1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
|
// SPDX-License-Identifier: GPL-2.0
/* xfrm_iptfs: IPTFS encapsulation support
*
* April 21 2022, Christian Hopps <chopps@labn.net>
*
* Copyright (c) 2022, LabN Consulting, L.L.C.
*
*/
#include <linux/kernel.h>
#include <linux/icmpv6.h>
#include <linux/skbuff_ref.h>
#include <net/gro.h>
#include <net/icmp.h>
#include <net/ip6_route.h>
#include <net/inet_ecn.h>
#include <net/xfrm.h>
#include <crypto/aead.h>
#include "xfrm_inout.h"
#include "trace_iptfs.h"
/* IPTFS encap (header) values. */
#define IPTFS_SUBTYPE_BASIC 0
#define IPTFS_SUBTYPE_CC 1
/* ----------------------------------------------- */
/* IP-TFS default SA values (tunnel egress/dir-in) */
/* ----------------------------------------------- */
/**
* define IPTFS_DEFAULT_DROP_TIME_USECS - default drop time
*
* The default IPTFS drop time in microseconds. The drop time is the amount of
* time before a missing out-of-order IPTFS tunnel packet is considered lost.
* See also the reorder window.
*
* Default 1s.
*/
#define IPTFS_DEFAULT_DROP_TIME_USECS 1000000
/**
* define IPTFS_DEFAULT_REORDER_WINDOW - default reorder window size
*
* The default IPTFS reorder window size. The reorder window size dictates the
* maximum number of IPTFS tunnel packets in a sequence that may arrive out of
* order.
*
* Default 3. (tcp folks suggested)
*/
#define IPTFS_DEFAULT_REORDER_WINDOW 3
/* ------------------------------------------------ */
/* IPTFS default SA values (tunnel ingress/dir-out) */
/* ------------------------------------------------ */
/**
* define IPTFS_DEFAULT_INIT_DELAY_USECS - default initial output delay
*
* The initial output delay is the amount of time prior to servicing the output
* queue after queueing the first packet on said queue. This applies anytime the
* output queue was previously empty.
*
* Default 0.
*/
#define IPTFS_DEFAULT_INIT_DELAY_USECS 0
/**
* define IPTFS_DEFAULT_MAX_QUEUE_SIZE - default max output queue size.
*
* The default IPTFS max output queue size in octets. The output queue is where
* received packets destined for output over an IPTFS tunnel are stored prior to
* being output in aggregated/fragmented form over the IPTFS tunnel.
*
* Default 1M.
*/
#define IPTFS_DEFAULT_MAX_QUEUE_SIZE (1024 * 10240)
/* Assumed: skb->head is cache aligned.
*
* L2 Header resv: Arrange for cacheline to start at skb->data - 16 to keep the
* to-be-pushed L2 header in the same cacheline as resulting `skb->data` (i.e.,
* the L3 header). If cacheline size is > 64 then skb->data + pushed L2 will all
* be in a single cacheline if we simply reserve 64 bytes.
*
* L3 Header resv: For L3+L2 headers (i.e., skb->data points at the IPTFS payload)
* we want `skb->data` to be cacheline aligned and all pushed L2L3 headers will
* be in their own cacheline[s]. 128 works for cachelins up to 128 bytes, for
* any larger cacheline sizes the pushed headers will simply share the cacheline
* with the start of the IPTFS payload (skb->data).
*/
#define XFRM_IPTFS_MIN_L3HEADROOM 128
#define XFRM_IPTFS_MIN_L2HEADROOM (L1_CACHE_BYTES > 64 ? 64 : 64 + 16)
/* Min to try to share outer iptfs skb data vs copying into new skb */
#define IPTFS_PKT_SHARE_MIN 129
#define NSECS_IN_USEC 1000
#define IPTFS_HRTIMER_MODE HRTIMER_MODE_REL_SOFT
/**
* struct xfrm_iptfs_config - configuration for the IPTFS tunnel.
* @pkt_size: size of the outer IP packet. 0 to use interface and MTU discovery,
* otherwise the user specified value.
* @max_queue_size: The maximum number of octets allowed to be queued to be sent
* over the IPTFS SA. The queue size is measured as the size of all the
* packets enqueued.
* @reorder_win_size: the number slots in the reorder window, thus the number of
* packets that may arrive out of order.
* @dont_frag: true to inhibit fragmenting across IPTFS outer packets.
*/
struct xfrm_iptfs_config {
u32 pkt_size; /* outer_packet_size or 0 */
u32 max_queue_size; /* octets */
u16 reorder_win_size;
u8 dont_frag : 1;
};
struct skb_wseq {
struct sk_buff *skb;
u64 drop_time;
};
/**
* struct xfrm_iptfs_data - mode specific xfrm state.
* @cfg: IPTFS tunnel config.
* @x: owning SA (xfrm_state).
* @queue: queued user packets to send.
* @queue_size: number of octets on queue (sum of packet sizes).
* @ecn_queue_size: octets above with ECN mark.
* @init_delay_ns: nanoseconds to wait to send initial IPTFS packet.
* @iptfs_timer: output timer.
* @iptfs_settime: time the output timer was set.
* @payload_mtu: max payload size.
* @w_seq_set: true after first seq received.
* @w_wantseq: waiting for this seq number as next to process (in order).
* @w_saved: the saved buf array (reorder window).
* @w_savedlen: the saved len (not size).
* @drop_lock: lock to protect reorder queue.
* @drop_timer: timer for considering next packet lost.
* @drop_time_ns: timer intervan in nanoseconds.
* @ra_newskb: new pkt being reassembled.
* @ra_wantseq: expected next sequence for reassembly.
* @ra_runt: last pkt bytes from very end of last skb.
* @ra_runtlen: size of ra_runt.
*/
struct xfrm_iptfs_data {
struct xfrm_iptfs_config cfg;
/* Ingress User Input */
struct xfrm_state *x; /* owning state */
struct sk_buff_head queue; /* output queue */
u32 queue_size; /* octets */
u32 ecn_queue_size; /* octets above which ECN mark */
u64 init_delay_ns; /* nanoseconds */
struct hrtimer iptfs_timer; /* output timer */
time64_t iptfs_settime; /* time timer was set */
u32 payload_mtu; /* max payload size */
/* Tunnel input reordering */
bool w_seq_set; /* true after first seq received */
u64 w_wantseq; /* expected next sequence */
struct skb_wseq *w_saved; /* the saved buf array */
u32 w_savedlen; /* the saved len (not size) */
spinlock_t drop_lock;
struct hrtimer drop_timer;
u64 drop_time_ns;
/* Tunnel input reassembly */
struct sk_buff *ra_newskb; /* new pkt being reassembled */
u64 ra_wantseq; /* expected next sequence */
u8 ra_runt[6]; /* last pkt bytes from last skb */
u8 ra_runtlen; /* count of ra_runt */
};
static u32 __iptfs_get_inner_mtu(struct xfrm_state *x, int outer_mtu);
static enum hrtimer_restart iptfs_delay_timer(struct hrtimer *me);
static enum hrtimer_restart iptfs_drop_timer(struct hrtimer *me);
/* ================= */
/* Utility Functions */
/* ================= */
#ifdef TRACEPOINTS_ENABLED
static u32 __trace_ip_proto(struct iphdr *iph)
{
if (iph->version == 4)
return iph->protocol;
return ((struct ipv6hdr *)iph)->nexthdr;
}
static u32 __trace_ip_proto_seq(struct iphdr *iph)
{
void *nexthdr;
u32 protocol = 0;
if (iph->version == 4) {
nexthdr = (void *)(iph + 1);
protocol = iph->protocol;
} else if (iph->version == 6) {
nexthdr = (void *)(((struct ipv6hdr *)(iph)) + 1);
protocol = ((struct ipv6hdr *)(iph))->nexthdr;
}
switch (protocol) {
case IPPROTO_ICMP:
return ntohs(((struct icmphdr *)nexthdr)->un.echo.sequence);
case IPPROTO_ICMPV6:
return ntohs(((struct icmp6hdr *)nexthdr)->icmp6_sequence);
case IPPROTO_TCP:
return ntohl(((struct tcphdr *)nexthdr)->seq);
case IPPROTO_UDP:
return ntohs(((struct udphdr *)nexthdr)->source);
default:
return 0;
}
}
#endif /*TRACEPOINTS_ENABLED*/
static u64 __esp_seq(struct sk_buff *skb)
{
u64 seq = ntohl(XFRM_SKB_CB(skb)->seq.input.low);
return seq | (u64)ntohl(XFRM_SKB_CB(skb)->seq.input.hi) << 32;
}
/* ======================= */
/* IPTFS SK_BUFF Functions */
/* ======================= */
/**
* iptfs_alloc_skb() - Allocate a new `skb`.
* @tpl: the skb to copy required meta-data from.
* @len: the linear length of the head data, zero is fine.
* @l3resv: true if skb reserve needs to support pushing L3 headers
*
* A new `skb` is allocated and required meta-data is copied from `tpl`, the
* head data is sized to `len` + reserved space set according to the @l3resv
* boolean.
*
* When @l3resv is false, resv is XFRM_IPTFS_MIN_L2HEADROOM which arranges for
* `skb->data - 16` which is a good guess for good cache alignment (placing the
* to be pushed L2 header at the start of a cacheline.
*
* Otherwise, @l3resv is true and resv is set to the correct reserved space for
* dst->dev plus the calculated L3 overhead for the xfrm dst or
* XFRM_IPTFS_MIN_L3HEADROOM whichever is larger. This is then cache aligned so
* that all the headers will commonly fall in a cacheline when possible.
*
* l3resv=true is used on tunnel ingress (tx), because we need to reserve for
* the new IPTFS packet (i.e., L2+L3 headers). On tunnel egress (rx) the data
* being copied into the skb includes the user L3 headers already so we only
* need to reserve for L2.
*
* Return: the new skb or NULL.
*/
static struct sk_buff *iptfs_alloc_skb(struct sk_buff *tpl, u32 len, bool l3resv)
{
struct sk_buff *skb;
u32 resv;
if (!l3resv) {
resv = XFRM_IPTFS_MIN_L2HEADROOM;
} else {
struct dst_entry *dst = skb_dst(tpl);
resv = LL_RESERVED_SPACE(dst->dev) + dst->header_len;
resv = max(resv, XFRM_IPTFS_MIN_L3HEADROOM);
resv = L1_CACHE_ALIGN(resv);
}
skb = alloc_skb(len + resv, GFP_ATOMIC | __GFP_NOWARN);
if (!skb)
return NULL;
skb_reserve(skb, resv);
if (!l3resv) {
/* xfrm_input resume needs dev and xfrm ext from tunnel pkt */
skb->dev = tpl->dev;
__skb_ext_copy(skb, tpl);
}
/* dropped by xfrm_input, used by xfrm_output */
skb_dst_copy(skb, tpl);
return skb;
}
/**
* iptfs_skb_head_to_frag() - initialize a skb_frag_t based on skb head data
* @skb: skb with the head data
* @frag: frag to initialize
*/
static void iptfs_skb_head_to_frag(const struct sk_buff *skb, skb_frag_t *frag)
{
struct page *page = virt_to_head_page(skb->data);
unsigned char *addr = (unsigned char *)page_address(page);
skb_frag_fill_page_desc(frag, page, skb->data - addr, skb_headlen(skb));
}
/**
* struct iptfs_skb_frag_walk - use to track a walk through fragments
* @fragi: current fragment index
* @past: length of data in fragments before @fragi
* @total: length of data in all fragments
* @nr_frags: number of fragments present in array
* @initial_offset: the value passed in to skb_prepare_frag_walk()
* @frags: the page fragments inc. room for head page
* @pp_recycle: copy of skb->pp_recycle
*/
struct iptfs_skb_frag_walk {
u32 fragi;
u32 past;
u32 total;
u32 nr_frags;
u32 initial_offset;
skb_frag_t frags[MAX_SKB_FRAGS + 1];
bool pp_recycle;
};
/**
* iptfs_skb_prepare_frag_walk() - initialize a frag walk over an skb.
* @skb: the skb to walk.
* @initial_offset: start the walk @initial_offset into the skb.
* @walk: the walk to initialize
*
* Future calls to skb_add_frags() will expect the @offset value to be at
* least @initial_offset large.
*/
static void iptfs_skb_prepare_frag_walk(struct sk_buff *skb, u32 initial_offset,
struct iptfs_skb_frag_walk *walk)
{
struct skb_shared_info *shinfo = skb_shinfo(skb);
skb_frag_t *frag, *from;
u32 i;
walk->initial_offset = initial_offset;
walk->fragi = 0;
walk->past = 0;
walk->total = 0;
walk->nr_frags = 0;
walk->pp_recycle = skb->pp_recycle;
if (skb->head_frag) {
if (initial_offset >= skb_headlen(skb)) {
initial_offset -= skb_headlen(skb);
} else {
frag = &walk->frags[walk->nr_frags++];
iptfs_skb_head_to_frag(skb, frag);
frag->offset += initial_offset;
frag->len -= initial_offset;
walk->total += frag->len;
initial_offset = 0;
}
} else {
initial_offset -= skb_headlen(skb);
}
for (i = 0; i < shinfo->nr_frags; i++) {
from = &shinfo->frags[i];
if (initial_offset >= from->len) {
initial_offset -= from->len;
continue;
}
frag = &walk->frags[walk->nr_frags++];
*frag = *from;
if (initial_offset) {
frag->offset += initial_offset;
frag->len -= initial_offset;
initial_offset = 0;
}
walk->total += frag->len;
}
}
static u32 iptfs_skb_reset_frag_walk(struct iptfs_skb_frag_walk *walk,
u32 offset)
{
/* Adjust offset to refer to internal walk values */
offset -= walk->initial_offset;
/* Get to the correct fragment for offset */
while (offset < walk->past) {
walk->past -= walk->frags[--walk->fragi].len;
if (offset >= walk->past)
break;
}
while (offset >= walk->past + walk->frags[walk->fragi].len)
walk->past += walk->frags[walk->fragi++].len;
/* offset now relative to this current frag */
offset -= walk->past;
return offset;
}
/**
* iptfs_skb_can_add_frags() - check if ok to add frags from walk to skb
* @skb: skb to check for adding frags to
* @walk: the walk that will be used as source for frags.
* @offset: offset from beginning of original skb to start from.
* @len: amount of data to add frag references to in @skb.
*
* Return: true if ok to add frags.
*/
static bool iptfs_skb_can_add_frags(const struct sk_buff *skb,
struct iptfs_skb_frag_walk *walk,
u32 offset, u32 len)
{
struct skb_shared_info *shinfo = skb_shinfo(skb);
u32 fragi, nr_frags, fraglen;
if (skb_has_frag_list(skb) || skb->pp_recycle != walk->pp_recycle)
return false;
/* Make offset relative to current frag after setting that */
offset = iptfs_skb_reset_frag_walk(walk, offset);
/* Verify we have array space for the fragments we need to add */
fragi = walk->fragi;
nr_frags = shinfo->nr_frags;
while (len && fragi < walk->nr_frags) {
skb_frag_t *frag = &walk->frags[fragi];
fraglen = frag->len;
if (offset) {
fraglen -= offset;
offset = 0;
}
if (++nr_frags > MAX_SKB_FRAGS)
return false;
if (len <= fraglen)
return true;
len -= fraglen;
fragi++;
}
/* We may not copy all @len but what we have will fit. */
return true;
}
/**
* iptfs_skb_add_frags() - add a range of fragment references into an skb
* @skb: skb to add references into
* @walk: the walk to add referenced fragments from.
* @offset: offset from beginning of original skb to start from.
* @len: amount of data to add frag references to in @skb.
*
* iptfs_skb_can_add_frags() should be called before this function to verify
* that the destination @skb is compatible with the walk and has space in the
* array for the to be added frag references.
*
* Return: The number of bytes not added to @skb b/c we reached the end of the
* walk before adding all of @len.
*/
static int iptfs_skb_add_frags(struct sk_buff *skb,
struct iptfs_skb_frag_walk *walk, u32 offset,
u32 len)
{
struct skb_shared_info *shinfo = skb_shinfo(skb);
u32 fraglen;
if (!walk->nr_frags || offset >= walk->total + walk->initial_offset)
return len;
/* make offset relative to current frag after setting that */
offset = iptfs_skb_reset_frag_walk(walk, offset);
while (len && walk->fragi < walk->nr_frags) {
skb_frag_t *frag = &walk->frags[walk->fragi];
skb_frag_t *tofrag = &shinfo->frags[shinfo->nr_frags];
*tofrag = *frag;
if (offset) {
tofrag->offset += offset;
tofrag->len -= offset;
offset = 0;
}
__skb_frag_ref(tofrag);
shinfo->nr_frags++;
/* see if we are done */
fraglen = tofrag->len;
if (len < fraglen) {
tofrag->len = len;
skb->len += len;
skb->data_len += len;
return 0;
}
/* advance to next source fragment */
len -= fraglen; /* careful, use dst bv_len */
skb->len += fraglen; /* careful, " " " */
skb->data_len += fraglen; /* careful, " " " */
walk->past += frag->len; /* careful, use src bv_len */
walk->fragi++;
}
return len;
}
/* ================================== */
/* IPTFS Trace Event Definitions */
/* ================================== */
#define CREATE_TRACE_POINTS
#include "trace_iptfs.h"
/* ================================== */
/* IPTFS Receiving (egress) Functions */
/* ================================== */
/**
* iptfs_pskb_add_frags() - Create and add frags into a new sk_buff.
* @tpl: template to create new skb from.
* @walk: The source for fragments to add.
* @off: The offset into @walk to add frags from, also used with @st and
* @copy_len.
* @len: The length of data to add covering frags from @walk into @skb.
* This must be <= @skblen.
* @st: The sequence state to copy from into the new head skb.
* @copy_len: Copy @copy_len bytes from @st at offset @off into the new skb
* linear space.
*
* Create a new sk_buff `skb` using the template @tpl. Copy @copy_len bytes from
* @st into the new skb linear space, and then add shared fragments from the
* frag walk for the remaining @len of data (i.e., @len - @copy_len bytes).
*
* Return: The newly allocated sk_buff `skb` or NULL if an error occurs.
*/
static struct sk_buff *
iptfs_pskb_add_frags(struct sk_buff *tpl, struct iptfs_skb_frag_walk *walk,
u32 off, u32 len, struct skb_seq_state *st, u32 copy_len)
{
struct sk_buff *skb;
skb = iptfs_alloc_skb(tpl, copy_len, false);
if (!skb)
return NULL;
/* this should not normally be happening */
if (!iptfs_skb_can_add_frags(skb, walk, off + copy_len,
len - copy_len)) {
kfree_skb(skb);
return NULL;
}
if (copy_len &&
skb_copy_seq_read(st, off, skb_put(skb, copy_len), copy_len)) {
XFRM_INC_STATS(dev_net(st->root_skb->dev),
LINUX_MIB_XFRMINERROR);
kfree_skb(skb);
return NULL;
}
iptfs_skb_add_frags(skb, walk, off + copy_len, len - copy_len);
return skb;
}
/**
* iptfs_pskb_extract_seq() - Create and load data into a new sk_buff.
* @skblen: the total data size for `skb`.
* @st: The source for the rest of the data to copy into `skb`.
* @off: The offset into @st to copy data from.
* @len: The length of data to copy from @st into `skb`. This must be <=
* @skblen.
*
* Create a new sk_buff `skb` with @skblen of packet data space. If non-zero,
* copy @rlen bytes of @runt into `skb`. Then using seq functions copy @len
* bytes from @st into `skb` starting from @off.
*
* It is an error for @len to be greater than the amount of data left in @st.
*
* Return: The newly allocated sk_buff `skb` or NULL if an error occurs.
*/
static struct sk_buff *
iptfs_pskb_extract_seq(u32 skblen, struct skb_seq_state *st, u32 off, int len)
{
struct sk_buff *skb = iptfs_alloc_skb(st->root_skb, skblen, false);
if (!skb)
return NULL;
if (skb_copy_seq_read(st, off, skb_put(skb, len), len)) {
XFRM_INC_STATS(dev_net(st->root_skb->dev), LINUX_MIB_XFRMINERROR);
kfree_skb(skb);
return NULL;
}
return skb;
}
/**
* iptfs_input_save_runt() - save data in xtfs runt space.
* @xtfs: xtfs state
* @seq: the current sequence
* @buf: packet data
* @len: length of packet data
*
* Save the small (`len`) start of a fragmented packet in `buf` in the xtfs data
* runt space.
*/
static void iptfs_input_save_runt(struct xfrm_iptfs_data *xtfs, u64 seq,
u8 *buf, int len)
{
memcpy(xtfs->ra_runt, buf, len);
xtfs->ra_runtlen = len;
xtfs->ra_wantseq = seq + 1;
}
/**
* __iptfs_iphlen() - return the v4/v6 header length using packet data.
* @data: pointer at octet with version nibble
*
* The version data has been checked to be valid (i.e., either 4 or 6).
*
* Return: the IP header size based on the IP version.
*/
static u32 __iptfs_iphlen(u8 *data)
{
struct iphdr *iph = (struct iphdr *)data;
if (iph->version == 0x4)
return sizeof(*iph);
return sizeof(struct ipv6hdr);
}
/**
* __iptfs_iplen() - return the v4/v6 length using packet data.
* @data: pointer to ip (v4/v6) packet header
*
* Grab the IPv4 or IPv6 length value in the start of the inner packet header
* pointed to by `data`. Assumes data len is enough for the length field only.
*
* The version data has been checked to be valid (i.e., either 4 or 6).
*
* Return: the length value.
*/
static u32 __iptfs_iplen(u8 *data)
{
struct iphdr *iph = (struct iphdr *)data;
if (iph->version == 0x4)
return ntohs(iph->tot_len);
return ntohs(((struct ipv6hdr *)iph)->payload_len) +
sizeof(struct ipv6hdr);
}
/**
* iptfs_complete_inner_skb() - finish preparing the inner packet for gro recv.
* @x: xfrm state
* @skb: the inner packet
*
* Finish the standard xfrm processing on the inner packet prior to sending back
* through gro_cells_receive. We do this separately b/c we are building a list
* of packets in the hopes that one day a list will be taken by
* xfrm_input.
*/
static void iptfs_complete_inner_skb(struct xfrm_state *x, struct sk_buff *skb)
{
skb_reset_network_header(skb);
/* The packet is going back through gro_cells_receive no need to
* set this.
*/
skb_reset_transport_header(skb);
/* Packet already has checksum value set. */
skb->ip_summed = CHECKSUM_NONE;
/* Our skb will contain the header data copied when this outer packet
* which contained the start of this inner packet. This is true
* when we allocate a new skb as well as when we reuse the existing skb.
*/
if (ip_hdr(skb)->version == 0x4) {
struct iphdr *iph = ip_hdr(skb);
if (x->props.flags & XFRM_STATE_DECAP_DSCP)
ipv4_copy_dscp(XFRM_MODE_SKB_CB(skb)->tos, iph);
if (!(x->props.flags & XFRM_STATE_NOECN))
if (INET_ECN_is_ce(XFRM_MODE_SKB_CB(skb)->tos))
IP_ECN_set_ce(iph);
skb->protocol = htons(ETH_P_IP);
} else {
struct ipv6hdr *iph = ipv6_hdr(skb);
if (x->props.flags & XFRM_STATE_DECAP_DSCP)
ipv6_copy_dscp(XFRM_MODE_SKB_CB(skb)->tos, iph);
if (!(x->props.flags & XFRM_STATE_NOECN))
if (INET_ECN_is_ce(XFRM_MODE_SKB_CB(skb)->tos))
IP6_ECN_set_ce(skb, iph);
skb->protocol = htons(ETH_P_IPV6);
}
}
static void __iptfs_reassem_done(struct xfrm_iptfs_data *xtfs, bool free)
{
assert_spin_locked(&xtfs->drop_lock);
/* We don't care if it works locking takes care of things */
hrtimer_try_to_cancel(&xtfs->drop_timer);
if (free)
kfree_skb(xtfs->ra_newskb);
xtfs->ra_newskb = NULL;
}
/**
* iptfs_reassem_abort() - In-progress packet is aborted free the state.
* @xtfs: xtfs state
*/
static void iptfs_reassem_abort(struct xfrm_iptfs_data *xtfs)
{
__iptfs_reassem_done(xtfs, true);
}
/**
* iptfs_reassem_done() - In-progress packet is complete, clear the state.
* @xtfs: xtfs state
*/
static void iptfs_reassem_done(struct xfrm_iptfs_data *xtfs)
{
__iptfs_reassem_done(xtfs, false);
}
/**
* iptfs_reassem_cont() - Continue the reassembly of an inner packets.
* @xtfs: xtfs state
* @seq: sequence of current packet
* @st: seq read stat for current packet
* @skb: current packet
* @data: offset into sequential packet data
* @blkoff: packet blkoff value
* @list: list of skbs to enqueue completed packet on
*
* Process an IPTFS payload that has a non-zero `blkoff` or when we are
* expecting the continuation b/c we have a runt or in-progress packet.
*
* Return: the new data offset to continue processing from.
*/
static u32 iptfs_reassem_cont(struct xfrm_iptfs_data *xtfs, u64 seq,
struct skb_seq_state *st, struct sk_buff *skb,
u32 data, u32 blkoff, struct list_head *list)
{
struct iptfs_skb_frag_walk _fragwalk;
struct iptfs_skb_frag_walk *fragwalk = NULL;
struct sk_buff *newskb = xtfs->ra_newskb;
u32 remaining = skb->len - data;
u32 runtlen = xtfs->ra_runtlen;
u32 copylen, fraglen, ipremain, iphlen, iphremain, rrem;
/* Handle packet fragment we aren't expecting */
if (!runtlen && !xtfs->ra_newskb)
return data + min(blkoff, remaining);
/* Important to remember that input to this function is an ordered
* packet stream (unless the user disabled the reorder window). Thus if
* we are waiting for, and expecting the next packet so we can continue
* assembly, a newer sequence number indicates older ones are not coming
* (or if they do should be ignored). Technically we can receive older
* ones when the reorder window is disabled; however, the user should
* have disabled fragmentation in this case, and regardless we don't
* deal with it.
*
* blkoff could be zero if the stream is messed up (or it's an all pad
* insertion) be careful to handle that case in each of the below
*/
/* Too old case: This can happen when the reorder window is disabled so
* ordering isn't actually guaranteed.
*/
if (seq < xtfs->ra_wantseq)
return data + remaining;
/* Too new case: We missed what we wanted cleanup. */
if (seq > xtfs->ra_wantseq) {
XFRM_INC_STATS(xs_net(xtfs->x), LINUX_MIB_XFRMINIPTFSERROR);
goto abandon;
}
if (blkoff == 0) {
if ((*skb->data & 0xF0) != 0) {
XFRM_INC_STATS(xs_net(xtfs->x),
LINUX_MIB_XFRMINIPTFSERROR);
goto abandon;
}
/* Handle all pad case, advance expected sequence number.
* (RFC 9347 S2.2.3)
*/
xtfs->ra_wantseq++;
/* will end parsing */
return data + remaining;
}
if (runtlen) {
/* Regardless of what happens we're done with the runt */
xtfs->ra_runtlen = 0;
/* The start of this inner packet was at the very end of the last
* iptfs payload which didn't include enough for the ip header
* length field. We must have *at least* that now.
*/
rrem = sizeof(xtfs->ra_runt) - runtlen;
if (remaining < rrem || blkoff < rrem) {
XFRM_INC_STATS(xs_net(xtfs->x),
LINUX_MIB_XFRMINIPTFSERROR);
goto abandon;
}
/* fill in the runt data */
if (skb_copy_seq_read(st, data, &xtfs->ra_runt[runtlen],
rrem)) {
XFRM_INC_STATS(xs_net(xtfs->x),
LINUX_MIB_XFRMINBUFFERERROR);
goto abandon;
}
/* We have enough data to get the ip length value now,
* allocate an in progress skb
*/
ipremain = __iptfs_iplen(xtfs->ra_runt);
if (ipremain < sizeof(xtfs->ra_runt)) {
/* length has to be at least runtsize large */
XFRM_INC_STATS(xs_net(xtfs->x),
LINUX_MIB_XFRMINIPTFSERROR);
goto abandon;
}
/* For the runt case we don't attempt sharing currently. NOTE:
* Currently, this IPTFS implementation will not create runts.
*/
newskb = iptfs_alloc_skb(skb, ipremain, false);
if (!newskb) {
XFRM_INC_STATS(xs_net(xtfs->x), LINUX_MIB_XFRMINERROR);
goto abandon;
}
xtfs->ra_newskb = newskb;
/* Copy the runt data into the buffer, but leave data
* pointers the same as normal non-runt case. The extra `rrem`
* recopied bytes are basically cacheline free. Allows using
* same logic below to complete.
*/
memcpy(skb_put(newskb, runtlen), xtfs->ra_runt,
sizeof(xtfs->ra_runt));
}
/* Continue reassembling the packet */
ipremain = __iptfs_iplen(newskb->data);
iphlen = __iptfs_iphlen(newskb->data);
ipremain -= newskb->len;
if (blkoff < ipremain) {
/* Corrupt data, we don't have enough to complete the packet */
XFRM_INC_STATS(xs_net(xtfs->x), LINUX_MIB_XFRMINIPTFSERROR);
goto abandon;
}
/* We want the IP header in linear space */
if (newskb->len < iphlen) {
iphremain = iphlen - newskb->len;
if (blkoff < iphremain) {
XFRM_INC_STATS(xs_net(xtfs->x),
LINUX_MIB_XFRMINIPTFSERROR);
goto abandon;
}
fraglen = min(blkoff, remaining);
copylen = min(fraglen, iphremain);
if (skb_copy_seq_read(st, data, skb_put(newskb, copylen),
copylen)) {
XFRM_INC_STATS(xs_net(xtfs->x),
LINUX_MIB_XFRMINBUFFERERROR);
goto abandon;
}
/* this is a silly condition that might occur anyway */
if (copylen < iphremain) {
xtfs->ra_wantseq++;
return data + fraglen;
}
/* update data and things derived from it */
data += copylen;
blkoff -= copylen;
remaining -= copylen;
ipremain -= copylen;
}
fraglen = min(blkoff, remaining);
copylen = min(fraglen, ipremain);
/* If we may have the opportunity to share prepare a fragwalk. */
if (!skb_has_frag_list(skb) && !skb_has_frag_list(newskb) &&
(skb->head_frag || skb->len == skb->data_len) &&
skb->pp_recycle == newskb->pp_recycle) {
fragwalk = &_fragwalk;
iptfs_skb_prepare_frag_walk(skb, data, fragwalk);
}
/* Try share then copy. */
if (fragwalk &&
iptfs_skb_can_add_frags(newskb, fragwalk, data, copylen)) {
iptfs_skb_add_frags(newskb, fragwalk, data, copylen);
} else {
/* copy fragment data into newskb */
if (skb_copy_seq_read(st, data, skb_put(newskb, copylen),
copylen)) {
XFRM_INC_STATS(xs_net(xtfs->x),
LINUX_MIB_XFRMINBUFFERERROR);
goto abandon;
}
}
if (copylen < ipremain) {
xtfs->ra_wantseq++;
} else {
/* We are done with packet reassembly! */
iptfs_reassem_done(xtfs);
iptfs_complete_inner_skb(xtfs->x, newskb);
list_add_tail(&newskb->list, list);
}
/* will continue on to new data block or end */
return data + fraglen;
abandon:
if (xtfs->ra_newskb) {
iptfs_reassem_abort(xtfs);
} else {
xtfs->ra_runtlen = 0;
xtfs->ra_wantseq = 0;
}
/* skip past fragment, maybe to end */
return data + min(blkoff, remaining);
}
static bool __input_process_payload(struct xfrm_state *x, u32 data,
struct skb_seq_state *skbseq,
struct list_head *sublist)
{
u8 hbytes[sizeof(struct ipv6hdr)];
struct iptfs_skb_frag_walk _fragwalk;
struct iptfs_skb_frag_walk *fragwalk = NULL;
struct sk_buff *defer, *first_skb, *next, *skb;
const unsigned char *old_mac;
struct xfrm_iptfs_data *xtfs;
struct iphdr *iph;
struct net *net;
u32 first_iplen, iphlen, iplen, remaining, tail;
u32 capturelen;
u64 seq;
xtfs = x->mode_data;
net = xs_net(x);
skb = skbseq->root_skb;
first_skb = NULL;
defer = NULL;
seq = __esp_seq(skb);
/* Save the old mac header if set */
old_mac = skb_mac_header_was_set(skb) ? skb_mac_header(skb) : NULL;
/* New packets */
tail = skb->len;
while (data < tail) {
__be16 protocol = 0;
/* Gather information on the next data block.
* `data` points to the start of the data block.
*/
remaining = tail - data;
/* try and copy enough bytes to read length from ipv4/ipv6 */
iphlen = min_t(u32, remaining, 6);
if (skb_copy_seq_read(skbseq, data, hbytes, iphlen)) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINBUFFERERROR);
goto done;
}
iph = (struct iphdr *)hbytes;
if (iph->version == 0x4) {
/* must have at least tot_len field present */
if (remaining < 4) {
/* save the bytes we have, advance data and exit */
iptfs_input_save_runt(xtfs, seq, hbytes,
remaining);
data += remaining;
break;
}
iplen = be16_to_cpu(iph->tot_len);
iphlen = iph->ihl << 2;
protocol = cpu_to_be16(ETH_P_IP);
XFRM_MODE_SKB_CB(skbseq->root_skb)->tos = iph->tos;
} else if (iph->version == 0x6) {
/* must have at least payload_len field present */
if (remaining < 6) {
/* save the bytes we have, advance data and exit */
iptfs_input_save_runt(xtfs, seq, hbytes,
remaining);
data += remaining;
break;
}
iplen = be16_to_cpu(((struct ipv6hdr *)hbytes)->payload_len);
iplen += sizeof(struct ipv6hdr);
iphlen = sizeof(struct ipv6hdr);
protocol = cpu_to_be16(ETH_P_IPV6);
XFRM_MODE_SKB_CB(skbseq->root_skb)->tos =
ipv6_get_dsfield((struct ipv6hdr *)iph);
} else if (iph->version == 0x0) {
/* pad */
data = tail;
break;
} else {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINBUFFERERROR);
goto done;
}
if (unlikely(skbseq->stepped_offset)) {
/* We need to reset our seq read, it can't backup at
* this point.
*/
struct sk_buff *save = skbseq->root_skb;
skb_abort_seq_read(skbseq);
skb_prepare_seq_read(save, data, tail, skbseq);
}
if (first_skb) {
skb = NULL;
} else {
first_skb = skb;
first_iplen = iplen;
fragwalk = NULL;
/* We are going to skip over `data` bytes to reach the
* start of the IP header of `iphlen` len for `iplen`
* inner packet.
*/
if (skb_has_frag_list(skb)) {
defer = skb;
skb = NULL;
} else if (data + iphlen <= skb_headlen(skb) &&
/* make sure our header is 32-bit aligned? */
/* ((uintptr_t)(skb->data + data) & 0x3) == 0 && */
skb_tailroom(skb) + tail - data >= iplen) {
/* Reuse the received skb.
*
* We have enough headlen to pull past any
* initial fragment data, leaving at least the
* IP header in the linear buffer space.
*
* For linear buffer space we only require that
* linear buffer space is large enough to
* eventually hold the entire reassembled
* packet (by including tailroom in the check).
*
* For non-linear tailroom is 0 and so we only
* re-use if the entire packet is present
* already.
*
* NOTE: there are many more options for
* sharing, KISS for now. Also, this can produce
* skb's with the IP header unaligned to 32
* bits. If that ends up being a problem then a
* check should be added to the conditional
* above that the header lies on a 32-bit
* boundary as well.
*/
skb_pull(skb, data);
/* our range just changed */
data = 0;
tail = skb->len;
remaining = skb->len;
skb->protocol = protocol;
skb_mac_header_rebuild(skb);
if (skb->mac_len)
eth_hdr(skb)->h_proto = skb->protocol;
/* all pointers could be changed now reset walk */
skb_abort_seq_read(skbseq);
skb_prepare_seq_read(skb, data, tail, skbseq);
} else if (skb->head_frag &&
/* We have the IP header right now */
remaining >= iphlen) {
fragwalk = &_fragwalk;
iptfs_skb_prepare_frag_walk(skb, data, fragwalk);
defer = skb;
skb = NULL;
} else {
/* We couldn't reuse the input skb so allocate a
* new one.
*/
defer = skb;
skb = NULL;
}
/* Don't trim `first_skb` until the end as we are
* walking that data now.
*/
}
capturelen = min(iplen, remaining);
if (!skb) {
if (!fragwalk ||
/* Large enough to be worth sharing */
iplen < IPTFS_PKT_SHARE_MIN ||
/* Have IP header + some data to share. */
capturelen <= iphlen ||
/* Try creating skb and adding frags */
!(skb = iptfs_pskb_add_frags(first_skb, fragwalk,
data, capturelen,
skbseq, iphlen))) {
skb = iptfs_pskb_extract_seq(iplen, skbseq, data, capturelen);
}
if (!skb) {
/* skip to next packet or done */
data += capturelen;
continue;
}
skb->protocol = protocol;
if (old_mac) {
/* rebuild the mac header */
skb_set_mac_header(skb, -first_skb->mac_len);
memcpy(skb_mac_header(skb), old_mac, first_skb->mac_len);
eth_hdr(skb)->h_proto = skb->protocol;
}
}
data += capturelen;
if (skb->len < iplen) {
/* Start reassembly */
spin_lock(&xtfs->drop_lock);
xtfs->ra_newskb = skb;
xtfs->ra_wantseq = seq + 1;
if (!hrtimer_is_queued(&xtfs->drop_timer)) {
/* softirq blocked lest the timer fire and interrupt us */
hrtimer_start(&xtfs->drop_timer,
xtfs->drop_time_ns,
IPTFS_HRTIMER_MODE);
}
spin_unlock(&xtfs->drop_lock);
break;
}
iptfs_complete_inner_skb(x, skb);
list_add_tail(&skb->list, sublist);
}
if (data != tail)
/* this should not happen from the above code */
XFRM_INC_STATS(net, LINUX_MIB_XFRMINIPTFSERROR);
if (first_skb && first_iplen && !defer && first_skb != xtfs->ra_newskb) {
/* first_skb is queued b/c !defer and not partial */
if (pskb_trim(first_skb, first_iplen)) {
/* error trimming */
list_del(&first_skb->list);
defer = first_skb;
}
first_skb->ip_summed = CHECKSUM_NONE;
}
/* Send the packets! */
list_for_each_entry_safe(skb, next, sublist, list) {
skb_list_del_init(skb);
if (xfrm_input(skb, 0, 0, -2))
kfree_skb(skb);
}
done:
skb = skbseq->root_skb;
skb_abort_seq_read(skbseq);
if (defer) {
consume_skb(defer);
} else if (!first_skb) {
/* skb is the original passed in skb, but we didn't get far
* enough to process it as the first_skb, if we had it would
* either be save in ra_newskb, trimmed and sent on as an skb or
* placed in defer to be freed.
*/
kfree_skb(skb);
}
return true;
}
/**
* iptfs_input_ordered() - handle next in order IPTFS payload.
* @x: xfrm state
* @skb: current packet
*
* Process the IPTFS payload in `skb` and consume it afterwards.
*/
static void iptfs_input_ordered(struct xfrm_state *x, struct sk_buff *skb)
{
struct ip_iptfs_cc_hdr iptcch;
struct skb_seq_state skbseq;
struct list_head sublist; /* rename this it's just a list */
struct xfrm_iptfs_data *xtfs;
struct ip_iptfs_hdr *ipth;
struct net *net;
u32 blkoff, data, remaining;
bool consumed = false;
u64 seq;
xtfs = x->mode_data;
net = xs_net(x);
seq = __esp_seq(skb);
/* Large enough to hold both types of header */
ipth = (struct ip_iptfs_hdr *)&iptcch;
skb_prepare_seq_read(skb, 0, skb->len, &skbseq);
/* Get the IPTFS header and validate it */
if (skb_copy_seq_read(&skbseq, 0, ipth, sizeof(*ipth))) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINBUFFERERROR);
goto done;
}
data = sizeof(*ipth);
trace_iptfs_egress_recv(skb, xtfs, be16_to_cpu(ipth->block_offset));
/* Set data past the basic header */
if (ipth->subtype == IPTFS_SUBTYPE_CC) {
/* Copy the rest of the CC header */
remaining = sizeof(iptcch) - sizeof(*ipth);
if (skb_copy_seq_read(&skbseq, data, ipth + 1, remaining)) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINBUFFERERROR);
goto done;
}
data += remaining;
} else if (ipth->subtype != IPTFS_SUBTYPE_BASIC) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINHDRERROR);
goto done;
}
if (ipth->flags != 0) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINHDRERROR);
goto done;
}
INIT_LIST_HEAD(&sublist);
/* Handle fragment at start of payload, and/or waiting reassembly. */
blkoff = ntohs(ipth->block_offset);
/* check before locking i.e., maybe */
if (blkoff || xtfs->ra_runtlen || xtfs->ra_newskb) {
spin_lock(&xtfs->drop_lock);
/* check again after lock */
if (blkoff || xtfs->ra_runtlen || xtfs->ra_newskb) {
data = iptfs_reassem_cont(xtfs, seq, &skbseq, skb, data,
blkoff, &sublist);
}
spin_unlock(&xtfs->drop_lock);
}
/* New packets */
consumed = __input_process_payload(x, data, &skbseq, &sublist);
done:
if (!consumed) {
skb = skbseq.root_skb;
skb_abort_seq_read(&skbseq);
kfree_skb(skb);
}
}
/* ------------------------------- */
/* Input (Egress) Re-ordering Code */
/* ------------------------------- */
static void __vec_shift(struct xfrm_iptfs_data *xtfs, u32 shift)
{
u32 savedlen = xtfs->w_savedlen;
if (shift > savedlen)
shift = savedlen;
if (shift != savedlen)
memcpy(xtfs->w_saved, xtfs->w_saved + shift,
(savedlen - shift) * sizeof(*xtfs->w_saved));
memset(xtfs->w_saved + savedlen - shift, 0,
shift * sizeof(*xtfs->w_saved));
xtfs->w_savedlen -= shift;
}
static void __reorder_past(struct xfrm_iptfs_data *xtfs, struct sk_buff *inskb,
struct list_head *freelist)
{
list_add_tail(&inskb->list, freelist);
}
static u32 __reorder_drop(struct xfrm_iptfs_data *xtfs, struct list_head *list)
{
struct skb_wseq *s, *se;
const u32 savedlen = xtfs->w_savedlen;
time64_t now = ktime_get_raw_fast_ns();
u32 count = 0;
u32 scount = 0;
if (xtfs->w_saved[0].drop_time > now)
goto set_timer;
++xtfs->w_wantseq;
/* Keep flushing packets until we reach a drop time greater than now. */
s = xtfs->w_saved;
se = s + savedlen;
do {
/* Walking past empty slots until we reach a packet */
for (; s < se && !s->skb; s++) {
if (s->drop_time > now)
goto outerdone;
}
/* Sending packets until we hit another empty slot. */
for (; s < se && s->skb; scount++, s++)
list_add_tail(&s->skb->list, list);
} while (s < se);
outerdone:
count = s - xtfs->w_saved;
if (count) {
xtfs->w_wantseq += count;
/* Shift handled slots plus final empty slot into slot 0. */
__vec_shift(xtfs, count);
}
if (xtfs->w_savedlen) {
set_timer:
/* Drifting is OK */
hrtimer_start(&xtfs->drop_timer,
xtfs->w_saved[0].drop_time - now,
IPTFS_HRTIMER_MODE);
}
return scount;
}
static void __reorder_this(struct xfrm_iptfs_data *xtfs, struct sk_buff *inskb,
struct list_head *list)
{
struct skb_wseq *s, *se;
const u32 savedlen = xtfs->w_savedlen;
u32 count = 0;
/* Got what we wanted. */
list_add_tail(&inskb->list, list);
++xtfs->w_wantseq;
if (!savedlen)
return;
/* Flush remaining consecutive packets. */
/* Keep sending until we hit another missed pkt. */
for (s = xtfs->w_saved, se = s + savedlen; s < se && s->skb; s++)
list_add_tail(&s->skb->list, list);
count = s - xtfs->w_saved;
if (count)
xtfs->w_wantseq += count;
/* Shift handled slots plus final empty slot into slot 0. */
__vec_shift(xtfs, count + 1);
}
/* Set the slot's drop time and all the empty slots below it until reaching a
* filled slot which will already be set.
*/
static void iptfs_set_window_drop_times(struct xfrm_iptfs_data *xtfs, int index)
{
const u32 savedlen = xtfs->w_savedlen;
struct skb_wseq *s = xtfs->w_saved;
time64_t drop_time;
assert_spin_locked(&xtfs->drop_lock);
if (savedlen > index + 1) {
/* we are below another, our drop time and the timer are already set */
return;
}
/* we are the most future so get a new drop time. */
drop_time = ktime_get_raw_fast_ns();
drop_time += xtfs->drop_time_ns;
/* Walk back through the array setting drop times as we go */
s[index].drop_time = drop_time;
while (index-- > 0 && !s[index].skb)
s[index].drop_time = drop_time;
/* If we walked all the way back, schedule the drop timer if needed */
if (index == -1 && !hrtimer_is_queued(&xtfs->drop_timer))
hrtimer_start(&xtfs->drop_timer, xtfs->drop_time_ns,
IPTFS_HRTIMER_MODE);
}
static void __reorder_future_fits(struct xfrm_iptfs_data *xtfs,
struct sk_buff *inskb,
struct list_head *freelist)
{
const u64 inseq = __esp_seq(inskb);
const u64 wantseq = xtfs->w_wantseq;
const u64 distance = inseq - wantseq;
const u32 savedlen = xtfs->w_savedlen;
const u32 index = distance - 1;
/* Handle future sequence number received which fits in the window.
*
* We know we don't have the seq we want so we won't be able to flush
* anything.
*/
/* slot count is 4, saved size is 3 savedlen is 2
*
* "window boundary" is based on the fixed window size
* distance is also slot number
* index is an array index (i.e., - 1 of slot)
* : : - implicit NULL after array len
*
* +--------- used length (savedlen == 2)
* | +----- array size (nslots - 1 == 3)
* | | + window boundary (nslots == 4)
* V V | V
* |
* 0 1 2 3 | slot number
* --- 0 1 2 | array index
* [-] [b] : :| array
*
* "2" "3" "4" *5*| seq numbers
*
* We receive seq number 5
* distance == 3 [inseq(5) - w_wantseq(2)]
* index == 2 [distance(6) - 1]
*/
if (xtfs->w_saved[index].skb) {
/* a dup of a future */
list_add_tail(&inskb->list, freelist);
return;
}
xtfs->w_saved[index].skb = inskb;
xtfs->w_savedlen = max(savedlen, index + 1);
iptfs_set_window_drop_times(xtfs, index);
}
static void __reorder_future_shifts(struct xfrm_iptfs_data *xtfs,
struct sk_buff *inskb,
struct list_head *list)
{
const u32 nslots = xtfs->cfg.reorder_win_size + 1;
const u64 inseq = __esp_seq(inskb);
u32 savedlen = xtfs->w_savedlen;
u64 wantseq = xtfs->w_wantseq;
struct skb_wseq *wnext;
struct sk_buff *slot0;
u32 beyond, shifting, slot;
u64 distance;
/* Handle future sequence number received.
*
* IMPORTANT: we are at least advancing w_wantseq (i.e., wantseq) by 1
* b/c we are beyond the window boundary.
*
* We know we don't have the wantseq so that counts as a drop.
*/
/* example: slot count is 4, array size is 3 savedlen is 2, slot 0 is
* the missing sequence number.
*
* the final slot at savedlen (index savedlen - 1) is always occupied.
*
* beyond is "beyond array size" not savedlen.
*
* +--------- array length (savedlen == 2)
* | +----- array size (nslots - 1 == 3)
* | | +- window boundary (nslots == 4)
* V V |
* |
* 0 1 2 3 | slot number
* --- 0 1 2 | array index
* [b] [c] : :| array
* |
* "2" "3" "4" "5"|*6* seq numbers
*
* We receive seq number 6
* distance == 4 [inseq(6) - w_wantseq(2)]
* newslot == distance
* index == 3 [distance(4) - 1]
* beyond == 1 [newslot(4) - lastslot((nslots(4) - 1))]
* shifting == 1 [min(savedlen(2), beyond(1)]
* slot0_skb == [b], and should match w_wantseq
*
* +--- window boundary (nslots == 4)
* 0 1 2 3 | 4 slot number
* --- 0 1 2 | 3 array index
* [b] : : : :| array
* "2" "3" "4" "5" *6* seq numbers
*
* We receive seq number 6
* distance == 4 [inseq(6) - w_wantseq(2)]
* newslot == distance
* index == 3 [distance(4) - 1]
* beyond == 1 [newslot(4) - lastslot((nslots(4) - 1))]
* shifting == 1 [min(savedlen(1), beyond(1)]
* slot0_skb == [b] and should match w_wantseq
*
* +-- window boundary (nslots == 4)
* 0 1 2 3 | 4 5 6 slot number
* --- 0 1 2 | 3 4 5 array index
* [-] [c] : :| array
* "2" "3" "4" "5" "6" "7" *8* seq numbers
*
* savedlen = 2, beyond = 3
* iter 1: slot0 == NULL, missed++, lastdrop = 2 (2+1-1), slot0 = [-]
* iter 2: slot0 == NULL, missed++, lastdrop = 3 (2+2-1), slot0 = [c]
* 2 < 3, extra = 1 (3-2), missed += extra, lastdrop = 4 (2+2+1-1)
*
* We receive seq number 8
* distance == 6 [inseq(8) - w_wantseq(2)]
* newslot == distance
* index == 5 [distance(6) - 1]
* beyond == 3 [newslot(6) - lastslot((nslots(4) - 1))]
* shifting == 2 [min(savedlen(2), beyond(3)]
*
* slot0_skb == NULL changed from [b] when "savedlen < beyond" is true.
*/
/* Now send any packets that are being shifted out of saved, and account
* for missing packets that are exiting the window as we shift it.
*/
distance = inseq - wantseq;
beyond = distance - (nslots - 1);
/* If savedlen > beyond we are shifting some, else all. */
shifting = min(savedlen, beyond);
/* slot0 is the buf that just shifted out and into slot0 */
slot0 = NULL;
wnext = xtfs->w_saved;
for (slot = 1; slot <= shifting; slot++, wnext++) {
/* handle what was in slot0 before we occupy it */
if (slot0)
list_add_tail(&slot0->list, list);
slot0 = wnext->skb;
wnext->skb = NULL;
}
/* slot0 is now either NULL (in which case it's what we now are waiting
* for, or a buf in which case we need to handle it like we received it;
* however, we may be advancing past that buffer as well..
*/
/* Handle case where we need to shift more than we had saved, slot0 will
* be NULL iff savedlen is 0, otherwise slot0 will always be
* non-NULL b/c we shifted the final element, which is always set if
* there is any saved, into slot0.
*/
if (savedlen < beyond) {
if (savedlen != 0)
list_add_tail(&slot0->list, list);
slot0 = NULL;
/* slot0 has had an empty slot pushed into it */
}
/* Remove the entries */
__vec_shift(xtfs, beyond);
/* Advance want seq */
xtfs->w_wantseq += beyond;
/* Process drops here when implementing congestion control */
/* We've shifted. plug the packet in at the end. */
xtfs->w_savedlen = nslots - 1;
xtfs->w_saved[xtfs->w_savedlen - 1].skb = inskb;
iptfs_set_window_drop_times(xtfs, xtfs->w_savedlen - 1);
/* if we don't have a slot0 then we must wait for it */
if (!slot0)
return;
/* If slot0, seq must match new want seq */
/* slot0 is valid, treat like we received expected. */
__reorder_this(xtfs, slot0, list);
}
/* Receive a new packet into the reorder window. Return a list of ordered
* packets from the window.
*/
static void iptfs_input_reorder(struct xfrm_iptfs_data *xtfs,
struct sk_buff *inskb, struct list_head *list,
struct list_head *freelist)
{
const u32 nslots = xtfs->cfg.reorder_win_size + 1;
u64 inseq = __esp_seq(inskb);
u64 wantseq;
assert_spin_locked(&xtfs->drop_lock);
if (unlikely(!xtfs->w_seq_set)) {
xtfs->w_seq_set = true;
xtfs->w_wantseq = inseq;
}
wantseq = xtfs->w_wantseq;
if (likely(inseq == wantseq))
__reorder_this(xtfs, inskb, list);
else if (inseq < wantseq)
__reorder_past(xtfs, inskb, freelist);
else if ((inseq - wantseq) < nslots)
__reorder_future_fits(xtfs, inskb, freelist);
else
__reorder_future_shifts(xtfs, inskb, list);
}
/**
* iptfs_drop_timer() - Handle drop timer expiry.
* @me: the timer
*
* This is similar to our input function.
*
* The drop timer is set when we start an in progress reassembly, and also when
* we save a future packet in the window saved array.
*
* NOTE packets in the save window are always newer WRT drop times as
* they get further in the future. i.e. for:
*
* if slots (S0, S1, ... Sn) and `Dn` is the drop time for slot `Sn`,
* then D(n-1) <= D(n).
*
* So, regardless of why the timer is firing we can always discard any inprogress
* fragment; either it's the reassembly timer, or slot 0 is going to be
* dropped as S0 must have the most recent drop time, and slot 0 holds the
* continuation fragment of the in progress packet.
*
* Returns HRTIMER_NORESTART.
*/
static enum hrtimer_restart iptfs_drop_timer(struct hrtimer *me)
{
struct sk_buff *skb, *next;
struct list_head list;
struct xfrm_iptfs_data *xtfs;
struct xfrm_state *x;
u32 count;
xtfs = container_of(me, typeof(*xtfs), drop_timer);
x = xtfs->x;
INIT_LIST_HEAD(&list);
spin_lock(&xtfs->drop_lock);
/* Drop any in progress packet */
skb = xtfs->ra_newskb;
xtfs->ra_newskb = NULL;
/* Now drop as many packets as we should from the reordering window
* saved array
*/
count = xtfs->w_savedlen ? __reorder_drop(xtfs, &list) : 0;
spin_unlock(&xtfs->drop_lock);
if (skb)
kfree_skb_reason(skb, SKB_DROP_REASON_FRAG_REASM_TIMEOUT);
if (count) {
list_for_each_entry_safe(skb, next, &list, list) {
skb_list_del_init(skb);
iptfs_input_ordered(x, skb);
}
}
return HRTIMER_NORESTART;
}
/**
* iptfs_input() - handle receipt of iptfs payload
* @x: xfrm state
* @skb: the packet
*
* We have an IPTFS payload order it if needed, then process newly in order
* packets.
*
* Return: -EINPROGRESS to inform xfrm_input to stop processing the skb.
*/
static int iptfs_input(struct xfrm_state *x, struct sk_buff *skb)
{
struct list_head freelist, list;
struct xfrm_iptfs_data *xtfs = x->mode_data;
struct sk_buff *next;
/* Fast path for no reorder window. */
if (xtfs->cfg.reorder_win_size == 0) {
iptfs_input_ordered(x, skb);
goto done;
}
/* Fetch list of in-order packets from the reordering window as well as
* a list of buffers we need to now free.
*/
INIT_LIST_HEAD(&list);
INIT_LIST_HEAD(&freelist);
spin_lock(&xtfs->drop_lock);
iptfs_input_reorder(xtfs, skb, &list, &freelist);
spin_unlock(&xtfs->drop_lock);
list_for_each_entry_safe(skb, next, &list, list) {
skb_list_del_init(skb);
iptfs_input_ordered(x, skb);
}
list_for_each_entry_safe(skb, next, &freelist, list) {
skb_list_del_init(skb);
kfree_skb(skb);
}
done:
/* We always have dealt with the input SKB, either we are re-using it,
* or we have freed it. Return EINPROGRESS so that xfrm_input stops
* processing it.
*/
return -EINPROGRESS;
}
/* ================================= */
/* IPTFS Sending (ingress) Functions */
/* ================================= */
/* ------------------------- */
/* Enqueue to send functions */
/* ------------------------- */
/**
* iptfs_enqueue() - enqueue packet if ok to send.
* @xtfs: xtfs state
* @skb: the packet
*
* Return: true if packet enqueued.
*/
static bool iptfs_enqueue(struct xfrm_iptfs_data *xtfs, struct sk_buff *skb)
{
u64 newsz = xtfs->queue_size + skb->len;
struct iphdr *iph;
assert_spin_locked(&xtfs->x->lock);
if (newsz > xtfs->cfg.max_queue_size)
return false;
/* Set ECN CE if we are above our ECN queue threshold */
if (newsz > xtfs->ecn_queue_size) {
iph = ip_hdr(skb);
if (iph->version == 4)
IP_ECN_set_ce(iph);
else if (iph->version == 6)
IP6_ECN_set_ce(skb, ipv6_hdr(skb));
}
__skb_queue_tail(&xtfs->queue, skb);
xtfs->queue_size += skb->len;
return true;
}
static int iptfs_get_cur_pmtu(struct xfrm_state *x, struct xfrm_iptfs_data *xtfs,
struct sk_buff *skb)
{
struct xfrm_dst *xdst = (struct xfrm_dst *)skb_dst(skb);
u32 payload_mtu = xtfs->payload_mtu;
u32 pmtu = __iptfs_get_inner_mtu(x, xdst->child_mtu_cached);
if (payload_mtu && payload_mtu < pmtu)
pmtu = payload_mtu;
return pmtu;
}
static int iptfs_is_too_big(struct sock *sk, struct sk_buff *skb, u32 pmtu)
{
if (skb->len <= pmtu)
return 0;
/* We only send ICMP too big if the user has configured us as
* dont-fragment.
*/
if (skb->dev)
XFRM_INC_STATS(dev_net(skb->dev), LINUX_MIB_XFRMOUTERROR);
if (sk)
xfrm_local_error(skb, pmtu);
else if (ip_hdr(skb)->version == 4)
icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, htonl(pmtu));
else
icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, pmtu);
return 1;
}
/* IPv4/IPv6 packet ingress to IPTFS tunnel, arrange to send in IPTFS payload
* (i.e., aggregating or fragmenting as appropriate).
* This is set in dst->output for an SA.
*/
static int iptfs_output_collect(struct net *net, struct sock *sk, struct sk_buff *skb)
{
struct dst_entry *dst = skb_dst(skb);
struct xfrm_state *x = dst->xfrm;
struct xfrm_iptfs_data *xtfs = x->mode_data;
struct sk_buff *segs, *nskb;
u32 pmtu = 0;
bool ok = true;
bool was_gso;
/* We have hooked into dst_entry->output which means we have skipped the
* protocol specific netfilter (see xfrm4_output, xfrm6_output).
* when our timer runs we will end up calling xfrm_output directly on
* the encapsulated traffic.
*
* For both cases this is the NF_INET_POST_ROUTING hook which allows
* changing the skb->dst entry which then may not be xfrm based anymore
* in which case a REROUTED flag is set. and dst_output is called.
*
* For IPv6 we are also skipping fragmentation handling for local
* sockets, which may or may not be good depending on our tunnel DF
* setting. Normally with fragmentation supported we want to skip this
* fragmentation.
*/
if (xtfs->cfg.dont_frag)
pmtu = iptfs_get_cur_pmtu(x, xtfs, skb);
/* Break apart GSO skbs. If the queue is nearing full then we want the
* accounting and queuing to be based on the individual packets not on the
* aggregate GSO buffer.
*/
was_gso = skb_is_gso(skb);
if (!was_gso) {
segs = skb;
} else {
segs = skb_gso_segment(skb, 0);
if (IS_ERR_OR_NULL(segs)) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMOUTERROR);
kfree_skb(skb);
if (IS_ERR(segs))
return PTR_ERR(segs);
return -EINVAL;
}
consume_skb(skb);
skb = NULL;
}
/* We can be running on multiple cores and from the network softirq or
* from user context depending on where the packet is coming from.
*/
spin_lock_bh(&x->lock);
skb_list_walk_safe(segs, skb, nskb) {
skb_mark_not_on_list(skb);
/* Once we drop due to no queue space we continue to drop the
* rest of the packets from that GRO.
*/
if (!ok) {
nospace:
trace_iptfs_no_queue_space(skb, xtfs, pmtu, was_gso);
XFRM_INC_STATS(net, LINUX_MIB_XFRMOUTNOQSPACE);
kfree_skb_reason(skb, SKB_DROP_REASON_FULL_RING);
continue;
}
/* If the user indicated no iptfs fragmenting check before
* enqueue.
*/
if (xtfs->cfg.dont_frag && iptfs_is_too_big(sk, skb, pmtu)) {
trace_iptfs_too_big(skb, xtfs, pmtu, was_gso);
kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
continue;
}
/* Enqueue to send in tunnel */
ok = iptfs_enqueue(xtfs, skb);
if (!ok)
goto nospace;
trace_iptfs_enqueue(skb, xtfs, pmtu, was_gso);
}
/* Start a delay timer if we don't have one yet */
if (!hrtimer_is_queued(&xtfs->iptfs_timer)) {
hrtimer_start(&xtfs->iptfs_timer, xtfs->init_delay_ns, IPTFS_HRTIMER_MODE);
xtfs->iptfs_settime = ktime_get_raw_fast_ns();
trace_iptfs_timer_start(xtfs, xtfs->init_delay_ns);
}
spin_unlock_bh(&x->lock);
return 0;
}
/* -------------------------- */
/* Dequeue and send functions */
/* -------------------------- */
static void iptfs_output_prepare_skb(struct sk_buff *skb, u32 blkoff)
{
struct ip_iptfs_hdr *h;
size_t hsz = sizeof(*h);
/* now reset values to be pointing at the rest of the packets */
h = skb_push(skb, hsz);
memset(h, 0, hsz);
if (blkoff)
h->block_offset = htons(blkoff);
/* network_header current points at the inner IP packet
* move it to the iptfs header
*/
skb->transport_header = skb->network_header;
skb->network_header -= hsz;
IPCB(skb)->flags |= IPSKB_XFRM_TUNNEL_SIZE;
}
/**
* iptfs_copy_create_frag() - create an inner fragment skb.
* @st: The source packet data.
* @offset: offset in @st of the new fragment data.
* @copy_len: the amount of data to copy from @st.
*
* Create a new skb holding a single IPTFS inner packet fragment. @copy_len must
* not be greater than the max fragment size.
*
* Return: the new fragment skb or an ERR_PTR().
*/
static struct sk_buff *iptfs_copy_create_frag(struct skb_seq_state *st, u32 offset, u32 copy_len)
{
struct sk_buff *src = st->root_skb;
struct sk_buff *skb;
int err;
skb = iptfs_alloc_skb(src, copy_len, true);
if (!skb)
return ERR_PTR(-ENOMEM);
/* Now copy `copy_len` data from src */
err = skb_copy_seq_read(st, offset, skb_put(skb, copy_len), copy_len);
if (err) {
kfree_skb(skb);
return ERR_PTR(err);
}
return skb;
}
/**
* iptfs_copy_create_frags() - create and send N-1 fragments of a larger skb.
* @skbp: the source packet skb (IN), skb holding the last fragment in
* the fragment stream (OUT).
* @xtfs: IPTFS SA state.
* @mtu: the max IPTFS fragment size.
*
* This function is responsible for fragmenting a larger inner packet into a
* sequence of IPTFS payload packets. The last fragment is returned rather than
* being sent so that the caller can append more inner packets (aggregation) if
* there is room.
*
* Return: 0 on success or a negative error code on failure
*/
static int iptfs_copy_create_frags(struct sk_buff **skbp, struct xfrm_iptfs_data *xtfs, u32 mtu)
{
struct skb_seq_state skbseq;
struct list_head sublist;
struct sk_buff *skb = *skbp;
struct sk_buff *nskb = *skbp;
u32 copy_len, offset;
u32 to_copy = skb->len - mtu;
u32 blkoff = 0;
int err = 0;
INIT_LIST_HEAD(&sublist);
skb_prepare_seq_read(skb, 0, skb->len, &skbseq);
/* A trimmed `skb` will be sent as the first fragment, later. */
offset = mtu;
to_copy = skb->len - offset;
while (to_copy) {
/* Send all but last fragment to allow agg. append */
trace_iptfs_first_fragmenting(nskb, mtu, to_copy, NULL);
list_add_tail(&nskb->list, &sublist);
/* FUTURE: if the packet has an odd/non-aligning length we could
* send less data in the penultimate fragment so that the last
* fragment then ends on an aligned boundary.
*/
copy_len = min(to_copy, mtu);
nskb = iptfs_copy_create_frag(&skbseq, offset, copy_len);
if (IS_ERR(nskb)) {
XFRM_INC_STATS(xs_net(xtfs->x), LINUX_MIB_XFRMOUTERROR);
skb_abort_seq_read(&skbseq);
err = PTR_ERR(nskb);
nskb = NULL;
break;
}
iptfs_output_prepare_skb(nskb, to_copy);
offset += copy_len;
to_copy -= copy_len;
blkoff = to_copy;
}
skb_abort_seq_read(&skbseq);
/* return last fragment that will be unsent (or NULL) */
*skbp = nskb;
if (nskb)
trace_iptfs_first_final_fragment(nskb, mtu, blkoff, NULL);
/* trim the original skb to MTU */
if (!err)
err = pskb_trim(skb, mtu);
if (err) {
/* Free all frags. Don't bother sending a partial packet we will
* never complete.
*/
kfree_skb(nskb);
list_for_each_entry_safe(skb, nskb, &sublist, list) {
skb_list_del_init(skb);
kfree_skb(skb);
}
return err;
}
/* prepare the initial fragment with an iptfs header */
iptfs_output_prepare_skb(skb, 0);
/* Send all but last fragment, if we fail to send a fragment then free
* the rest -- no point in sending a packet that can't be reassembled.
*/
list_for_each_entry_safe(skb, nskb, &sublist, list) {
skb_list_del_init(skb);
if (!err)
err = xfrm_output(NULL, skb);
else
kfree_skb(skb);
}
if (err)
kfree_skb(*skbp);
return err;
}
/**
* iptfs_first_skb() - handle the first dequeued inner packet for output
* @skbp: the source packet skb (IN), skb holding the last fragment in
* the fragment stream (OUT).
* @xtfs: IPTFS SA state.
* @mtu: the max IPTFS fragment size.
*
* This function is responsible for fragmenting a larger inner packet into a
* sequence of IPTFS payload packets.
*
* The last fragment is returned rather than being sent so that the caller can
* append more inner packets (aggregation) if there is room.
*
* Return: 0 on success or a negative error code on failure
*/
static int iptfs_first_skb(struct sk_buff **skbp, struct xfrm_iptfs_data *xtfs, u32 mtu)
{
struct sk_buff *skb = *skbp;
int err;
/* Classic ESP skips the don't fragment ICMP error if DF is clear on
* the inner packet or ignore_df is set. Otherwise it will send an ICMP
* or local error if the inner packet won't fit it's MTU.
*
* With IPTFS we do not care about the inner packet DF bit. If the
* tunnel is configured to "don't fragment" we error back if things
* don't fit in our max packet size. Otherwise we iptfs-fragment as
* normal.
*/
/* The opportunity for HW offload has ended */
if (skb->ip_summed == CHECKSUM_PARTIAL) {
err = skb_checksum_help(skb);
if (err)
return err;
}
/* We've split gso up before queuing */
trace_iptfs_first_dequeue(skb, mtu, 0, ip_hdr(skb));
/* Consider the buffer Tx'd and no longer owned */
skb_orphan(skb);
/* Simple case -- it fits. `mtu` accounted for all the overhead
* including the basic IPTFS header.
*/
if (skb->len <= mtu) {
iptfs_output_prepare_skb(skb, 0);
return 0;
}
return iptfs_copy_create_frags(skbp, xtfs, mtu);
}
static struct sk_buff **iptfs_rehome_fraglist(struct sk_buff **nextp, struct sk_buff *child)
{
u32 fllen = 0;
/* It might be possible to account for a frag list in addition to page
* fragment if it's a valid state to be in. The page fragments size
* should be kept as data_len so only the frag_list size is removed,
* this must be done above as well.
*/
*nextp = skb_shinfo(child)->frag_list;
while (*nextp) {
fllen += (*nextp)->len;
nextp = &(*nextp)->next;
}
skb_frag_list_init(child);
child->len -= fllen;
child->data_len -= fllen;
return nextp;
}
static void iptfs_consume_frags(struct sk_buff *to, struct sk_buff *from)
{
struct skb_shared_info *fromi = skb_shinfo(from);
struct skb_shared_info *toi = skb_shinfo(to);
unsigned int new_truesize;
/* If we have data in a head page, grab it */
if (!skb_headlen(from)) {
new_truesize = SKB_TRUESIZE(skb_end_offset(from));
} else {
iptfs_skb_head_to_frag(from, &toi->frags[toi->nr_frags]);
skb_frag_ref(to, toi->nr_frags++);
new_truesize = SKB_DATA_ALIGN(sizeof(struct sk_buff));
}
/* Move any other page fragments rather than copy */
memcpy(&toi->frags[toi->nr_frags], fromi->frags,
sizeof(fromi->frags[0]) * fromi->nr_frags);
toi->nr_frags += fromi->nr_frags;
fromi->nr_frags = 0;
from->data_len = 0;
from->len = 0;
to->truesize += from->truesize - new_truesize;
from->truesize = new_truesize;
/* We are done with this SKB */
consume_skb(from);
}
static void iptfs_output_queued(struct xfrm_state *x, struct sk_buff_head *list)
{
struct xfrm_iptfs_data *xtfs = x->mode_data;
struct sk_buff *skb, *skb2, **nextp;
struct skb_shared_info *shi, *shi2;
/* If we are fragmenting due to a large inner packet we will output all
* the outer IPTFS packets required to contain the fragments of the
* single large inner packet. These outer packets need to be sent
* consecutively (ESP seq-wise). Since this output function is always
* running from a timer we do not need a lock to provide this guarantee.
* We will output our packets consecutively before the timer is allowed
* to run again on some other CPU.
*/
while ((skb = __skb_dequeue(list))) {
u32 mtu = iptfs_get_cur_pmtu(x, xtfs, skb);
bool share_ok = true;
int remaining;
/* protocol comes to us cleared sometimes */
skb->protocol = x->outer_mode.family == AF_INET ? htons(ETH_P_IP) :
htons(ETH_P_IPV6);
if (skb->len > mtu && xtfs->cfg.dont_frag) {
/* We handle this case before enqueueing so we are only
* here b/c MTU changed after we enqueued before we
* dequeued, just drop these.
*/
XFRM_INC_STATS(xs_net(x), LINUX_MIB_XFRMOUTERROR);
trace_iptfs_first_toobig(skb, mtu, 0, ip_hdr(skb));
kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
continue;
}
/* Convert first inner packet into an outer IPTFS packet,
* dealing with any fragmentation into multiple outer packets
* if necessary.
*/
if (iptfs_first_skb(&skb, xtfs, mtu))
continue;
/* If fragmentation was required the returned skb is the last
* IPTFS fragment in the chain, and it's IPTFS header blkoff has
* been set just past the end of the fragment data.
*
* In either case the space remaining to send more inner packet
* data is `mtu` - (skb->len - sizeof iptfs header). This is b/c
* the `mtu` value has the basic IPTFS header len accounted for,
* and we added that header to the skb so it is a part of
* skb->len, thus we subtract it from the skb length.
*/
remaining = mtu - (skb->len - sizeof(struct ip_iptfs_hdr));
/* Re-home (un-nest) nested fragment lists. We need to do this
* b/c we will simply be appending any following aggregated
* inner packets using the frag list.
*/
shi = skb_shinfo(skb);
nextp = &shi->frag_list;
while (*nextp) {
if (skb_has_frag_list(*nextp))
nextp = iptfs_rehome_fraglist(&(*nextp)->next, *nextp);
else
nextp = &(*nextp)->next;
}
if (shi->frag_list || skb_cloned(skb) || skb_shared(skb))
share_ok = false;
/* See if we have enough space to simply append.
*
* NOTE: Maybe do not append if we will be mis-aligned,
* SW-based endpoints will probably have to copy in this
* case.
*/
while ((skb2 = skb_peek(list))) {
trace_iptfs_ingress_nth_peek(skb2, remaining);
if (skb2->len > remaining)
break;
__skb_unlink(skb2, list);
/* Consider the buffer Tx'd and no longer owned */
skb_orphan(skb);
/* If we don't have a cksum in the packet we need to add
* one before encapsulation.
*/
if (skb2->ip_summed == CHECKSUM_PARTIAL) {
if (skb_checksum_help(skb2)) {
XFRM_INC_STATS(xs_net(x), LINUX_MIB_XFRMOUTERROR);
kfree_skb(skb2);
continue;
}
}
/* skb->pp_recycle is passed to __skb_flag_unref for all
* frag pages so we can only share pages with skb's who
* match ourselves.
*/
shi2 = skb_shinfo(skb2);
if (share_ok &&
(shi2->frag_list ||
(!skb2->head_frag && skb_headlen(skb)) ||
skb->pp_recycle != skb2->pp_recycle ||
skb_zcopy(skb2) ||
(shi->nr_frags + shi2->nr_frags + 1 > MAX_SKB_FRAGS)))
share_ok = false;
/* Do accounting */
skb->data_len += skb2->len;
skb->len += skb2->len;
remaining -= skb2->len;
trace_iptfs_ingress_nth_add(skb2, share_ok);
if (share_ok) {
iptfs_consume_frags(skb, skb2);
} else {
/* Append to the frag_list */
*nextp = skb2;
nextp = &skb2->next;
if (skb_has_frag_list(skb2))
nextp = iptfs_rehome_fraglist(nextp,
skb2);
skb->truesize += skb2->truesize;
}
}
xfrm_output(NULL, skb);
}
}
static enum hrtimer_restart iptfs_delay_timer(struct hrtimer *me)
{
struct sk_buff_head list;
struct xfrm_iptfs_data *xtfs;
struct xfrm_state *x;
time64_t settime;
xtfs = container_of(me, typeof(*xtfs), iptfs_timer);
x = xtfs->x;
/* Process all the queued packets
*
* softirq execution order: timer > tasklet > hrtimer
*
* Network rx will have run before us giving one last chance to queue
* ingress packets for us to process and transmit.
*/
spin_lock(&x->lock);
__skb_queue_head_init(&list);
skb_queue_splice_init(&xtfs->queue, &list);
xtfs->queue_size = 0;
settime = xtfs->iptfs_settime;
spin_unlock(&x->lock);
/* After the above unlock, packets can begin queuing again, and the
* timer can be set again, from another CPU either in softirq or user
* context (not from this one since we are running at softirq level
* already).
*/
trace_iptfs_timer_expire(xtfs, (unsigned long long)(ktime_get_raw_fast_ns() - settime));
iptfs_output_queued(x, &list);
return HRTIMER_NORESTART;
}
/**
* iptfs_encap_add_ipv4() - add outer encaps
* @x: xfrm state
* @skb: the packet
*
* This was originally taken from xfrm4_tunnel_encap_add. The reason for the
* copy is that IP-TFS/AGGFRAG can have different functionality for how to set
* the TOS/DSCP bits. Sets the protocol to a different value and doesn't do
* anything with inner headers as they aren't pointing into a normal IP
* singleton inner packet.
*
* Return: 0 on success or a negative error code on failure
*/
static int iptfs_encap_add_ipv4(struct xfrm_state *x, struct sk_buff *skb)
{
struct dst_entry *dst = skb_dst(skb);
struct iphdr *top_iph;
skb_reset_inner_network_header(skb);
skb_reset_inner_transport_header(skb);
skb_set_network_header(skb, -(x->props.header_len - x->props.enc_hdr_len));
skb->mac_header = skb->network_header + offsetof(struct iphdr, protocol);
skb->transport_header = skb->network_header + sizeof(*top_iph);
top_iph = ip_hdr(skb);
top_iph->ihl = 5;
top_iph->version = 4;
top_iph->protocol = IPPROTO_AGGFRAG;
/* As we have 0, fractional, 1 or N inner packets there's no obviously
* correct DSCP mapping to inherit. ECN should be cleared per RFC9347
* 3.1.
*/
top_iph->tos = 0;
top_iph->frag_off = htons(IP_DF);
top_iph->ttl = ip4_dst_hoplimit(xfrm_dst_child(dst));
top_iph->saddr = x->props.saddr.a4;
top_iph->daddr = x->id.daddr.a4;
ip_select_ident(dev_net(dst->dev), skb, NULL);
return 0;
}
#if IS_ENABLED(CONFIG_IPV6)
/**
* iptfs_encap_add_ipv6() - add outer encaps
* @x: xfrm state
* @skb: the packet
*
* This was originally taken from xfrm6_tunnel_encap_add. The reason for the
* copy is that IP-TFS/AGGFRAG can have different functionality for how to set
* the flow label and TOS/DSCP bits. It also sets the protocol to a different
* value and doesn't do anything with inner headers as they aren't pointing into
* a normal IP singleton inner packet.
*
* Return: 0 on success or a negative error code on failure
*/
static int iptfs_encap_add_ipv6(struct xfrm_state *x, struct sk_buff *skb)
{
struct dst_entry *dst = skb_dst(skb);
struct ipv6hdr *top_iph;
int dsfield;
skb_reset_inner_network_header(skb);
skb_reset_inner_transport_header(skb);
skb_set_network_header(skb, -x->props.header_len + x->props.enc_hdr_len);
skb->mac_header = skb->network_header + offsetof(struct ipv6hdr, nexthdr);
skb->transport_header = skb->network_header + sizeof(*top_iph);
top_iph = ipv6_hdr(skb);
top_iph->version = 6;
top_iph->priority = 0;
memset(top_iph->flow_lbl, 0, sizeof(top_iph->flow_lbl));
top_iph->nexthdr = IPPROTO_AGGFRAG;
/* As we have 0, fractional, 1 or N inner packets there's no obviously
* correct DSCP mapping to inherit. ECN should be cleared per RFC9347
* 3.1.
*/
dsfield = 0;
ipv6_change_dsfield(top_iph, 0, dsfield);
top_iph->hop_limit = ip6_dst_hoplimit(xfrm_dst_child(dst));
top_iph->saddr = *(struct in6_addr *)&x->props.saddr;
top_iph->daddr = *(struct in6_addr *)&x->id.daddr;
return 0;
}
#endif
/**
* iptfs_prepare_output() - prepare the skb for output
* @x: xfrm state
* @skb: the packet
*
* Return: Error value, if 0 then skb values should be as follows:
* - transport_header should point at ESP header
* - network_header should point at Outer IP header
* - mac_header should point at protocol/nexthdr of the outer IP
*/
static int iptfs_prepare_output(struct xfrm_state *x, struct sk_buff *skb)
{
if (x->outer_mode.family == AF_INET)
return iptfs_encap_add_ipv4(x, skb);
if (x->outer_mode.family == AF_INET6) {
#if IS_ENABLED(CONFIG_IPV6)
return iptfs_encap_add_ipv6(x, skb);
#else
return -EAFNOSUPPORT;
#endif
}
return -EOPNOTSUPP;
}
/* ========================== */
/* State Management Functions */
/* ========================== */
/**
* __iptfs_get_inner_mtu() - return inner MTU with no fragmentation.
* @x: xfrm state.
* @outer_mtu: the outer mtu
*
* Return: Correct MTU taking in to account the encap overhead.
*/
static u32 __iptfs_get_inner_mtu(struct xfrm_state *x, int outer_mtu)
{
struct crypto_aead *aead;
u32 blksize;
aead = x->data;
blksize = ALIGN(crypto_aead_blocksize(aead), 4);
return ((outer_mtu - x->props.header_len - crypto_aead_authsize(aead)) &
~(blksize - 1)) - 2;
}
/**
* iptfs_get_inner_mtu() - return the inner MTU for an IPTFS xfrm.
* @x: xfrm state.
* @outer_mtu: Outer MTU for the encapsulated packet.
*
* Return: Correct MTU taking in to account the encap overhead.
*/
static u32 iptfs_get_inner_mtu(struct xfrm_state *x, int outer_mtu)
{
struct xfrm_iptfs_data *xtfs = x->mode_data;
/* If not dont-frag we have no MTU */
if (!xtfs->cfg.dont_frag)
return x->outer_mode.family == AF_INET ? IP_MAX_MTU : IP6_MAX_MTU;
return __iptfs_get_inner_mtu(x, outer_mtu);
}
/**
* iptfs_user_init() - initialize the SA with IPTFS options from netlink.
* @net: the net data
* @x: xfrm state
* @attrs: netlink attributes
* @extack: extack return data
*
* Return: 0 on success or a negative error code on failure
*/
static int iptfs_user_init(struct net *net, struct xfrm_state *x,
struct nlattr **attrs,
struct netlink_ext_ack *extack)
{
struct xfrm_iptfs_data *xtfs = x->mode_data;
struct xfrm_iptfs_config *xc;
u64 q;
xc = &xtfs->cfg;
xc->max_queue_size = IPTFS_DEFAULT_MAX_QUEUE_SIZE;
xc->reorder_win_size = IPTFS_DEFAULT_REORDER_WINDOW;
xtfs->drop_time_ns = IPTFS_DEFAULT_DROP_TIME_USECS * NSECS_IN_USEC;
xtfs->init_delay_ns = IPTFS_DEFAULT_INIT_DELAY_USECS * NSECS_IN_USEC;
if (attrs[XFRMA_IPTFS_DONT_FRAG])
xc->dont_frag = true;
if (attrs[XFRMA_IPTFS_REORDER_WINDOW])
xc->reorder_win_size =
nla_get_u16(attrs[XFRMA_IPTFS_REORDER_WINDOW]);
/* saved array is for saving 1..N seq nums from wantseq */
if (xc->reorder_win_size) {
xtfs->w_saved = kcalloc(xc->reorder_win_size,
sizeof(*xtfs->w_saved), GFP_KERNEL);
if (!xtfs->w_saved) {
NL_SET_ERR_MSG(extack, "Cannot alloc reorder window");
return -ENOMEM;
}
}
if (attrs[XFRMA_IPTFS_PKT_SIZE]) {
xc->pkt_size = nla_get_u32(attrs[XFRMA_IPTFS_PKT_SIZE]);
if (!xc->pkt_size) {
xtfs->payload_mtu = 0;
} else if (xc->pkt_size > x->props.header_len) {
xtfs->payload_mtu = xc->pkt_size - x->props.header_len;
} else {
NL_SET_ERR_MSG(extack,
"Packet size must be 0 or greater than IPTFS/ESP header length");
return -EINVAL;
}
}
if (attrs[XFRMA_IPTFS_MAX_QSIZE])
xc->max_queue_size = nla_get_u32(attrs[XFRMA_IPTFS_MAX_QSIZE]);
if (attrs[XFRMA_IPTFS_DROP_TIME])
xtfs->drop_time_ns =
(u64)nla_get_u32(attrs[XFRMA_IPTFS_DROP_TIME]) *
NSECS_IN_USEC;
if (attrs[XFRMA_IPTFS_INIT_DELAY])
xtfs->init_delay_ns =
(u64)nla_get_u32(attrs[XFRMA_IPTFS_INIT_DELAY]) * NSECS_IN_USEC;
q = (u64)xc->max_queue_size * 95;
do_div(q, 100);
xtfs->ecn_queue_size = (u32)q;
return 0;
}
static unsigned int iptfs_sa_len(const struct xfrm_state *x)
{
struct xfrm_iptfs_data *xtfs = x->mode_data;
struct xfrm_iptfs_config *xc = &xtfs->cfg;
unsigned int l = 0;
if (x->dir == XFRM_SA_DIR_IN) {
l += nla_total_size(sizeof(u32)); /* drop time usec */
l += nla_total_size(sizeof(xc->reorder_win_size));
} else {
if (xc->dont_frag)
l += nla_total_size(0); /* dont-frag flag */
l += nla_total_size(sizeof(u32)); /* init delay usec */
l += nla_total_size(sizeof(xc->max_queue_size));
l += nla_total_size(sizeof(xc->pkt_size));
}
return l;
}
static int iptfs_copy_to_user(struct xfrm_state *x, struct sk_buff *skb)
{
struct xfrm_iptfs_data *xtfs = x->mode_data;
struct xfrm_iptfs_config *xc = &xtfs->cfg;
int ret = 0;
u64 q;
if (x->dir == XFRM_SA_DIR_IN) {
q = xtfs->drop_time_ns;
do_div(q, NSECS_IN_USEC);
ret = nla_put_u32(skb, XFRMA_IPTFS_DROP_TIME, q);
if (ret)
return ret;
ret = nla_put_u16(skb, XFRMA_IPTFS_REORDER_WINDOW,
xc->reorder_win_size);
} else {
if (xc->dont_frag) {
ret = nla_put_flag(skb, XFRMA_IPTFS_DONT_FRAG);
if (ret)
return ret;
}
q = xtfs->init_delay_ns;
do_div(q, NSECS_IN_USEC);
ret = nla_put_u32(skb, XFRMA_IPTFS_INIT_DELAY, q);
if (ret)
return ret;
ret = nla_put_u32(skb, XFRMA_IPTFS_MAX_QSIZE, xc->max_queue_size);
if (ret)
return ret;
ret = nla_put_u32(skb, XFRMA_IPTFS_PKT_SIZE, xc->pkt_size);
}
return ret;
}
static void __iptfs_init_state(struct xfrm_state *x,
struct xfrm_iptfs_data *xtfs)
{
__skb_queue_head_init(&xtfs->queue);
hrtimer_setup(&xtfs->iptfs_timer, iptfs_delay_timer, CLOCK_MONOTONIC, IPTFS_HRTIMER_MODE);
spin_lock_init(&xtfs->drop_lock);
hrtimer_setup(&xtfs->drop_timer, iptfs_drop_timer, CLOCK_MONOTONIC, IPTFS_HRTIMER_MODE);
/* Modify type (esp) adjustment values */
if (x->props.family == AF_INET)
x->props.header_len += sizeof(struct iphdr) + sizeof(struct ip_iptfs_hdr);
else if (x->props.family == AF_INET6)
x->props.header_len += sizeof(struct ipv6hdr) + sizeof(struct ip_iptfs_hdr);
x->props.enc_hdr_len = sizeof(struct ip_iptfs_hdr);
/* Always keep a module reference when x->mode_data is set */
__module_get(x->mode_cbs->owner);
x->mode_data = xtfs;
xtfs->x = x;
}
static int iptfs_clone_state(struct xfrm_state *x, struct xfrm_state *orig)
{
struct xfrm_iptfs_data *xtfs;
xtfs = kmemdup(orig->mode_data, sizeof(*xtfs), GFP_KERNEL);
if (!xtfs)
return -ENOMEM;
x->mode_data = xtfs;
xtfs->x = x;
xtfs->ra_newskb = NULL;
if (xtfs->cfg.reorder_win_size) {
xtfs->w_saved = kcalloc(xtfs->cfg.reorder_win_size,
sizeof(*xtfs->w_saved), GFP_KERNEL);
if (!xtfs->w_saved) {
kfree_sensitive(xtfs);
return -ENOMEM;
}
}
return 0;
}
static int iptfs_init_state(struct xfrm_state *x)
{
struct xfrm_iptfs_data *xtfs;
if (x->mode_data) {
/* We have arrived here from xfrm_state_clone() */
xtfs = x->mode_data;
} else {
xtfs = kzalloc(sizeof(*xtfs), GFP_KERNEL);
if (!xtfs)
return -ENOMEM;
}
__iptfs_init_state(x, xtfs);
return 0;
}
static void iptfs_destroy_state(struct xfrm_state *x)
{
struct xfrm_iptfs_data *xtfs = x->mode_data;
struct sk_buff_head list;
struct skb_wseq *s, *se;
struct sk_buff *skb;
if (!xtfs)
return;
spin_lock_bh(&xtfs->x->lock);
hrtimer_cancel(&xtfs->iptfs_timer);
__skb_queue_head_init(&list);
skb_queue_splice_init(&xtfs->queue, &list);
spin_unlock_bh(&xtfs->x->lock);
while ((skb = __skb_dequeue(&list)))
kfree_skb(skb);
spin_lock_bh(&xtfs->drop_lock);
hrtimer_cancel(&xtfs->drop_timer);
spin_unlock_bh(&xtfs->drop_lock);
if (xtfs->ra_newskb)
kfree_skb(xtfs->ra_newskb);
for (s = xtfs->w_saved, se = s + xtfs->w_savedlen; s < se; s++) {
if (s->skb)
kfree_skb(s->skb);
}
kfree_sensitive(xtfs->w_saved);
kfree_sensitive(xtfs);
module_put(x->mode_cbs->owner);
}
static const struct xfrm_mode_cbs iptfs_mode_cbs = {
.owner = THIS_MODULE,
.init_state = iptfs_init_state,
.clone_state = iptfs_clone_state,
.destroy_state = iptfs_destroy_state,
.user_init = iptfs_user_init,
.copy_to_user = iptfs_copy_to_user,
.sa_len = iptfs_sa_len,
.get_inner_mtu = iptfs_get_inner_mtu,
.input = iptfs_input,
.output = iptfs_output_collect,
.prepare_output = iptfs_prepare_output,
};
static int __init xfrm_iptfs_init(void)
{
int err;
pr_info("xfrm_iptfs: IPsec IP-TFS tunnel mode module\n");
err = xfrm_register_mode_cbs(XFRM_MODE_IPTFS, &iptfs_mode_cbs);
if (err < 0)
pr_info("%s: can't register IP-TFS\n", __func__);
return err;
}
static void __exit xfrm_iptfs_fini(void)
{
xfrm_unregister_mode_cbs(XFRM_MODE_IPTFS);
}
module_init(xfrm_iptfs_init);
module_exit(xfrm_iptfs_fini);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("IP-TFS support for xfrm ipsec tunnels");
|