huge_pmd(pmc->old, pmc->old_addr, pmc->new_addr, old_entry,
new_entry);
break;
case HPAGE_PUD:
moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
move_huge_pud(pmc, old_entry, new_entry);
break;
default:
WARN_ON_ONCE(1);
break;
}
if (need_rmap_locks)
drop_rmap_locks(pmc->old);
return moved;
}
/*
* A helper to check if aligning down is OK. The aligned address should fall
* on *no mapping*. For the stack moving down, that's a special move within
* the VMA that is created to span the source and destination of the move,
* so we make an exception for it.
*/
static bool can_align_down(struct pagetable_move_control *pmc,
struct vm_area_struct *vma, unsigned long addr_to_align,
unsigned long mask)
{
unsigned long addr_masked = addr_to_align & mask;
/*
* If @addr_to_align of either source or destination is not the beginning
* of the corresponding VMA, we can't align down or we will destroy part
* of the current mapping.
*/
if (!pmc->for_stack && vma->vm_start != addr_to_align)
return false;
/* In the stack case we explicitly permit in-VMA alignment. */
if (pmc->for_stack && addr_masked >= vma->vm_start)
return true;
/*
* Make sure the realignment doesn't cause the address to fall on an
* existing mapping.
*/
return find_vma_intersection(vma->vm_mm, addr_masked, vma->vm_start) == NULL;
}
/*
* Determine if are in fact able to realign for efficiency to a higher page
* table boundary.
*/
static bool can_realign_addr(struct pagetable_move_control *pmc,
unsigned long pagetable_mask)
{
unsigned long align_mask = ~pagetable_mask;
unsigned long old_align = pmc->old_addr & align_mask;
unsigned long new_align = pmc->new_addr & align_mask;
unsigned long pagetable_size = align_mask + 1;
unsigned long old_align_next = pagetable_size - old_align;
/*
* We don't want to have to go hunting for VMAs from the end of the old
* VMA to the next page table boundary, also we want to make sure the
* operation is wortwhile.
*
* So ensure that we only perform this realignment if the end of the
* range being copied reaches or crosses the page table boundary.
*
* boundary boundary
* .<- old_align -> .
* . |----------------.-----------|
* . | vma . |
* . |----------------.-----------|
* . <----------------.----------->
* . len_in
* <------------------------------->
* . pagetable_size .
* . <---------------->
* . old_align_next .
*/
if (pmc->len_in < old_align_next)
return false;
/* Skip if the addresses are already aligned. */
if (old_align == 0)
return false;
/* Only realign if the new and old addresses are mutually aligned. */
if (old_align != new_align)
return false;
/* Ensure realignment doesn't cause overlap with existing mappings. */
if (!can_align_down(pmc, pmc->old, pmc->old_addr, pagetable_mask) ||
!can_align_down(pmc, pmc->new, pmc->new_addr, pagetable_mask))
return false;
return true;
}
/*
* Opportunistically realign to specified boundary for faster copy.
*
* Consider an mremap() of a VMA with page table boundaries as below, and no
* preceding VMAs from the lower page table boundary to the start of the VMA,
* with the end of the range reaching or crossing the page table boundary.
*
* boundary boundary
* . |----------------.-----------|
* . | vma . |
* . |----------------.-----------|
* . pmc->old_addr . pmc->old_end
* . <---------------------------->
* . move these page tables
*
* If we proceed with moving page tables in this scenario, we will have a lot of
* work to do traversing old page tables and establishing new ones in the
* destination across multiple lower level page tables.
*
* The idea here is simply to align pmc->old_addr, pmc->new_addr down to the
* page table boundary, so we can simply copy a single page table entry for the
* aligned portion of the VMA instead:
*
* boundary boundary
* . |----------------.-----------|
* . | vma . |
* . |----------------.-----------|
* pmc->old_addr . pmc->old_end
* <------------------------------------------->
* . move these page tables
*/
static void try_realign_addr(struct pagetable_move_control *pmc,
unsigned long pagetable_mask)
{
if (!can_realign_addr(pmc, pagetable_mask))
return;
/*
* Simply align to page table boundaries. Note that we do NOT update the
* pmc->old_end value, and since the move_page_tables() operation spans
* from [old_addr, old_end) (offsetting new_addr as it is performed),
* this simply changes the start of the copy, not the end.
*/
pmc->old_addr &= pagetable_mask;
pmc->new_addr &= pagetable_mask;
}
/* Is the page table move operation done? */
static bool pmc_done(struct pagetable_move_control *pmc)
{
return pmc->old_addr >= pmc->old_end;
}
/* Advance to the next page table, offset by extent bytes. */
static void pmc_next(struct pagetable_move_control *pmc, unsigned long extent)
{
pmc->old_addr += extent;
pmc->new_addr += extent;
}
/*
* Determine how many bytes in the specified input range have had their page
* tables moved so far.
*/
static unsigned long pmc_progress(struct pagetable_move_control *pmc)
{
unsigned long orig_old_addr = pmc->old_end - pmc->len_in;
unsigned long old_addr = pmc->old_addr;
/*
* Prevent negative return values when {old,new}_addr was realigned but
* we broke out of the loop in move_page_tables() for the first PMD
* itself.
*/
return old_addr < orig_old_addr ? 0 : old_addr - orig_old_addr;
}
unsigned long move_page_tables(struct pagetable_move_control *pmc)
{
unsigned long extent;
struct mmu_notifier_range range;
pmd_t *old_pmd, *new_pmd;
pud_t *old_pud, *new_pud;
struct mm_struct *mm = pmc->old->vm_mm;
if (!pmc->len_in)
return 0;
if (is_vm_hugetlb_page(pmc->old))
return move_hugetlb_page_tables(pmc->old, pmc->new, pmc->old_addr,
pmc->new_addr, pmc->len_in);
/*
* If possible, realign addresses to PMD boundary for faster copy.
* Only realign if the mremap copying hits a PMD boundary.
*/
try_realign_addr(pmc, PMD_MASK);
flush_cache_range(pmc->old, pmc->old_addr, pmc->old_end);
mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, mm,
pmc->old_addr, pmc->old_end);
mmu_notifier_invalidate_range_start(&range);
for (; !pmc_done(pmc); pmc_next(pmc, extent)) {
cond_resched();
/*
* If extent is PUD-sized try to speed up the move by moving at the
* PUD level if possible.
*/
extent = get_extent(NORMAL_PUD, pmc);
old_pud = get_old_pud(mm, pmc->old_addr);
if (!old_pud)
continue;
new_pud = alloc_new_pud(mm, pmc->new_addr);
if (!new_pud)
break;
if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
if (extent == HPAGE_PUD_SIZE) {
move_pgt_entry(pmc, HPAGE_PUD, old_pud, new_pud);
/* We ignore and continue on error? */
continue;
}
} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
if (move_pgt_entry(pmc, NORMAL_PUD, old_pud, new_pud))
continue;
}
extent = get_extent(NORMAL_PMD, pmc);
old_pmd = get_old_pmd(mm, pmc->old_addr);
if (!old_pmd)
continue;
new_pmd = alloc_new_pmd(mm, pmc->new_addr);
if (!new_pmd)
break;
again:
if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
pmd_devmap(*old_pmd)) {
if (extent == HPAGE_PMD_SIZE &&
move_pgt_entry(pmc, HPAGE_PMD, old_pmd, new_pmd))
continue;
split_huge_pmd(pmc->old, old_pmd, pmc->old_addr);
} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
extent == PMD_SIZE) {
/*
* If the extent is PMD-sized, try to speed the move by
* moving at the PMD level if possible.
*/
if (move_pgt_entry(pmc, NORMAL_PMD, old_pmd, new_pmd))
continue;
}
if (pmd_none(*old_pmd))
continue;
if (pte_alloc(pmc->new->vm_mm, new_pmd))
break;
if (move_ptes(pmc, extent, old_pmd, new_pmd) < 0)
goto again;
}
mmu_notifier_invalidate_range_end(&range);
return pmc_progress(pmc);
}
/* Set vrm->delta to the difference in VMA size specified by user. */
static void vrm_set_delta(struct vma_remap_struct *vrm)
{
vrm->delta = abs_diff(vrm->old_len, vrm->new_len);
}
/* Determine what kind of remap this is - shrink, expand or no resize at all. */
static enum mremap_type vrm_remap_type(struct vma_remap_struct *vrm)
{
if (vrm->delta == 0)
return MREMAP_NO_RESIZE;
if (vrm->old_len > vrm->new_len)
return MREMAP_SHRINK;
return MREMAP_EXPAND;
}
/*
* When moving a VMA to vrm->new_adr, does this result in the new and old VMAs
* overlapping?
*/
static bool vrm_overlaps(struct vma_remap_struct *vrm)
{
unsigned long start_old = vrm->addr;
unsigned long start_new = vrm->new_addr;
unsigned long end_old = vrm->addr + vrm->old_len;
unsigned long end_new = vrm->new_addr + vrm->new_len;
/*
* start_old end_old
* |-----------|
* | |
* |-----------|
* |-------------|
* | |
* |-------------|
* start_new end_new
*/
if (end_old > start_new && end_new > start_old)
return true;
return false;
}
/* Do the mremap() flags require that the new_addr parameter be specified? */
static bool vrm_implies_new_addr(struct vma_remap_struct *vrm)
{
return vrm->flags & (MREMAP_FIXED | MREMAP_DONTUNMAP);
}
/*
* Find an unmapped area for the requested vrm->new_addr.
*
* If MREMAP_FIXED then this is equivalent to a MAP_FIXED mmap() call. If only
* MREMAP_DONTUNMAP is set, then this is equivalent to providing a hint to
* mmap(), otherwise this is equivalent to mmap() specifying a NULL address.
*
* Returns 0 on success (with vrm->new_addr updated), or an error code upon
* failure.
*/
static unsigned long vrm_set_new_addr(struct vma_remap_struct *vrm)
{
struct vm_area_struct *vma = vrm->vma;
unsigned long map_flags = 0;
/* Page Offset _into_ the VMA. */
pgoff_t internal_pgoff = (vrm->addr - vma->vm_start) >> PAGE_SHIFT;
pgoff_t pgoff = vma->vm_pgoff + internal_pgoff;
unsigned long new_addr = vrm_implies_new_addr(vrm) ? vrm->new_addr : 0;
unsigned long res;
if (vrm->flags & MREMAP_FIXED)
map_flags |= MAP_FIXED;
if (vma->vm_flags & VM_MAYSHARE)
map_flags |= MAP_SHARED;
res = get_unmapped_area(vma->vm_file, new_addr, vrm->new_len, pgoff,
map_flags);
if (IS_ERR_VALUE(res))
return res;
vrm->new_addr = res;
return 0;
}
/*
* Keep track of pages which have been added to the memory mapping. If the VMA
* is accounted, also check to see if there is sufficient memory.
*
* Returns true on success, false if insufficient memory to charge.
*/
static bool vrm_charge(struct vma_remap_struct *vrm)
{
unsigned long charged;
if (!(vrm->vma->vm_flags & VM_ACCOUNT))
return true;
/*
* If we don't unmap the old mapping, then we account the entirety of
* the length of the new one. Otherwise it's just the delta in size.
*/
if (vrm->flags & MREMAP_DONTUNMAP)
charged = vrm->new_len >> PAGE_SHIFT;
else
charged = vrm->delta >> PAGE_SHIFT;
/* This accounts 'charged' pages of memory. */
if (security_vm_enough_memory_mm(current->mm, charged))
return false;
vrm->charged = charged;
return true;
}
/*
* an error has occurred so we will not be using vrm->charged memory. Unaccount
* this memory if the VMA is accounted.
*/
static void vrm_uncharge(struct vma_remap_struct *vrm)
{
if (!(vrm->vma->vm_flags & VM_ACCOUNT))
return;
vm_unacct_memory(vrm->charged);
vrm->charged = 0;
}
/*
* Update mm exec_vm, stack_vm, data_vm, and locked_vm fields as needed to
* account for 'bytes' memory used, and if locked, indicate this in the VRM so
* we can handle this correctly later.
*/
static void vrm_stat_account(struct vma_remap_struct *vrm,
unsigned long bytes)
{
unsigned long pages = bytes >> PAGE_SHIFT;
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma = vrm->vma;
vm_stat_account(mm, vma->vm_flags, pages);
if (vma->vm_flags & VM_LOCKED) {
mm->locked_vm += pages;
vrm->mlocked = true;
}
}
/*
* Perform checks before attempting to write a VMA prior to it being
* moved.
*/
static unsigned long prep_move_vma(struct vma_remap_struct *vrm)
{
unsigned long err = 0;
struct vm_area_struct *vma = vrm->vma;
unsigned long old_addr = vrm->addr;
unsigned long old_len = vrm->old_len;
unsigned long dummy = vma->vm_flags;
/*
* We'd prefer to avoid failure later on in do_munmap:
* which may split one vma into three before unmapping.
*/
if (current->mm->map_count >= sysctl_max_map_count - 3)
return -ENOMEM;
if (vma->vm_ops && vma->vm_ops->may_split) {
if (vma->vm_start != old_addr)
err = vma->vm_ops->may_split(vma, old_addr);
if (!err && vma->vm_end != old_addr + old_len)
err = vma->vm_ops->may_split(vma, old_addr + old_len);
if (err)
return err;
}
/*
* Advise KSM to break any KSM pages in the area to be moved:
* it would be confusing if they were to turn up at the new
* location, where they happen to coincide with different KSM
* pages recently unmapped. But leave vma->vm_flags as it was,
* so KSM can come around to merge on vma and new_vma afterwards.
*/
err = ksm_madvise(vma, old_addr, old_addr + old_len,
MADV_UNMERGEABLE, &dummy);
if (err)
return err;
return 0;
}
/*
* Unmap source VMA for VMA move, turning it from a copy to a move, being
* careful to ensure we do not underflow memory account while doing so if an
* accountable move.
*
* This is best effort, if we fail to unmap then we simply try to correct
* accounting and exit.
*/
static void unmap_source_vma(struct vma_remap_struct *vrm)
{
struct mm_struct *mm = current->mm;
unsigned long addr = vrm->addr;
unsigned long len = vrm->old_len;
struct vm_area_struct *vma = vrm->vma;
VMA_ITERATOR(vmi, mm, addr);
int err;
unsigned long vm_start;
unsigned long vm_end;
/*
* It might seem odd that we check for MREMAP_DONTUNMAP here, given this
* function implies that we unmap the original VMA, which seems
* contradictory.
*
* However, this occurs when this operation was attempted and an error
* arose, in which case we _do_ wish to unmap the _new_ VMA, which means
* we actually _do_ want it be unaccounted.
*/
bool accountable_move = (vma->vm_flags & VM_ACCOUNT) &&
!(vrm->flags & MREMAP_DONTUNMAP);
/*
* So we perform a trick here to prevent incorrect accounting. Any merge
* or new VMA allocation performed in copy_vma() does not adjust
* accounting, it is expected that callers handle this.
*
* And indeed we already have, accounting appropriately in the case of
* both in vrm_charge().
*
* However, when we unmap the existing VMA (to effect the move), this
* code will, if the VMA has VM_ACCOUNT set, attempt to unaccount
* removed pages.
*
* To avoid this we temporarily clear this flag, reinstating on any
* portions of the original VMA that remain.
*/
if (accountable_move) {
vm_flags_clear(vma, VM_ACCOUNT);
/* We are about to split vma, so store the start/end. */
vm_start = vma->vm_start;
vm_end = vma->vm_end;
}
err = do_vmi_munmap(&vmi, mm, addr, len, vrm->uf_unmap, /* unlock= */false);
vrm->vma = NULL; /* Invalidated. */
if (err) {
/* OOM: unable to split vma, just get accounts right */
vm_acct_memory(len >> PAGE_SHIFT);
return;
}
/*
* If we mremap() from a VMA like this:
*
* addr end
* | |
* v v
* |-------------|
* | |
* |-------------|
*
* Having cleared VM_ACCOUNT from the whole VMA, after we unmap above
* we'll end up with:
*
* addr end
* | |
* v v
* |---| |---|
* | A | | B |
* |---| |---|
*
* The VMI is still pointing at addr, so vma_prev() will give us A, and
* a subsequent or lone vma_next() will give as B.
*
* do_vmi_munmap() will have restored the VMI back to addr.
*/
if (accountable_move) {
unsigned long end = addr + len;
if (vm_start < addr) {
struct vm_area_struct *prev = vma_prev(&vmi);
vm_flags_set(prev, VM_ACCOUNT); /* Acquires VMA lock. */
}
if (vm_end > end) {
struct vm_area_struct *next = vma_next(&vmi);
vm_flags_set(next, VM_ACCOUNT); /* Acquires VMA lock. */
}
}
}
/*
* Copy vrm->vma over to vrm->new_addr possibly adjusting size as part of the
* process. Additionally handle an error occurring on moving of page tables,
* where we reset vrm state to cause unmapping of the new VMA.
*
* Outputs the newly installed VMA to new_vma_ptr. Returns 0 on success or an
* error code.
*/
static int copy_vma_and_data(struct vma_remap_struct *vrm,
struct vm_area_struct **new_vma_ptr)
{
unsigned long internal_offset = vrm->addr - vrm->vma->vm_start;
unsigned long internal_pgoff = internal_offset >> PAGE_SHIFT;
unsigned long new_pgoff = vrm->vma->vm_pgoff + internal_pgoff;
unsigned long moved_len;
struct vm_area_struct *vma = vrm->vma;
struct vm_area_struct *new_vma;
int err = 0;
PAGETABLE_MOVE(pmc, NULL, NULL, vrm->addr, vrm->new_addr, vrm->old_len);
new_vma = copy_vma(&vma, vrm->new_addr, vrm->new_len, new_pgoff,
&pmc.need_rmap_locks);
if (!new_vma) {
vrm_uncharge(vrm);
*new_vma_ptr = NULL;
return -ENOMEM;
}
vrm->vma = vma;
pmc.old = vma;
pmc.new = new_vma;
moved_len = move_page_tables(&pmc);
if (moved_len < vrm->old_len)
err = -ENOMEM;
else if (vma->vm_ops && vma->vm_ops->mremap)
err = vma->vm_ops->mremap(new_vma);
if (unlikely(err)) {
PAGETABLE_MOVE(pmc_revert, new_vma, vma, vrm->new_addr,
vrm->addr, moved_len);
/*
* On error, move entries back from new area to old,
* which will succeed since page tables still there,
* and then proceed to unmap new area instead of old.
*/
pmc_revert.need_rmap_locks = true;
move_page_tables(&pmc_revert);
vrm->vma = new_vma;
vrm->old_len = vrm->new_len;
vrm->addr = vrm->new_addr;
} else {
mremap_userfaultfd_prep(new_vma, vrm->uf);
}
fixup_hugetlb_reservations(vma);
*new_vma_ptr = new_vma;
return err;
}
/*
* Perform final tasks for MADV_DONTUNMAP operation, clearing mlock() and
* account flags on remaining VMA by convention (it cannot be mlock()'d any
* longer, as pages in range are no longer mapped), and removing anon_vma_chain
* links from it (if the entire VMA was copied over).
*/
static void dontunmap_complete(struct vma_remap_struct *vrm,
struct vm_area_struct *new_vma)
{
unsigned long start = vrm->addr;
unsigned long end = vrm->addr + vrm->old_len;
unsigned long old_start = vrm->vma->vm_start;
unsigned long old_end = vrm->vma->vm_end;
/*
* We always clear VM_LOCKED[ONFAULT] | VM_ACCOUNT on the old
* vma.
*/
vm_flags_clear(vrm->vma, VM_LOCKED_MASK | VM_ACCOUNT);
/*
* anon_vma links of the old vma is no longer needed after its page
* table has been moved.
*/
if (new_vma != vrm->vma && start == old_start && end == old_end)
unlink_anon_vmas(vrm->vma);
/* Because we won't unmap we don't need to touch locked_vm. */
}
static unsigned long move_vma(struct vma_remap_struct *vrm)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *new_vma;
unsigned long hiwater_vm;
int err;
err = prep_move_vma(vrm);
if (err)
return err;
/* If accounted, charge the number of bytes the operation will use. */
if (!vrm_charge(vrm))
return -ENOMEM;
/* We don't want racing faults. */
vma_start_write(vrm->vma);
/* Perform copy step. */
err = copy_vma_and_data(vrm, &new_vma);
/*
* If we established the copied-to VMA, we attempt to recover from the
* error by setting the destination VMA to the source VMA and unmapping
* it below.
*/
if (err && !new_vma)
return err;
/*
* If we failed to move page tables we still do total_vm increment
* since do_munmap() will decrement it by old_len == new_len.
*
* Since total_vm is about to be raised artificially high for a
* moment, we need to restore high watermark afterwards: if stats
* are taken meanwhile, total_vm and hiwater_vm appear too high.
* If this were a serious issue, we'd add a flag to do_munmap().
*/
hiwater_vm = mm->hiwater_vm;
vrm_stat_account(vrm, vrm->new_len);
if (unlikely(!err && (vrm->flags & MREMAP_DONTUNMAP)))
dontunmap_complete(vrm, new_vma);
else
unmap_source_vma(vrm);
mm->hiwater_vm = hiwater_vm;
return err ? (unsigned long)err : vrm->new_addr;
}
/*
* resize_is_valid() - Ensure the vma can be resized to the new length at the give
* address.
*
* Return 0 on success, error otherwise.
*/
static int resize_is_valid(struct vma_remap_struct *vrm)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma = vrm->vma;
unsigned long addr = vrm->addr;
unsigned long old_len = vrm->old_len;
unsigned long new_len = vrm->new_len;
unsigned long pgoff;
/*
* !old_len is a special case where an attempt is made to 'duplicate'
* a mapping. This makes no sense for private mappings as it will
* instead create a fresh/new mapping unrelated to the original. This
* is contrary to the basic idea of mremap which creates new mappings
* based on the original. There are no known use cases for this
* behavior. As a result, fail such attempts.
*/
if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n",
current->comm, current->pid);
return -EINVAL;
}
if ((vrm->flags & MREMAP_DONTUNMAP) &&
(vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
return -EINVAL;
/* We can't remap across vm area boundaries */
if (old_len > vma->vm_end - addr)
return -EFAULT;
if (new_len == old_len)
return 0;
/* Need to be careful about a growing mapping */
pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
pgoff += vma->vm_pgoff;
if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
return -EINVAL;
if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
return -EFAULT;
if (!mlock_future_ok(mm, vma->vm_flags, vrm->delta))
return -EAGAIN;
if (!may_expand_vm(mm, vma->vm_flags, vrm->delta >> PAGE_SHIFT))
return -ENOMEM;
return 0;
}
/*
* The user has requested that the VMA be shrunk (i.e., old_len > new_len), so
* execute this, optionally dropping the mmap lock when we do so.
*
* In both cases this invalidates the VMA, however if we don't drop the lock,
* then load the correct VMA into vrm->vma afterwards.
*/
static unsigned long shrink_vma(struct vma_remap_struct *vrm,
bool drop_lock)
{
struct mm_struct *mm = current->mm;
unsigned long unmap_start = vrm->addr + vrm->new_len;
unsigned long unmap_bytes = vrm->delta;
unsigned long res;
VMA_ITERATOR(vmi, mm, unmap_start);
VM_BUG_ON(vrm->remap_type != MREMAP_SHRINK);
res = do_vmi_munmap(&vmi, mm, unmap_start, unmap_bytes,
vrm->uf_unmap, drop_lock);
vrm->vma = NULL; /* Invalidated. */
if (res)
return res;
/*
* If we've not dropped the lock, then we should reload the VMA to
* replace the invalidated VMA with the one that may have now been
* split.
*/
if (drop_lock) {
vrm->mmap_locked = false;
} else {
vrm->vma = vma_lookup(mm, vrm->addr);
if (!vrm->vma)
return -EFAULT;
}
return 0;
}
/*
* mremap_to() - remap a vma to a new location.
* Returns: The new address of the vma or an error.
*/
static unsigned long mremap_to(struct vma_remap_struct *vrm)
{
struct mm_struct *mm = current->mm;
unsigned long err;
/* Is the new length or address silly? */
if (vrm->new_len > TASK_SIZE ||
vrm->new_addr > TASK_SIZE - vrm->new_len)
return -EINVAL;
if (vrm_overlaps(vrm))
return -EINVAL;
if (vrm->flags & MREMAP_FIXED) {
/*
* In mremap_to().
* VMA is moved to dst address, and munmap dst first.
* do_munmap will check if dst is sealed.
*/
err = do_munmap(mm, vrm->new_addr, vrm->new_len,
vrm->uf_unmap_early);
vrm->vma = NULL; /* Invalidated. */
if (err)
return err;
/*
* If we remap a portion of a VMA elsewhere in the same VMA,
* this can invalidate the old VMA. Reset.
*/
vrm->vma = vma_lookup(mm, vrm->addr);
if (!vrm->vma)
return -EFAULT;
}
if (vrm->remap_type == MREMAP_SHRINK) {
err = shrink_vma(vrm, /* drop_lock= */false);
if (err)
return err;
/* Set up for the move now shrink has been executed. */
vrm->old_len = vrm->new_len;
}
err = resize_is_valid(vrm);
if (err)
return err;
/* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
if (vrm->flags & MREMAP_DONTUNMAP) {
vm_flags_t vm_flags = vrm->vma->vm_flags;
unsigned long pages = vrm->old_len >> PAGE_SHIFT;
if (!may_expand_vm(mm, vm_flags, pages))
return -ENOMEM;
}
err = vrm_set_new_addr(vrm);
if (err)
return err;
return move_vma(vrm);
}
static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
{
unsigned long end = vma->vm_end + delta;
if (end < vma->vm_end) /* overflow */
return 0;
if (find_vma_intersection(vma->vm_mm, vma->vm_end, end))
return 0;
if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
0, MAP_FIXED) & ~PAGE_MASK)
return 0;
return 1;
}
/* Determine whether we are actually able to execute an in-place expansion. */
static bool vrm_can_expand_in_place(struct vma_remap_struct *vrm)
{
/* Number of bytes from vrm->addr to end of VMA. */
unsigned long suffix_bytes = vrm->vma->vm_end - vrm->addr;
/* If end of range aligns to end of VMA, we can just expand in-place. */
if (suffix_bytes != vrm->old_len)
return false;
/* Check whether this is feasible. */
if (!vma_expandable(vrm->vma, vrm->delta))
return false;
return true;
}
/*
* Are the parameters passed to mremap() valid? If so return 0, otherwise return
* error.
*/
static unsigned long check_mremap_params(struct vma_remap_struct *vrm)
{
unsigned long addr = vrm->addr;
unsigned long flags = vrm->flags;
/* Ensure no unexpected flag values. */
if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
return -EINVAL;
/* Start address must be page-aligned. */
if (offset_in_page(addr))
return -EINVAL;
/*
* We allow a zero old-len as a special case
* for DOS-emu "duplicate shm area" thing. But
* a zero new-len is nonsensical.
*/
if (!PAGE_ALIGN(vrm->new_len))
return -EINVAL;
/* Remainder of checks are for cases with specific new_addr. */
if (!vrm_implies_new_addr(vrm))
return 0;
/* The new address must be page-aligned. */
if (offset_in_page(vrm->new_addr))
return -EINVAL;
/* A fixed address implies a move. */
if (!(flags & MREMAP_MAYMOVE))
return -EINVAL;
/* MREMAP_DONTUNMAP does not allow resizing in the process. */
if (flags & MREMAP_DONTUNMAP && vrm->old_len != vrm->new_len)
return -EINVAL;
/*
* move_vma() need us to stay 4 maps below the threshold, otherwise
* it will bail out at the very beginning.
* That is a problem if we have already unmaped the regions here
* (new_addr, and old_addr), because userspace will not know the
* state of the vma's after it gets -ENOMEM.
* So, to avoid such scenario we can pre-compute if the whole
* operation has high chances to success map-wise.
* Worst-scenario case is when both vma's (new_addr and old_addr) get
* split in 3 before unmapping it.
* That means 2 more maps (1 for each) to the ones we already hold.
* Check whether current map count plus 2 still leads us to 4 maps below
* the threshold, otherwise return -ENOMEM here to be more safe.
*/
if ((current->mm->map_count + 2) >= sysctl_max_map_count - 3)
return -ENOMEM;
return 0;
}
/*
* We know we can expand the VMA in-place by delta pages, so do so.
*
* If we discover the VMA is locked, update mm_struct statistics accordingly and
* indicate so to the caller.
*/
static unsigned long expand_vma_in_place(struct vma_remap_struct *vrm)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma = vrm->vma;
VMA_ITERATOR(vmi, mm, vma->vm_end);
if (!vrm_charge(vrm))
return -ENOMEM;
/*
* Function vma_merge_extend() is called on the
* extension we are adding to the already existing vma,
* vma_merge_extend() will merge this extension with the
* already existing vma (expand operation itself) and
* possibly also with the next vma if it becomes
* adjacent to the expanded vma and otherwise
* compatible.
*/
vma = vma_merge_extend(&vmi, vma, vrm->delta);
if (!vma) {
vrm_uncharge(vrm);
return -ENOMEM;
}
vrm->vma = vma;
vrm_stat_account(vrm, vrm->delta);
return 0;
}
static bool align_hugetlb(struct vma_remap_struct *vrm)
{
struct hstate *h __maybe_unused = hstate_vma(vrm->vma);
vrm->old_len = ALIGN(vrm->old_len, huge_page_size(h));
vrm->new_len = ALIGN(vrm->new_len, huge_page_size(h));
/* addrs must be huge page aligned */
if (vrm->addr & ~huge_page_mask(h))
return false;
if (vrm->new_addr & ~huge_page_mask(h))
return false;
/*
* Don't allow remap expansion, because the underlying hugetlb
* reservation is not yet capable to handle split reservation.
*/
if (vrm->new_len > vrm->old_len)
return false;
vrm_set_delta(vrm);
return true;
}
/*
* We are mremap()'ing without specifying a fixed address to move to, but are
* requesting that the VMA's size be increased.
*
* Try to do so in-place, if this fails, then move the VMA to a new location to
* action the change.
*/
static unsigned long expand_vma(struct vma_remap_struct *vrm)
{
unsigned long err;
unsigned long addr = vrm->addr;
err = resize_is_valid(vrm);
if (err)
return err;
/*
* [addr, old_len) spans precisely to the end of the VMA, so try to
* expand it in-place.
*/
if (vrm_can_expand_in_place(vrm)) {
err = expand_vma_in_place(vrm);
if (err)
return err;
/*
* We want to populate the newly expanded portion of the VMA to
* satisfy the expectation that mlock()'ing a VMA maintains all
* of its pages in memory.
*/
if (vrm->mlocked)
vrm->new_addr = addr;
/* OK we're done! */
return addr;
}
/*
* We weren't able to just expand or shrink the area,
* we need to create a new one and move it.
*/
/* We're not allowed to move the VMA, so error out. */
if (!(vrm->flags & MREMAP_MAYMOVE))
return -ENOMEM;
/* Find a new location to move the VMA to. */
err = vrm_set_new_addr(vrm);
if (err)
return err;
return move_vma(vrm);
}
/*
* Attempt to resize the VMA in-place, if we cannot, then move the VMA to the
* first available address to perform the operation.
*/
static unsigned long mremap_at(struct vma_remap_struct *vrm)
{
unsigned long res;
switch (vrm->remap_type) {
case MREMAP_INVALID:
break;
case MREMAP_NO_RESIZE:
/* NO-OP CASE - resizing to the same size. */
return vrm->addr;
case MREMAP_SHRINK:
/*
* SHRINK CASE. Can always be done in-place.
*
* Simply unmap the shrunken portion of the VMA. This does all
* the needed commit accounting, and we indicate that the mmap
* lock should be dropped.
*/
res = shrink_vma(vrm, /* drop_lock= */true);
if (res)
return res;
return vrm->addr;
case MREMAP_EXPAND:
return expand_vma(vrm);
}
BUG();
}
static unsigned long do_mremap(struct vma_remap_struct *vrm)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long ret;
ret = check_mremap_params(vrm);
if (ret)
return ret;
vrm->old_len = PAGE_ALIGN(vrm->old_len);
vrm->new_len = PAGE_ALIGN(vrm->new_len);
vrm_set_delta(vrm);
if (mmap_write_lock_killable(mm))
return -EINTR;
vrm->mmap_locked = true;
vma = vrm->vma = vma_lookup(mm, vrm->addr);
if (!vma) {
ret = -EFAULT;
goto out;
}
/* If mseal()'d, mremap() is prohibited. */
if (!can_modify_vma(vma)) {
ret = -EPERM;
goto out;
}
/* Align to hugetlb page size, if required. */
if (is_vm_hugetlb_page(vma) && !align_hugetlb(vrm)) {
ret = -EINVAL;
goto out;
}
vrm->remap_type = vrm_remap_type(vrm);
/* Actually execute mremap. */
ret = vrm_implies_new_addr(vrm) ? mremap_to(vrm) : mremap_at(vrm);
out:
if (vrm->mmap_locked) {
mmap_write_unlock(mm);
vrm->mmap_locked = false;
if (!offset_in_page(ret) && vrm->mlocked && vrm->new_len > vrm->old_len)
mm_populate(vrm->new_addr + vrm->old_len, vrm->delta);
}
userfaultfd_unmap_complete(mm, vrm->uf_unmap_early);
mremap_userfaultfd_complete(vrm->uf, vrm->addr, ret, vrm->old_len);
userfaultfd_unmap_complete(mm, vrm->uf_unmap);
return ret;
}
/*
* Expand (or shrink) an existing mapping, potentially moving it at the
* same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
*
* MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
* This option implies MREMAP_MAYMOVE.
*/
SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
unsigned long, new_len, unsigned long, flags,
unsigned long, new_addr)
{
struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
LIST_HEAD(uf_unmap_early);
LIST_HEAD(uf_unmap);
/*
* There is a deliberate asymmetry here: we strip the pointer tag
* from the old address but leave the new address alone. This is
* for consistency with mmap(), where we prevent the creation of
* aliasing mappings in userspace by leaving the tag bits of the
* mapping address intact. A non-zero tag will cause the subsequent
* range checks to reject the address as invalid.
*
* See Documentation/arch/arm64/tagged-address-abi.rst for more
* information.
*/
struct vma_remap_struct vrm = {
.addr = untagged_addr(addr),
.old_len = old_len,
.new_len = new_len,
.flags = flags,
.new_addr = new_addr,
.uf = &uf,
.uf_unmap_early = &uf_unmap_early,
.uf_unmap = &uf_unmap,
.remap_type = MREMAP_INVALID, /* We set later. */
};
return do_mremap(&vrm);
}
|