1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
|
// SPDX-License-Identifier: GPL-2.0-only OR MIT
/*
* Copyright © 2024-2025 Intel Corporation
*/
#include <linux/dma-mapping.h>
#include <linux/migrate.h>
#include <linux/pagemap.h>
#include <drm/drm_drv.h>
#include <drm/drm_pagemap.h>
/**
* DOC: Overview
*
* The DRM pagemap layer is intended to augment the dev_pagemap functionality by
* providing a way to populate a struct mm_struct virtual range with device
* private pages and to provide helpers to abstract device memory allocations,
* to migrate memory back and forth between device memory and system RAM and
* to handle access (and in the future migration) between devices implementing
* a fast interconnect that is not necessarily visible to the rest of the
* system.
*
* Typically the DRM pagemap receives requests from one or more DRM GPU SVM
* instances to populate struct mm_struct virtual ranges with memory, and the
* migration is best effort only and may thus fail. The implementation should
* also handle device unbinding by blocking (return an -ENODEV) error for new
* population requests and after that migrate all device pages to system ram.
*/
/**
* DOC: Migration
*
* Migration granularity typically follows the GPU SVM range requests, but
* if there are clashes, due to races or due to the fact that multiple GPU
* SVM instances have different views of the ranges used, and because of that
* parts of a requested range is already present in the requested device memory,
* the implementation has a variety of options. It can fail and it can choose
* to populate only the part of the range that isn't already in device memory,
* and it can evict the range to system before trying to migrate. Ideally an
* implementation would just try to migrate the missing part of the range and
* allocate just enough memory to do so.
*
* When migrating to system memory as a response to a cpu fault or a device
* memory eviction request, currently a full device memory allocation is
* migrated back to system. Moving forward this might need improvement for
* situations where a single page needs bouncing between system memory and
* device memory due to, for example, atomic operations.
*
* Key DRM pagemap components:
*
* - Device Memory Allocations:
* Embedded structure containing enough information for the drm_pagemap to
* migrate to / from device memory.
*
* - Device Memory Operations:
* Define the interface for driver-specific device memory operations
* release memory, populate pfns, and copy to / from device memory.
*/
/**
* struct drm_pagemap_zdd - GPU SVM zone device data
*
* @refcount: Reference count for the zdd
* @devmem_allocation: device memory allocation
* @device_private_page_owner: Device private pages owner
*
* This structure serves as a generic wrapper installed in
* page->zone_device_data. It provides infrastructure for looking up a device
* memory allocation upon CPU page fault and asynchronously releasing device
* memory once the CPU has no page references. Asynchronous release is useful
* because CPU page references can be dropped in IRQ contexts, while releasing
* device memory likely requires sleeping locks.
*/
struct drm_pagemap_zdd {
struct kref refcount;
struct drm_pagemap_devmem *devmem_allocation;
void *device_private_page_owner;
};
/**
* drm_pagemap_zdd_alloc() - Allocate a zdd structure.
* @device_private_page_owner: Device private pages owner
*
* This function allocates and initializes a new zdd structure. It sets up the
* reference count and initializes the destroy work.
*
* Return: Pointer to the allocated zdd on success, ERR_PTR() on failure.
*/
static struct drm_pagemap_zdd *
drm_pagemap_zdd_alloc(void *device_private_page_owner)
{
struct drm_pagemap_zdd *zdd;
zdd = kmalloc(sizeof(*zdd), GFP_KERNEL);
if (!zdd)
return NULL;
kref_init(&zdd->refcount);
zdd->devmem_allocation = NULL;
zdd->device_private_page_owner = device_private_page_owner;
return zdd;
}
/**
* drm_pagemap_zdd_get() - Get a reference to a zdd structure.
* @zdd: Pointer to the zdd structure.
*
* This function increments the reference count of the provided zdd structure.
*
* Return: Pointer to the zdd structure.
*/
static struct drm_pagemap_zdd *drm_pagemap_zdd_get(struct drm_pagemap_zdd *zdd)
{
kref_get(&zdd->refcount);
return zdd;
}
/**
* drm_pagemap_zdd_destroy() - Destroy a zdd structure.
* @ref: Pointer to the reference count structure.
*
* This function queues the destroy_work of the zdd for asynchronous destruction.
*/
static void drm_pagemap_zdd_destroy(struct kref *ref)
{
struct drm_pagemap_zdd *zdd =
container_of(ref, struct drm_pagemap_zdd, refcount);
struct drm_pagemap_devmem *devmem = zdd->devmem_allocation;
if (devmem) {
complete_all(&devmem->detached);
if (devmem->ops->devmem_release)
devmem->ops->devmem_release(devmem);
}
kfree(zdd);
}
/**
* drm_pagemap_zdd_put() - Put a zdd reference.
* @zdd: Pointer to the zdd structure.
*
* This function decrements the reference count of the provided zdd structure
* and schedules its destruction if the count drops to zero.
*/
static void drm_pagemap_zdd_put(struct drm_pagemap_zdd *zdd)
{
kref_put(&zdd->refcount, drm_pagemap_zdd_destroy);
}
/**
* drm_pagemap_migration_unlock_put_page() - Put a migration page
* @page: Pointer to the page to put
*
* This function unlocks and puts a page.
*/
static void drm_pagemap_migration_unlock_put_page(struct page *page)
{
unlock_page(page);
put_page(page);
}
/**
* drm_pagemap_migration_unlock_put_pages() - Put migration pages
* @npages: Number of pages
* @migrate_pfn: Array of migrate page frame numbers
*
* This function unlocks and puts an array of pages.
*/
static void drm_pagemap_migration_unlock_put_pages(unsigned long npages,
unsigned long *migrate_pfn)
{
unsigned long i;
for (i = 0; i < npages; ++i) {
struct page *page;
if (!migrate_pfn[i])
continue;
page = migrate_pfn_to_page(migrate_pfn[i]);
drm_pagemap_migration_unlock_put_page(page);
migrate_pfn[i] = 0;
}
}
/**
* drm_pagemap_get_devmem_page() - Get a reference to a device memory page
* @page: Pointer to the page
* @zdd: Pointer to the GPU SVM zone device data
*
* This function associates the given page with the specified GPU SVM zone
* device data and initializes it for zone device usage.
*/
static void drm_pagemap_get_devmem_page(struct page *page,
struct drm_pagemap_zdd *zdd)
{
page->zone_device_data = drm_pagemap_zdd_get(zdd);
zone_device_page_init(page);
}
/**
* drm_pagemap_migrate_map_pages() - Map migration pages for GPU SVM migration
* @dev: The device for which the pages are being mapped
* @dma_addr: Array to store DMA addresses corresponding to mapped pages
* @migrate_pfn: Array of migrate page frame numbers to map
* @npages: Number of pages to map
* @dir: Direction of data transfer (e.g., DMA_BIDIRECTIONAL)
*
* This function maps pages of memory for migration usage in GPU SVM. It
* iterates over each page frame number provided in @migrate_pfn, maps the
* corresponding page, and stores the DMA address in the provided @dma_addr
* array.
*
* Returns: 0 on success, -EFAULT if an error occurs during mapping.
*/
static int drm_pagemap_migrate_map_pages(struct device *dev,
dma_addr_t *dma_addr,
unsigned long *migrate_pfn,
unsigned long npages,
enum dma_data_direction dir)
{
unsigned long i;
for (i = 0; i < npages; ++i) {
struct page *page = migrate_pfn_to_page(migrate_pfn[i]);
if (!page)
continue;
if (WARN_ON_ONCE(is_zone_device_page(page)))
return -EFAULT;
dma_addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
if (dma_mapping_error(dev, dma_addr[i]))
return -EFAULT;
}
return 0;
}
/**
* drm_pagemap_migrate_unmap_pages() - Unmap pages previously mapped for GPU SVM migration
* @dev: The device for which the pages were mapped
* @dma_addr: Array of DMA addresses corresponding to mapped pages
* @npages: Number of pages to unmap
* @dir: Direction of data transfer (e.g., DMA_BIDIRECTIONAL)
*
* This function unmaps previously mapped pages of memory for GPU Shared Virtual
* Memory (SVM). It iterates over each DMA address provided in @dma_addr, checks
* if it's valid and not already unmapped, and unmaps the corresponding page.
*/
static void drm_pagemap_migrate_unmap_pages(struct device *dev,
dma_addr_t *dma_addr,
unsigned long npages,
enum dma_data_direction dir)
{
unsigned long i;
for (i = 0; i < npages; ++i) {
if (!dma_addr[i] || dma_mapping_error(dev, dma_addr[i]))
continue;
dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
}
}
static unsigned long
npages_in_range(unsigned long start, unsigned long end)
{
return (end - start) >> PAGE_SHIFT;
}
/**
* drm_pagemap_migrate_to_devmem() - Migrate a struct mm_struct range to device memory
* @devmem_allocation: The device memory allocation to migrate to.
* The caller should hold a reference to the device memory allocation,
* and the reference is consumed by this function unless it returns with
* an error.
* @mm: Pointer to the struct mm_struct.
* @start: Start of the virtual address range to migrate.
* @end: End of the virtual address range to migrate.
* @timeslice_ms: The time requested for the migrated pagemap pages to
* be present in @mm before being allowed to be migrated back.
* @pgmap_owner: Not used currently, since only system memory is considered.
*
* This function migrates the specified virtual address range to device memory.
* It performs the necessary setup and invokes the driver-specific operations for
* migration to device memory. Expected to be called while holding the mmap lock in
* at least read mode.
*
* Note: The @timeslice_ms parameter can typically be used to force data to
* remain in pagemap pages long enough for a GPU to perform a task and to prevent
* a migration livelock. One alternative would be for the GPU driver to block
* in a mmu_notifier for the specified amount of time, but adding the
* functionality to the pagemap is likely nicer to the system as a whole.
*
* Return: %0 on success, negative error code on failure.
*/
int drm_pagemap_migrate_to_devmem(struct drm_pagemap_devmem *devmem_allocation,
struct mm_struct *mm,
unsigned long start, unsigned long end,
unsigned long timeslice_ms,
void *pgmap_owner)
{
const struct drm_pagemap_devmem_ops *ops = devmem_allocation->ops;
struct migrate_vma migrate = {
.start = start,
.end = end,
.pgmap_owner = pgmap_owner,
.flags = MIGRATE_VMA_SELECT_SYSTEM,
};
unsigned long i, npages = npages_in_range(start, end);
struct vm_area_struct *vas;
struct drm_pagemap_zdd *zdd = NULL;
struct page **pages;
dma_addr_t *dma_addr;
void *buf;
int err;
mmap_assert_locked(mm);
if (!ops->populate_devmem_pfn || !ops->copy_to_devmem ||
!ops->copy_to_ram)
return -EOPNOTSUPP;
vas = vma_lookup(mm, start);
if (!vas) {
err = -ENOENT;
goto err_out;
}
if (end > vas->vm_end || start < vas->vm_start) {
err = -EINVAL;
goto err_out;
}
if (!vma_is_anonymous(vas)) {
err = -EBUSY;
goto err_out;
}
buf = kvcalloc(npages, 2 * sizeof(*migrate.src) + sizeof(*dma_addr) +
sizeof(*pages), GFP_KERNEL);
if (!buf) {
err = -ENOMEM;
goto err_out;
}
dma_addr = buf + (2 * sizeof(*migrate.src) * npages);
pages = buf + (2 * sizeof(*migrate.src) + sizeof(*dma_addr)) * npages;
zdd = drm_pagemap_zdd_alloc(pgmap_owner);
if (!zdd) {
err = -ENOMEM;
goto err_free;
}
migrate.vma = vas;
migrate.src = buf;
migrate.dst = migrate.src + npages;
err = migrate_vma_setup(&migrate);
if (err)
goto err_free;
if (!migrate.cpages) {
err = -EFAULT;
goto err_free;
}
if (migrate.cpages != npages) {
err = -EBUSY;
goto err_finalize;
}
err = ops->populate_devmem_pfn(devmem_allocation, npages, migrate.dst);
if (err)
goto err_finalize;
err = drm_pagemap_migrate_map_pages(devmem_allocation->dev, dma_addr,
migrate.src, npages, DMA_TO_DEVICE);
if (err)
goto err_finalize;
for (i = 0; i < npages; ++i) {
struct page *page = pfn_to_page(migrate.dst[i]);
pages[i] = page;
migrate.dst[i] = migrate_pfn(migrate.dst[i]);
drm_pagemap_get_devmem_page(page, zdd);
}
err = ops->copy_to_devmem(pages, dma_addr, npages);
if (err)
goto err_finalize;
/* Upon success bind devmem allocation to range and zdd */
devmem_allocation->timeslice_expiration = get_jiffies_64() +
msecs_to_jiffies(timeslice_ms);
zdd->devmem_allocation = devmem_allocation; /* Owns ref */
err_finalize:
if (err)
drm_pagemap_migration_unlock_put_pages(npages, migrate.dst);
migrate_vma_pages(&migrate);
migrate_vma_finalize(&migrate);
drm_pagemap_migrate_unmap_pages(devmem_allocation->dev, dma_addr, npages,
DMA_TO_DEVICE);
err_free:
if (zdd)
drm_pagemap_zdd_put(zdd);
kvfree(buf);
err_out:
return err;
}
EXPORT_SYMBOL_GPL(drm_pagemap_migrate_to_devmem);
/**
* drm_pagemap_migrate_populate_ram_pfn() - Populate RAM PFNs for a VM area
* @vas: Pointer to the VM area structure, can be NULL
* @fault_page: Fault page
* @npages: Number of pages to populate
* @mpages: Number of pages to migrate
* @src_mpfn: Source array of migrate PFNs
* @mpfn: Array of migrate PFNs to populate
* @addr: Start address for PFN allocation
*
* This function populates the RAM migrate page frame numbers (PFNs) for the
* specified VM area structure. It allocates and locks pages in the VM area for
* RAM usage. If vas is non-NULL use alloc_page_vma for allocation, if NULL use
* alloc_page for allocation.
*
* Return: 0 on success, negative error code on failure.
*/
static int drm_pagemap_migrate_populate_ram_pfn(struct vm_area_struct *vas,
struct page *fault_page,
unsigned long npages,
unsigned long *mpages,
unsigned long *src_mpfn,
unsigned long *mpfn,
unsigned long addr)
{
unsigned long i;
for (i = 0; i < npages; ++i, addr += PAGE_SIZE) {
struct page *page, *src_page;
if (!(src_mpfn[i] & MIGRATE_PFN_MIGRATE))
continue;
src_page = migrate_pfn_to_page(src_mpfn[i]);
if (!src_page)
continue;
if (fault_page) {
if (src_page->zone_device_data !=
fault_page->zone_device_data)
continue;
}
if (vas)
page = alloc_page_vma(GFP_HIGHUSER, vas, addr);
else
page = alloc_page(GFP_HIGHUSER);
if (!page)
goto free_pages;
mpfn[i] = migrate_pfn(page_to_pfn(page));
}
for (i = 0; i < npages; ++i) {
struct page *page = migrate_pfn_to_page(mpfn[i]);
if (!page)
continue;
WARN_ON_ONCE(!trylock_page(page));
++*mpages;
}
return 0;
free_pages:
for (i = 0; i < npages; ++i) {
struct page *page = migrate_pfn_to_page(mpfn[i]);
if (!page)
continue;
put_page(page);
mpfn[i] = 0;
}
return -ENOMEM;
}
/**
* drm_pagemap_evict_to_ram() - Evict GPU SVM range to RAM
* @devmem_allocation: Pointer to the device memory allocation
*
* Similar to __drm_pagemap_migrate_to_ram but does not require mmap lock and
* migration done via migrate_device_* functions.
*
* Return: 0 on success, negative error code on failure.
*/
int drm_pagemap_evict_to_ram(struct drm_pagemap_devmem *devmem_allocation)
{
const struct drm_pagemap_devmem_ops *ops = devmem_allocation->ops;
unsigned long npages, mpages = 0;
struct page **pages;
unsigned long *src, *dst;
dma_addr_t *dma_addr;
void *buf;
int i, err = 0;
unsigned int retry_count = 2;
npages = devmem_allocation->size >> PAGE_SHIFT;
retry:
if (!mmget_not_zero(devmem_allocation->mm))
return -EFAULT;
buf = kvcalloc(npages, 2 * sizeof(*src) + sizeof(*dma_addr) +
sizeof(*pages), GFP_KERNEL);
if (!buf) {
err = -ENOMEM;
goto err_out;
}
src = buf;
dst = buf + (sizeof(*src) * npages);
dma_addr = buf + (2 * sizeof(*src) * npages);
pages = buf + (2 * sizeof(*src) + sizeof(*dma_addr)) * npages;
err = ops->populate_devmem_pfn(devmem_allocation, npages, src);
if (err)
goto err_free;
err = migrate_device_pfns(src, npages);
if (err)
goto err_free;
err = drm_pagemap_migrate_populate_ram_pfn(NULL, NULL, npages, &mpages,
src, dst, 0);
if (err || !mpages)
goto err_finalize;
err = drm_pagemap_migrate_map_pages(devmem_allocation->dev, dma_addr,
dst, npages, DMA_FROM_DEVICE);
if (err)
goto err_finalize;
for (i = 0; i < npages; ++i)
pages[i] = migrate_pfn_to_page(src[i]);
err = ops->copy_to_ram(pages, dma_addr, npages);
if (err)
goto err_finalize;
err_finalize:
if (err)
drm_pagemap_migration_unlock_put_pages(npages, dst);
migrate_device_pages(src, dst, npages);
migrate_device_finalize(src, dst, npages);
drm_pagemap_migrate_unmap_pages(devmem_allocation->dev, dma_addr, npages,
DMA_FROM_DEVICE);
err_free:
kvfree(buf);
err_out:
mmput_async(devmem_allocation->mm);
if (completion_done(&devmem_allocation->detached))
return 0;
if (retry_count--) {
cond_resched();
goto retry;
}
return err ?: -EBUSY;
}
EXPORT_SYMBOL_GPL(drm_pagemap_evict_to_ram);
/**
* __drm_pagemap_migrate_to_ram() - Migrate GPU SVM range to RAM (internal)
* @vas: Pointer to the VM area structure
* @device_private_page_owner: Device private pages owner
* @page: Pointer to the page for fault handling (can be NULL)
* @fault_addr: Fault address
* @size: Size of migration
*
* This internal function performs the migration of the specified GPU SVM range
* to RAM. It sets up the migration, populates + dma maps RAM PFNs, and
* invokes the driver-specific operations for migration to RAM.
*
* Return: 0 on success, negative error code on failure.
*/
static int __drm_pagemap_migrate_to_ram(struct vm_area_struct *vas,
void *device_private_page_owner,
struct page *page,
unsigned long fault_addr,
unsigned long size)
{
struct migrate_vma migrate = {
.vma = vas,
.pgmap_owner = device_private_page_owner,
.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE |
MIGRATE_VMA_SELECT_DEVICE_COHERENT,
.fault_page = page,
};
struct drm_pagemap_zdd *zdd;
const struct drm_pagemap_devmem_ops *ops;
struct device *dev = NULL;
unsigned long npages, mpages = 0;
struct page **pages;
dma_addr_t *dma_addr;
unsigned long start, end;
void *buf;
int i, err = 0;
if (page) {
zdd = page->zone_device_data;
if (time_before64(get_jiffies_64(),
zdd->devmem_allocation->timeslice_expiration))
return 0;
}
start = ALIGN_DOWN(fault_addr, size);
end = ALIGN(fault_addr + 1, size);
/* Corner where VMA area struct has been partially unmapped */
if (start < vas->vm_start)
start = vas->vm_start;
if (end > vas->vm_end)
end = vas->vm_end;
migrate.start = start;
migrate.end = end;
npages = npages_in_range(start, end);
buf = kvcalloc(npages, 2 * sizeof(*migrate.src) + sizeof(*dma_addr) +
sizeof(*pages), GFP_KERNEL);
if (!buf) {
err = -ENOMEM;
goto err_out;
}
dma_addr = buf + (2 * sizeof(*migrate.src) * npages);
pages = buf + (2 * sizeof(*migrate.src) + sizeof(*dma_addr)) * npages;
migrate.vma = vas;
migrate.src = buf;
migrate.dst = migrate.src + npages;
err = migrate_vma_setup(&migrate);
if (err)
goto err_free;
/* Raced with another CPU fault, nothing to do */
if (!migrate.cpages)
goto err_free;
if (!page) {
for (i = 0; i < npages; ++i) {
if (!(migrate.src[i] & MIGRATE_PFN_MIGRATE))
continue;
page = migrate_pfn_to_page(migrate.src[i]);
break;
}
if (!page)
goto err_finalize;
}
zdd = page->zone_device_data;
ops = zdd->devmem_allocation->ops;
dev = zdd->devmem_allocation->dev;
err = drm_pagemap_migrate_populate_ram_pfn(vas, page, npages, &mpages,
migrate.src, migrate.dst,
start);
if (err)
goto err_finalize;
err = drm_pagemap_migrate_map_pages(dev, dma_addr, migrate.dst, npages,
DMA_FROM_DEVICE);
if (err)
goto err_finalize;
for (i = 0; i < npages; ++i)
pages[i] = migrate_pfn_to_page(migrate.src[i]);
err = ops->copy_to_ram(pages, dma_addr, npages);
if (err)
goto err_finalize;
err_finalize:
if (err)
drm_pagemap_migration_unlock_put_pages(npages, migrate.dst);
migrate_vma_pages(&migrate);
migrate_vma_finalize(&migrate);
if (dev)
drm_pagemap_migrate_unmap_pages(dev, dma_addr, npages,
DMA_FROM_DEVICE);
err_free:
kvfree(buf);
err_out:
return err;
}
/**
* drm_pagemap_page_free() - Put GPU SVM zone device data associated with a page
* @page: Pointer to the page
*
* This function is a callback used to put the GPU SVM zone device data
* associated with a page when it is being released.
*/
static void drm_pagemap_page_free(struct page *page)
{
drm_pagemap_zdd_put(page->zone_device_data);
}
/**
* drm_pagemap_migrate_to_ram() - Migrate a virtual range to RAM (page fault handler)
* @vmf: Pointer to the fault information structure
*
* This function is a page fault handler used to migrate a virtual range
* to ram. The device memory allocation in which the device page is found is
* migrated in its entirety.
*
* Returns:
* VM_FAULT_SIGBUS on failure, 0 on success.
*/
static vm_fault_t drm_pagemap_migrate_to_ram(struct vm_fault *vmf)
{
struct drm_pagemap_zdd *zdd = vmf->page->zone_device_data;
int err;
err = __drm_pagemap_migrate_to_ram(vmf->vma,
zdd->device_private_page_owner,
vmf->page, vmf->address,
zdd->devmem_allocation->size);
return err ? VM_FAULT_SIGBUS : 0;
}
static const struct dev_pagemap_ops drm_pagemap_pagemap_ops = {
.page_free = drm_pagemap_page_free,
.migrate_to_ram = drm_pagemap_migrate_to_ram,
};
/**
* drm_pagemap_pagemap_ops_get() - Retrieve GPU SVM device page map operations
*
* Returns:
* Pointer to the GPU SVM device page map operations structure.
*/
const struct dev_pagemap_ops *drm_pagemap_pagemap_ops_get(void)
{
return &drm_pagemap_pagemap_ops;
}
EXPORT_SYMBOL_GPL(drm_pagemap_pagemap_ops_get);
/**
* drm_pagemap_devmem_init() - Initialize a drm_pagemap device memory allocation
*
* @devmem_allocation: The struct drm_pagemap_devmem to initialize.
* @dev: Pointer to the device structure which device memory allocation belongs to
* @mm: Pointer to the mm_struct for the address space
* @ops: Pointer to the operations structure for GPU SVM device memory
* @dpagemap: The struct drm_pagemap we're allocating from.
* @size: Size of device memory allocation
*/
void drm_pagemap_devmem_init(struct drm_pagemap_devmem *devmem_allocation,
struct device *dev, struct mm_struct *mm,
const struct drm_pagemap_devmem_ops *ops,
struct drm_pagemap *dpagemap, size_t size)
{
init_completion(&devmem_allocation->detached);
devmem_allocation->dev = dev;
devmem_allocation->mm = mm;
devmem_allocation->ops = ops;
devmem_allocation->dpagemap = dpagemap;
devmem_allocation->size = size;
}
EXPORT_SYMBOL_GPL(drm_pagemap_devmem_init);
/**
* drm_pagemap_page_to_dpagemap() - Return a pointer the drm_pagemap of a page
* @page: The struct page.
*
* Return: A pointer to the struct drm_pagemap of a device private page that
* was populated from the struct drm_pagemap. If the page was *not* populated
* from a struct drm_pagemap, the result is undefined and the function call
* may result in dereferencing and invalid address.
*/
struct drm_pagemap *drm_pagemap_page_to_dpagemap(struct page *page)
{
struct drm_pagemap_zdd *zdd = page->zone_device_data;
return zdd->devmem_allocation->dpagemap;
}
EXPORT_SYMBOL_GPL(drm_pagemap_page_to_dpagemap);
/**
* drm_pagemap_populate_mm() - Populate a virtual range with device memory pages
* @dpagemap: Pointer to the drm_pagemap managing the device memory
* @start: Start of the virtual range to populate.
* @end: End of the virtual range to populate.
* @mm: Pointer to the virtual address space.
* @timeslice_ms: The time requested for the migrated pagemap pages to
* be present in @mm before being allowed to be migrated back.
*
* Attempt to populate a virtual range with device memory pages,
* clearing them or migrating data from the existing pages if necessary.
* The function is best effort only, and implementations may vary
* in how hard they try to satisfy the request.
*
* Return: %0 on success, negative error code on error. If the hardware
* device was removed / unbound the function will return %-ENODEV.
*/
int drm_pagemap_populate_mm(struct drm_pagemap *dpagemap,
unsigned long start, unsigned long end,
struct mm_struct *mm,
unsigned long timeslice_ms)
{
int err;
if (!mmget_not_zero(mm))
return -EFAULT;
mmap_read_lock(mm);
err = dpagemap->ops->populate_mm(dpagemap, start, end, mm,
timeslice_ms);
mmap_read_unlock(mm);
mmput(mm);
return err;
}
EXPORT_SYMBOL(drm_pagemap_populate_mm);
|