1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
// SPDX-License-Identifier: GPL-2.0
/*
* SHA-1 and HMAC-SHA1 library functions
*/
#include <crypto/hmac.h>
#include <crypto/sha1.h>
#include <linux/bitops.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/unaligned.h>
#include <linux/wordpart.h>
static const struct sha1_block_state sha1_iv = {
.h = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
};
/*
* If you have 32 registers or more, the compiler can (and should)
* try to change the array[] accesses into registers. However, on
* machines with less than ~25 registers, that won't really work,
* and at least gcc will make an unholy mess of it.
*
* So to avoid that mess which just slows things down, we force
* the stores to memory to actually happen (we might be better off
* with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
* suggested by Artur Skawina - that will also make gcc unable to
* try to do the silly "optimize away loads" part because it won't
* see what the value will be).
*
* Ben Herrenschmidt reports that on PPC, the C version comes close
* to the optimized asm with this (ie on PPC you don't want that
* 'volatile', since there are lots of registers).
*
* On ARM we get the best code generation by forcing a full memory barrier
* between each SHA_ROUND, otherwise gcc happily get wild with spilling and
* the stack frame size simply explode and performance goes down the drain.
*/
#ifdef CONFIG_X86
#define setW(x, val) (*(volatile __u32 *)&W(x) = (val))
#elif defined(CONFIG_ARM)
#define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
#else
#define setW(x, val) (W(x) = (val))
#endif
/* This "rolls" over the 512-bit array */
#define W(x) (array[(x)&15])
/*
* Where do we get the source from? The first 16 iterations get it from
* the input data, the next mix it from the 512-bit array.
*/
#define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t)
#define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
#define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
__u32 TEMP = input(t); setW(t, TEMP); \
E += TEMP + rol32(A,5) + (fn) + (constant); \
B = ror32(B, 2); \
TEMP = E; E = D; D = C; C = B; B = A; A = TEMP; } while (0)
#define T_0_15(t, A, B, C, D, E) SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
#define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
#define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
#define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
#define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0xca62c1d6, A, B, C, D, E )
/**
* sha1_transform - single block SHA1 transform (deprecated)
*
* @digest: 160 bit digest to update
* @data: 512 bits of data to hash
* @array: 16 words of workspace (see note)
*
* This function executes SHA-1's internal compression function. It updates the
* 160-bit internal state (@digest) with a single 512-bit data block (@data).
*
* Don't use this function. SHA-1 is no longer considered secure. And even if
* you do have to use SHA-1, this isn't the correct way to hash something with
* SHA-1 as this doesn't handle padding and finalization.
*
* Note: If the hash is security sensitive, the caller should be sure
* to clear the workspace. This is left to the caller to avoid
* unnecessary clears between chained hashing operations.
*/
void sha1_transform(__u32 *digest, const char *data, __u32 *array)
{
__u32 A, B, C, D, E;
unsigned int i = 0;
A = digest[0];
B = digest[1];
C = digest[2];
D = digest[3];
E = digest[4];
/* Round 1 - iterations 0-16 take their input from 'data' */
for (; i < 16; ++i)
T_0_15(i, A, B, C, D, E);
/* Round 1 - tail. Input from 512-bit mixing array */
for (; i < 20; ++i)
T_16_19(i, A, B, C, D, E);
/* Round 2 */
for (; i < 40; ++i)
T_20_39(i, A, B, C, D, E);
/* Round 3 */
for (; i < 60; ++i)
T_40_59(i, A, B, C, D, E);
/* Round 4 */
for (; i < 80; ++i)
T_60_79(i, A, B, C, D, E);
digest[0] += A;
digest[1] += B;
digest[2] += C;
digest[3] += D;
digest[4] += E;
}
EXPORT_SYMBOL(sha1_transform);
/**
* sha1_init_raw - initialize the vectors for a SHA1 digest
* @buf: vector to initialize
*/
void sha1_init_raw(__u32 *buf)
{
buf[0] = 0x67452301;
buf[1] = 0xefcdab89;
buf[2] = 0x98badcfe;
buf[3] = 0x10325476;
buf[4] = 0xc3d2e1f0;
}
EXPORT_SYMBOL(sha1_init_raw);
static void __maybe_unused sha1_blocks_generic(struct sha1_block_state *state,
const u8 *data, size_t nblocks)
{
u32 workspace[SHA1_WORKSPACE_WORDS];
do {
sha1_transform(state->h, data, workspace);
data += SHA1_BLOCK_SIZE;
} while (--nblocks);
memzero_explicit(workspace, sizeof(workspace));
}
#ifdef CONFIG_CRYPTO_LIB_SHA1_ARCH
#include "sha1.h" /* $(SRCARCH)/sha1.h */
#else
#define sha1_blocks sha1_blocks_generic
#endif
void sha1_init(struct sha1_ctx *ctx)
{
ctx->state = sha1_iv;
ctx->bytecount = 0;
}
EXPORT_SYMBOL_GPL(sha1_init);
void sha1_update(struct sha1_ctx *ctx, const u8 *data, size_t len)
{
size_t partial = ctx->bytecount % SHA1_BLOCK_SIZE;
ctx->bytecount += len;
if (partial + len >= SHA1_BLOCK_SIZE) {
size_t nblocks;
if (partial) {
size_t l = SHA1_BLOCK_SIZE - partial;
memcpy(&ctx->buf[partial], data, l);
data += l;
len -= l;
sha1_blocks(&ctx->state, ctx->buf, 1);
}
nblocks = len / SHA1_BLOCK_SIZE;
len %= SHA1_BLOCK_SIZE;
if (nblocks) {
sha1_blocks(&ctx->state, data, nblocks);
data += nblocks * SHA1_BLOCK_SIZE;
}
partial = 0;
}
if (len)
memcpy(&ctx->buf[partial], data, len);
}
EXPORT_SYMBOL_GPL(sha1_update);
static void __sha1_final(struct sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE])
{
u64 bitcount = ctx->bytecount << 3;
size_t partial = ctx->bytecount % SHA1_BLOCK_SIZE;
ctx->buf[partial++] = 0x80;
if (partial > SHA1_BLOCK_SIZE - 8) {
memset(&ctx->buf[partial], 0, SHA1_BLOCK_SIZE - partial);
sha1_blocks(&ctx->state, ctx->buf, 1);
partial = 0;
}
memset(&ctx->buf[partial], 0, SHA1_BLOCK_SIZE - 8 - partial);
*(__be64 *)&ctx->buf[SHA1_BLOCK_SIZE - 8] = cpu_to_be64(bitcount);
sha1_blocks(&ctx->state, ctx->buf, 1);
for (size_t i = 0; i < SHA1_DIGEST_SIZE; i += 4)
put_unaligned_be32(ctx->state.h[i / 4], out + i);
}
void sha1_final(struct sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE])
{
__sha1_final(ctx, out);
memzero_explicit(ctx, sizeof(*ctx));
}
EXPORT_SYMBOL_GPL(sha1_final);
void sha1(const u8 *data, size_t len, u8 out[SHA1_DIGEST_SIZE])
{
struct sha1_ctx ctx;
sha1_init(&ctx);
sha1_update(&ctx, data, len);
sha1_final(&ctx, out);
}
EXPORT_SYMBOL_GPL(sha1);
static void __hmac_sha1_preparekey(struct sha1_block_state *istate,
struct sha1_block_state *ostate,
const u8 *raw_key, size_t raw_key_len)
{
union {
u8 b[SHA1_BLOCK_SIZE];
unsigned long w[SHA1_BLOCK_SIZE / sizeof(unsigned long)];
} derived_key = { 0 };
if (unlikely(raw_key_len > SHA1_BLOCK_SIZE))
sha1(raw_key, raw_key_len, derived_key.b);
else
memcpy(derived_key.b, raw_key, raw_key_len);
for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++)
derived_key.w[i] ^= REPEAT_BYTE(HMAC_IPAD_VALUE);
*istate = sha1_iv;
sha1_blocks(istate, derived_key.b, 1);
for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++)
derived_key.w[i] ^= REPEAT_BYTE(HMAC_OPAD_VALUE ^
HMAC_IPAD_VALUE);
*ostate = sha1_iv;
sha1_blocks(ostate, derived_key.b, 1);
memzero_explicit(&derived_key, sizeof(derived_key));
}
void hmac_sha1_preparekey(struct hmac_sha1_key *key,
const u8 *raw_key, size_t raw_key_len)
{
__hmac_sha1_preparekey(&key->istate, &key->ostate,
raw_key, raw_key_len);
}
EXPORT_SYMBOL_GPL(hmac_sha1_preparekey);
void hmac_sha1_init(struct hmac_sha1_ctx *ctx, const struct hmac_sha1_key *key)
{
ctx->sha_ctx.state = key->istate;
ctx->sha_ctx.bytecount = SHA1_BLOCK_SIZE;
ctx->ostate = key->ostate;
}
EXPORT_SYMBOL_GPL(hmac_sha1_init);
void hmac_sha1_init_usingrawkey(struct hmac_sha1_ctx *ctx,
const u8 *raw_key, size_t raw_key_len)
{
__hmac_sha1_preparekey(&ctx->sha_ctx.state, &ctx->ostate,
raw_key, raw_key_len);
ctx->sha_ctx.bytecount = SHA1_BLOCK_SIZE;
}
EXPORT_SYMBOL_GPL(hmac_sha1_init_usingrawkey);
void hmac_sha1_final(struct hmac_sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE])
{
/* Generate the padded input for the outer hash in ctx->sha_ctx.buf. */
__sha1_final(&ctx->sha_ctx, ctx->sha_ctx.buf);
memset(&ctx->sha_ctx.buf[SHA1_DIGEST_SIZE], 0,
SHA1_BLOCK_SIZE - SHA1_DIGEST_SIZE);
ctx->sha_ctx.buf[SHA1_DIGEST_SIZE] = 0x80;
*(__be32 *)&ctx->sha_ctx.buf[SHA1_BLOCK_SIZE - 4] =
cpu_to_be32(8 * (SHA1_BLOCK_SIZE + SHA1_DIGEST_SIZE));
/* Compute the outer hash, which gives the HMAC value. */
sha1_blocks(&ctx->ostate, ctx->sha_ctx.buf, 1);
for (size_t i = 0; i < SHA1_DIGEST_SIZE; i += 4)
put_unaligned_be32(ctx->ostate.h[i / 4], out + i);
memzero_explicit(ctx, sizeof(*ctx));
}
EXPORT_SYMBOL_GPL(hmac_sha1_final);
void hmac_sha1(const struct hmac_sha1_key *key,
const u8 *data, size_t data_len, u8 out[SHA1_DIGEST_SIZE])
{
struct hmac_sha1_ctx ctx;
hmac_sha1_init(&ctx, key);
hmac_sha1_update(&ctx, data, data_len);
hmac_sha1_final(&ctx, out);
}
EXPORT_SYMBOL_GPL(hmac_sha1);
void hmac_sha1_usingrawkey(const u8 *raw_key, size_t raw_key_len,
const u8 *data, size_t data_len,
u8 out[SHA1_DIGEST_SIZE])
{
struct hmac_sha1_ctx ctx;
hmac_sha1_init_usingrawkey(&ctx, raw_key, raw_key_len);
hmac_sha1_update(&ctx, data, data_len);
hmac_sha1_final(&ctx, out);
}
EXPORT_SYMBOL_GPL(hmac_sha1_usingrawkey);
#ifdef sha1_mod_init_arch
static int __init sha1_mod_init(void)
{
sha1_mod_init_arch();
return 0;
}
subsys_initcall(sha1_mod_init);
static void __exit sha1_mod_exit(void)
{
}
module_exit(sha1_mod_exit);
#endif
MODULE_DESCRIPTION("SHA-1 and HMAC-SHA1 library functions");
MODULE_LICENSE("GPL");
|