1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
/* Copyright 2025 Google LLC */
/*
* This file is a "template" that generates a CRC function optimized using the
* RISC-V Zbc (scalar carryless multiplication) extension. The includer of this
* file must define the following parameters to specify the type of CRC:
*
* crc_t: the data type of the CRC, e.g. u32 for a 32-bit CRC
* LSB_CRC: 0 for a msb (most-significant-bit) first CRC, i.e. natural
* mapping between bits and polynomial coefficients
* 1 for a lsb (least-significant-bit) first CRC, i.e. reflected
* mapping between bits and polynomial coefficients
*/
#include <asm/byteorder.h>
#include <linux/minmax.h>
#define CRC_BITS (8 * sizeof(crc_t)) /* a.k.a. 'n' */
static inline unsigned long clmul(unsigned long a, unsigned long b)
{
unsigned long res;
asm(".option push\n"
".option arch,+zbc\n"
"clmul %0, %1, %2\n"
".option pop\n"
: "=r" (res) : "r" (a), "r" (b));
return res;
}
static inline unsigned long clmulh(unsigned long a, unsigned long b)
{
unsigned long res;
asm(".option push\n"
".option arch,+zbc\n"
"clmulh %0, %1, %2\n"
".option pop\n"
: "=r" (res) : "r" (a), "r" (b));
return res;
}
static inline unsigned long clmulr(unsigned long a, unsigned long b)
{
unsigned long res;
asm(".option push\n"
".option arch,+zbc\n"
"clmulr %0, %1, %2\n"
".option pop\n"
: "=r" (res) : "r" (a), "r" (b));
return res;
}
/*
* crc_load_long() loads one "unsigned long" of aligned data bytes, producing a
* polynomial whose bit order matches the CRC's bit order.
*/
#ifdef CONFIG_64BIT
# if LSB_CRC
# define crc_load_long(x) le64_to_cpup(x)
# else
# define crc_load_long(x) be64_to_cpup(x)
# endif
#else
# if LSB_CRC
# define crc_load_long(x) le32_to_cpup(x)
# else
# define crc_load_long(x) be32_to_cpup(x)
# endif
#endif
/* XOR @crc into the end of @msgpoly that represents the high-order terms. */
static inline unsigned long
crc_clmul_prep(crc_t crc, unsigned long msgpoly)
{
#if LSB_CRC
return msgpoly ^ crc;
#else
return msgpoly ^ ((unsigned long)crc << (BITS_PER_LONG - CRC_BITS));
#endif
}
/*
* Multiply the long-sized @msgpoly by x^n (a.k.a. x^CRC_BITS) and reduce it
* modulo the generator polynomial G. This gives the CRC of @msgpoly.
*/
static inline crc_t
crc_clmul_long(unsigned long msgpoly, const struct crc_clmul_consts *consts)
{
unsigned long tmp;
/*
* First step of Barrett reduction with integrated multiplication by
* x^n: calculate floor((msgpoly * x^n) / G). This is the value by
* which G needs to be multiplied to cancel out the x^n and higher terms
* of msgpoly * x^n. Do it using the following formula:
*
* msb-first:
* floor((msgpoly * floor(x^(BITS_PER_LONG-1+n) / G)) / x^(BITS_PER_LONG-1))
* lsb-first:
* floor((msgpoly * floor(x^(BITS_PER_LONG-1+n) / G) * x) / x^BITS_PER_LONG)
*
* barrett_reduction_const_1 contains floor(x^(BITS_PER_LONG-1+n) / G),
* which fits a long exactly. Using any lower power of x there would
* not carry enough precision through the calculation, while using any
* higher power of x would require extra instructions to handle a wider
* multiplication. In the msb-first case, using this power of x results
* in needing a floored division by x^(BITS_PER_LONG-1), which matches
* what clmulr produces. In the lsb-first case, a factor of x gets
* implicitly introduced by each carryless multiplication (shown as
* '* x' above), and the floored division instead needs to be by
* x^BITS_PER_LONG which matches what clmul produces.
*/
#if LSB_CRC
tmp = clmul(msgpoly, consts->barrett_reduction_const_1);
#else
tmp = clmulr(msgpoly, consts->barrett_reduction_const_1);
#endif
/*
* Second step of Barrett reduction:
*
* crc := (msgpoly * x^n) + (G * floor((msgpoly * x^n) / G))
*
* This reduces (msgpoly * x^n) modulo G by adding the appropriate
* multiple of G to it. The result uses only the x^0..x^(n-1) terms.
* HOWEVER, since the unreduced value (msgpoly * x^n) is zero in those
* terms in the first place, it is more efficient to do the equivalent:
*
* crc := ((G - x^n) * floor((msgpoly * x^n) / G)) mod x^n
*
* In the lsb-first case further modify it to the following which avoids
* a shift, as the crc ends up in the physically low n bits from clmulr:
*
* product := ((G - x^n) * x^(BITS_PER_LONG - n)) * floor((msgpoly * x^n) / G) * x
* crc := floor(product / x^(BITS_PER_LONG + 1 - n)) mod x^n
*
* barrett_reduction_const_2 contains the constant multiplier (G - x^n)
* or (G - x^n) * x^(BITS_PER_LONG - n) from the formulas above. The
* cast of the result to crc_t is essential, as it applies the mod x^n!
*/
#if LSB_CRC
return clmulr(tmp, consts->barrett_reduction_const_2);
#else
return clmul(tmp, consts->barrett_reduction_const_2);
#endif
}
/* Update @crc with the data from @msgpoly. */
static inline crc_t
crc_clmul_update_long(crc_t crc, unsigned long msgpoly,
const struct crc_clmul_consts *consts)
{
return crc_clmul_long(crc_clmul_prep(crc, msgpoly), consts);
}
/* Update @crc with 1 <= @len < sizeof(unsigned long) bytes of data. */
static inline crc_t
crc_clmul_update_partial(crc_t crc, const u8 *p, size_t len,
const struct crc_clmul_consts *consts)
{
unsigned long msgpoly;
size_t i;
#if LSB_CRC
msgpoly = (unsigned long)p[0] << (BITS_PER_LONG - 8);
for (i = 1; i < len; i++)
msgpoly = (msgpoly >> 8) ^ ((unsigned long)p[i] << (BITS_PER_LONG - 8));
#else
msgpoly = p[0];
for (i = 1; i < len; i++)
msgpoly = (msgpoly << 8) ^ p[i];
#endif
if (len >= sizeof(crc_t)) {
#if LSB_CRC
msgpoly ^= (unsigned long)crc << (BITS_PER_LONG - 8*len);
#else
msgpoly ^= (unsigned long)crc << (8*len - CRC_BITS);
#endif
return crc_clmul_long(msgpoly, consts);
}
#if LSB_CRC
msgpoly ^= (unsigned long)crc << (BITS_PER_LONG - 8*len);
return crc_clmul_long(msgpoly, consts) ^ (crc >> (8*len));
#else
msgpoly ^= crc >> (CRC_BITS - 8*len);
return crc_clmul_long(msgpoly, consts) ^ (crc << (8*len));
#endif
}
static inline crc_t
crc_clmul(crc_t crc, const void *p, size_t len,
const struct crc_clmul_consts *consts)
{
size_t align;
/* This implementation assumes that the CRC fits in an unsigned long. */
BUILD_BUG_ON(sizeof(crc_t) > sizeof(unsigned long));
/* If the buffer is not long-aligned, align it. */
align = (unsigned long)p % sizeof(unsigned long);
if (align && len) {
align = min(sizeof(unsigned long) - align, len);
crc = crc_clmul_update_partial(crc, p, align, consts);
p += align;
len -= align;
}
if (len >= 4 * sizeof(unsigned long)) {
unsigned long m0, m1;
m0 = crc_clmul_prep(crc, crc_load_long(p));
m1 = crc_load_long(p + sizeof(unsigned long));
p += 2 * sizeof(unsigned long);
len -= 2 * sizeof(unsigned long);
/*
* Main loop. Each iteration starts with a message polynomial
* (x^BITS_PER_LONG)*m0 + m1, then logically extends it by two
* more longs of data to form x^(3*BITS_PER_LONG)*m0 +
* x^(2*BITS_PER_LONG)*m1 + x^BITS_PER_LONG*m2 + m3, then
* "folds" that back into a congruent (modulo G) value that uses
* just m0 and m1 again. This is done by multiplying m0 by the
* precomputed constant (x^(3*BITS_PER_LONG) mod G) and m1 by
* the precomputed constant (x^(2*BITS_PER_LONG) mod G), then
* adding the results to m2 and m3 as appropriate. Each such
* multiplication produces a result twice the length of a long,
* which in RISC-V is two instructions clmul and clmulh.
*
* This could be changed to fold across more than 2 longs at a
* time if there is a CPU that can take advantage of it.
*/
do {
unsigned long p0, p1, p2, p3;
p0 = clmulh(m0, consts->fold_across_2_longs_const_hi);
p1 = clmul(m0, consts->fold_across_2_longs_const_hi);
p2 = clmulh(m1, consts->fold_across_2_longs_const_lo);
p3 = clmul(m1, consts->fold_across_2_longs_const_lo);
m0 = (LSB_CRC ? p1 ^ p3 : p0 ^ p2) ^ crc_load_long(p);
m1 = (LSB_CRC ? p0 ^ p2 : p1 ^ p3) ^
crc_load_long(p + sizeof(unsigned long));
p += 2 * sizeof(unsigned long);
len -= 2 * sizeof(unsigned long);
} while (len >= 2 * sizeof(unsigned long));
crc = crc_clmul_long(m0, consts);
crc = crc_clmul_update_long(crc, m1, consts);
}
while (len >= sizeof(unsigned long)) {
crc = crc_clmul_update_long(crc, crc_load_long(p), consts);
p += sizeof(unsigned long);
len -= sizeof(unsigned long);
}
if (len)
crc = crc_clmul_update_partial(crc, p, len, consts);
return crc;
}
|