1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "xe_guc_log.h"
#include <linux/fault-inject.h>
#include <drm/drm_managed.h>
#include "regs/xe_guc_regs.h"
#include "xe_bo.h"
#include "xe_devcoredump.h"
#include "xe_force_wake.h"
#include "xe_gt.h"
#include "xe_gt_printk.h"
#include "xe_map.h"
#include "xe_mmio.h"
#include "xe_module.h"
static struct xe_guc *
log_to_guc(struct xe_guc_log *log)
{
return container_of(log, struct xe_guc, log);
}
static struct xe_gt *
log_to_gt(struct xe_guc_log *log)
{
return container_of(log, struct xe_gt, uc.guc.log);
}
static struct xe_device *
log_to_xe(struct xe_guc_log *log)
{
return gt_to_xe(log_to_gt(log));
}
static size_t guc_log_size(void)
{
/*
* GuC Log buffer Layout
*
* +===============================+ 00B
* | Crash dump state header |
* +-------------------------------+ 32B
* | Debug state header |
* +-------------------------------+ 64B
* | Capture state header |
* +-------------------------------+ 96B
* | |
* +===============================+ PAGE_SIZE (4KB)
* | Crash Dump logs |
* +===============================+ + CRASH_SIZE
* | Debug logs |
* +===============================+ + DEBUG_SIZE
* | Capture logs |
* +===============================+ + CAPTURE_SIZE
*/
return PAGE_SIZE + CRASH_BUFFER_SIZE + DEBUG_BUFFER_SIZE +
CAPTURE_BUFFER_SIZE;
}
#define GUC_LOG_CHUNK_SIZE SZ_2M
static struct xe_guc_log_snapshot *xe_guc_log_snapshot_alloc(struct xe_guc_log *log, bool atomic)
{
struct xe_guc_log_snapshot *snapshot;
size_t remain;
int i;
snapshot = kzalloc(sizeof(*snapshot), atomic ? GFP_ATOMIC : GFP_KERNEL);
if (!snapshot)
return NULL;
/*
* NB: kmalloc has a hard limit well below the maximum GuC log buffer size.
* Also, can't use vmalloc as might be called from atomic context. So need
* to break the buffer up into smaller chunks that can be allocated.
*/
snapshot->size = xe_bo_size(log->bo);
snapshot->num_chunks = DIV_ROUND_UP(snapshot->size, GUC_LOG_CHUNK_SIZE);
snapshot->copy = kcalloc(snapshot->num_chunks, sizeof(*snapshot->copy),
atomic ? GFP_ATOMIC : GFP_KERNEL);
if (!snapshot->copy)
goto fail_snap;
remain = snapshot->size;
for (i = 0; i < snapshot->num_chunks; i++) {
size_t size = min(GUC_LOG_CHUNK_SIZE, remain);
snapshot->copy[i] = kmalloc(size, atomic ? GFP_ATOMIC : GFP_KERNEL);
if (!snapshot->copy[i])
goto fail_copy;
remain -= size;
}
return snapshot;
fail_copy:
for (i = 0; i < snapshot->num_chunks; i++)
kfree(snapshot->copy[i]);
kfree(snapshot->copy);
fail_snap:
kfree(snapshot);
return NULL;
}
/**
* xe_guc_log_snapshot_free - free a previously captured GuC log snapshot
* @snapshot: GuC log snapshot structure
*
* Return: pointer to a newly allocated snapshot object or null if out of memory. Caller is
* responsible for calling xe_guc_log_snapshot_free when done with the snapshot.
*/
void xe_guc_log_snapshot_free(struct xe_guc_log_snapshot *snapshot)
{
int i;
if (!snapshot)
return;
if (snapshot->copy) {
for (i = 0; i < snapshot->num_chunks; i++)
kfree(snapshot->copy[i]);
kfree(snapshot->copy);
}
kfree(snapshot);
}
/**
* xe_guc_log_snapshot_capture - create a new snapshot copy the GuC log for later dumping
* @log: GuC log structure
* @atomic: is the call inside an atomic section of some kind?
*
* Return: pointer to a newly allocated snapshot object or null if out of memory. Caller is
* responsible for calling xe_guc_log_snapshot_free when done with the snapshot.
*/
struct xe_guc_log_snapshot *xe_guc_log_snapshot_capture(struct xe_guc_log *log, bool atomic)
{
struct xe_guc_log_snapshot *snapshot;
struct xe_device *xe = log_to_xe(log);
struct xe_guc *guc = log_to_guc(log);
struct xe_gt *gt = log_to_gt(log);
unsigned int fw_ref;
size_t remain;
int i;
if (!log->bo)
return NULL;
snapshot = xe_guc_log_snapshot_alloc(log, atomic);
if (!snapshot)
return NULL;
remain = snapshot->size;
for (i = 0; i < snapshot->num_chunks; i++) {
size_t size = min(GUC_LOG_CHUNK_SIZE, remain);
xe_map_memcpy_from(xe, snapshot->copy[i], &log->bo->vmap,
i * GUC_LOG_CHUNK_SIZE, size);
remain -= size;
}
fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (!fw_ref) {
snapshot->stamp = ~0ULL;
} else {
snapshot->stamp = xe_mmio_read64_2x32(>->mmio, GUC_PMTIMESTAMP_LO);
xe_force_wake_put(gt_to_fw(gt), fw_ref);
}
snapshot->ktime = ktime_get_boottime_ns();
snapshot->level = log->level;
snapshot->ver_found = guc->fw.versions.found[XE_UC_FW_VER_RELEASE];
snapshot->ver_want = guc->fw.versions.wanted;
snapshot->path = guc->fw.path;
return snapshot;
}
/**
* xe_guc_log_snapshot_print - dump a previously saved copy of the GuC log to some useful location
* @snapshot: a snapshot of the GuC log
* @p: the printer object to output to
*/
void xe_guc_log_snapshot_print(struct xe_guc_log_snapshot *snapshot, struct drm_printer *p)
{
size_t remain;
int i;
if (!snapshot) {
drm_printf(p, "GuC log snapshot not allocated!\n");
return;
}
drm_printf(p, "GuC firmware: %s\n", snapshot->path);
drm_printf(p, "GuC version: %u.%u.%u (wanted %u.%u.%u)\n",
snapshot->ver_found.major, snapshot->ver_found.minor, snapshot->ver_found.patch,
snapshot->ver_want.major, snapshot->ver_want.minor, snapshot->ver_want.patch);
drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", snapshot->ktime, snapshot->ktime);
drm_printf(p, "GuC timestamp: 0x%08llX [%llu]\n", snapshot->stamp, snapshot->stamp);
drm_printf(p, "Log level: %u\n", snapshot->level);
drm_printf(p, "[LOG].length: 0x%zx\n", snapshot->size);
remain = snapshot->size;
for (i = 0; i < snapshot->num_chunks; i++) {
size_t size = min(GUC_LOG_CHUNK_SIZE, remain);
const char *prefix = i ? NULL : "[LOG].data";
char suffix = i == snapshot->num_chunks - 1 ? '\n' : 0;
xe_print_blob_ascii85(p, prefix, suffix, snapshot->copy[i], 0, size);
remain -= size;
}
}
/**
* xe_guc_log_print_dmesg - dump a copy of the GuC log to dmesg
* @log: GuC log structure
*/
void xe_guc_log_print_dmesg(struct xe_guc_log *log)
{
struct xe_gt *gt = log_to_gt(log);
static int g_count;
struct drm_printer ip = xe_gt_info_printer(gt);
struct drm_printer lp = drm_line_printer(&ip, "Capture", ++g_count);
drm_printf(&lp, "Dumping GuC log for %ps...\n", __builtin_return_address(0));
xe_guc_log_print(log, &lp);
drm_printf(&lp, "Done.\n");
}
/**
* xe_guc_log_print - dump a copy of the GuC log to some useful location
* @log: GuC log structure
* @p: the printer object to output to
*/
void xe_guc_log_print(struct xe_guc_log *log, struct drm_printer *p)
{
struct xe_guc_log_snapshot *snapshot;
drm_printf(p, "**** GuC Log ****\n");
snapshot = xe_guc_log_snapshot_capture(log, false);
drm_printf(p, "CS reference clock: %u\n", log_to_gt(log)->info.reference_clock);
xe_guc_log_snapshot_print(snapshot, p);
xe_guc_log_snapshot_free(snapshot);
}
int xe_guc_log_init(struct xe_guc_log *log)
{
struct xe_device *xe = log_to_xe(log);
struct xe_tile *tile = gt_to_tile(log_to_gt(log));
struct xe_bo *bo;
bo = xe_managed_bo_create_pin_map(xe, tile, guc_log_size(),
XE_BO_FLAG_SYSTEM |
XE_BO_FLAG_GGTT |
XE_BO_FLAG_GGTT_INVALIDATE |
XE_BO_FLAG_PINNED_NORESTORE);
if (IS_ERR(bo))
return PTR_ERR(bo);
xe_map_memset(xe, &bo->vmap, 0, 0, guc_log_size());
log->bo = bo;
log->level = xe_modparam.guc_log_level;
return 0;
}
ALLOW_ERROR_INJECTION(xe_guc_log_init, ERRNO); /* See xe_pci_probe() */
static u32 xe_guc_log_section_size_crash(struct xe_guc_log *log)
{
return CRASH_BUFFER_SIZE;
}
static u32 xe_guc_log_section_size_debug(struct xe_guc_log *log)
{
return DEBUG_BUFFER_SIZE;
}
/**
* xe_guc_log_section_size_capture - Get capture buffer size within log sections.
* @log: The log object.
*
* This function will return the capture buffer size within log sections.
*
* Return: capture buffer size.
*/
u32 xe_guc_log_section_size_capture(struct xe_guc_log *log)
{
return CAPTURE_BUFFER_SIZE;
}
/**
* xe_guc_get_log_buffer_size - Get log buffer size for a type.
* @log: The log object.
* @type: The log buffer type
*
* Return: buffer size.
*/
u32 xe_guc_get_log_buffer_size(struct xe_guc_log *log, enum guc_log_buffer_type type)
{
switch (type) {
case GUC_LOG_BUFFER_CRASH_DUMP:
return xe_guc_log_section_size_crash(log);
case GUC_LOG_BUFFER_DEBUG:
return xe_guc_log_section_size_debug(log);
case GUC_LOG_BUFFER_CAPTURE:
return xe_guc_log_section_size_capture(log);
}
return 0;
}
/**
* xe_guc_get_log_buffer_offset - Get offset in log buffer for a type.
* @log: The log object.
* @type: The log buffer type
*
* This function will return the offset in the log buffer for a type.
* Return: buffer offset.
*/
u32 xe_guc_get_log_buffer_offset(struct xe_guc_log *log, enum guc_log_buffer_type type)
{
enum guc_log_buffer_type i;
u32 offset = PAGE_SIZE;/* for the log_buffer_states */
for (i = GUC_LOG_BUFFER_CRASH_DUMP; i < GUC_LOG_BUFFER_TYPE_MAX; ++i) {
if (i == type)
break;
offset += xe_guc_get_log_buffer_size(log, i);
}
return offset;
}
/**
* xe_guc_check_log_buf_overflow - Check if log buffer overflowed
* @log: The log object.
* @type: The log buffer type
* @full_cnt: The count of buffer full
*
* This function will check count of buffer full against previous, mismatch
* indicate overflowed.
* Update the sampled_overflow counter, if the 4 bit counter overflowed, add
* up 16 to correct the value.
*
* Return: True if overflowed.
*/
bool xe_guc_check_log_buf_overflow(struct xe_guc_log *log, enum guc_log_buffer_type type,
unsigned int full_cnt)
{
unsigned int prev_full_cnt = log->stats[type].sampled_overflow;
bool overflow = false;
if (full_cnt != prev_full_cnt) {
overflow = true;
log->stats[type].overflow = full_cnt;
log->stats[type].sampled_overflow += full_cnt - prev_full_cnt;
if (full_cnt < prev_full_cnt) {
/* buffer_full_cnt is a 4 bit counter */
log->stats[type].sampled_overflow += 16;
}
xe_gt_notice(log_to_gt(log), "log buffer overflow\n");
}
return overflow;
}
|