1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Test cases for hash functions, including a benchmark. This is included by
* KUnit test suites that want to use it. See sha512_kunit.c for an example.
*
* Copyright 2025 Google LLC
*/
#include <kunit/test.h>
#include <linux/hrtimer.h>
#include <linux/timekeeping.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
/* test_buf is a guarded buffer, i.e. &test_buf[TEST_BUF_LEN] is not mapped. */
#define TEST_BUF_LEN 16384
static u8 *test_buf;
static u8 *orig_test_buf;
static u64 random_seed;
/*
* This is a simple linear congruential generator. It is used only for testing,
* which does not require cryptographically secure random numbers. A hard-coded
* algorithm is used instead of <linux/prandom.h> so that it matches the
* algorithm used by the test vector generation script. This allows the input
* data in random test vectors to be concisely stored as just the seed.
*/
static u32 rand32(void)
{
random_seed = (random_seed * 25214903917 + 11) & ((1ULL << 48) - 1);
return random_seed >> 16;
}
static void rand_bytes(u8 *out, size_t len)
{
for (size_t i = 0; i < len; i++)
out[i] = rand32();
}
static void rand_bytes_seeded_from_len(u8 *out, size_t len)
{
random_seed = len;
rand_bytes(out, len);
}
static bool rand_bool(void)
{
return rand32() % 2;
}
/* Generate a random length, preferring small lengths. */
static size_t rand_length(size_t max_len)
{
size_t len;
switch (rand32() % 3) {
case 0:
len = rand32() % 128;
break;
case 1:
len = rand32() % 3072;
break;
default:
len = rand32();
break;
}
return len % (max_len + 1);
}
static size_t rand_offset(size_t max_offset)
{
return min(rand32() % 128, max_offset);
}
static int hash_suite_init(struct kunit_suite *suite)
{
/*
* Allocate the test buffer using vmalloc() with a page-aligned length
* so that it is immediately followed by a guard page. This allows
* buffer overreads to be detected, even in assembly code.
*/
size_t alloc_len = round_up(TEST_BUF_LEN, PAGE_SIZE);
orig_test_buf = vmalloc(alloc_len);
if (!orig_test_buf)
return -ENOMEM;
test_buf = orig_test_buf + alloc_len - TEST_BUF_LEN;
return 0;
}
static void hash_suite_exit(struct kunit_suite *suite)
{
vfree(orig_test_buf);
orig_test_buf = NULL;
test_buf = NULL;
}
/*
* Test the hash function against a list of test vectors.
*
* Note that it's only necessary to run each test vector in one way (e.g.,
* one-shot instead of incremental), since consistency between different ways of
* using the APIs is verified by other test cases.
*/
static void test_hash_test_vectors(struct kunit *test)
{
for (size_t i = 0; i < ARRAY_SIZE(hash_testvecs); i++) {
size_t data_len = hash_testvecs[i].data_len;
u8 actual_hash[HASH_SIZE];
KUNIT_ASSERT_LE(test, data_len, TEST_BUF_LEN);
rand_bytes_seeded_from_len(test_buf, data_len);
HASH(test_buf, data_len, actual_hash);
KUNIT_ASSERT_MEMEQ_MSG(
test, actual_hash, hash_testvecs[i].digest, HASH_SIZE,
"Wrong result with test vector %zu; data_len=%zu", i,
data_len);
}
}
/*
* Test that the hash function produces correct results for *every* length up to
* 4096 bytes. To do this, generate seeded random data, then calculate a hash
* value for each length 0..4096, then hash the hash values. Verify just the
* final hash value, which should match only when all hash values were correct.
*/
static void test_hash_all_lens_up_to_4096(struct kunit *test)
{
struct HASH_CTX ctx;
u8 hash[HASH_SIZE];
static_assert(TEST_BUF_LEN >= 4096);
rand_bytes_seeded_from_len(test_buf, 4096);
HASH_INIT(&ctx);
for (size_t len = 0; len <= 4096; len++) {
HASH(test_buf, len, hash);
HASH_UPDATE(&ctx, hash, HASH_SIZE);
}
HASH_FINAL(&ctx, hash);
KUNIT_ASSERT_MEMEQ(test, hash, hash_testvec_consolidated, HASH_SIZE);
}
/*
* Test that the hash function produces the same result with a one-shot
* computation as it does with an incremental computation.
*/
static void test_hash_incremental_updates(struct kunit *test)
{
for (int i = 0; i < 1000; i++) {
size_t total_len, offset;
struct HASH_CTX ctx;
u8 hash1[HASH_SIZE];
u8 hash2[HASH_SIZE];
size_t num_parts = 0;
size_t remaining_len, cur_offset;
total_len = rand_length(TEST_BUF_LEN);
offset = rand_offset(TEST_BUF_LEN - total_len);
rand_bytes(&test_buf[offset], total_len);
/* Compute the hash value in one shot. */
HASH(&test_buf[offset], total_len, hash1);
/*
* Compute the hash value incrementally, using a randomly
* selected sequence of update lengths that sum to total_len.
*/
HASH_INIT(&ctx);
remaining_len = total_len;
cur_offset = offset;
while (rand_bool()) {
size_t part_len = rand_length(remaining_len);
HASH_UPDATE(&ctx, &test_buf[cur_offset], part_len);
num_parts++;
cur_offset += part_len;
remaining_len -= part_len;
}
if (remaining_len != 0 || rand_bool()) {
HASH_UPDATE(&ctx, &test_buf[cur_offset], remaining_len);
num_parts++;
}
HASH_FINAL(&ctx, hash2);
/* Verify that the two hash values are the same. */
KUNIT_ASSERT_MEMEQ_MSG(
test, hash1, hash2, HASH_SIZE,
"Incremental test failed with total_len=%zu num_parts=%zu offset=%zu",
total_len, num_parts, offset);
}
}
/*
* Test that the hash function does not overrun any buffers. Uses a guard page
* to catch buffer overruns even if they occur in assembly code.
*/
static void test_hash_buffer_overruns(struct kunit *test)
{
const size_t max_tested_len = TEST_BUF_LEN - sizeof(struct HASH_CTX);
void *const buf_end = &test_buf[TEST_BUF_LEN];
struct HASH_CTX *guarded_ctx = buf_end - sizeof(*guarded_ctx);
rand_bytes(test_buf, TEST_BUF_LEN);
for (int i = 0; i < 100; i++) {
size_t len = rand_length(max_tested_len);
struct HASH_CTX ctx;
u8 hash[HASH_SIZE];
/* Check for overruns of the data buffer. */
HASH(buf_end - len, len, hash);
HASH_INIT(&ctx);
HASH_UPDATE(&ctx, buf_end - len, len);
HASH_FINAL(&ctx, hash);
/* Check for overruns of the hash value buffer. */
HASH(test_buf, len, buf_end - HASH_SIZE);
HASH_INIT(&ctx);
HASH_UPDATE(&ctx, test_buf, len);
HASH_FINAL(&ctx, buf_end - HASH_SIZE);
/* Check for overuns of the hash context. */
HASH_INIT(guarded_ctx);
HASH_UPDATE(guarded_ctx, test_buf, len);
HASH_FINAL(guarded_ctx, hash);
}
}
/*
* Test that the caller is permitted to alias the output digest and source data
* buffer, and also modify the source data buffer after it has been used.
*/
static void test_hash_overlaps(struct kunit *test)
{
const size_t max_tested_len = TEST_BUF_LEN - HASH_SIZE;
struct HASH_CTX ctx;
u8 hash[HASH_SIZE];
rand_bytes(test_buf, TEST_BUF_LEN);
for (int i = 0; i < 100; i++) {
size_t len = rand_length(max_tested_len);
size_t offset = HASH_SIZE + rand_offset(max_tested_len - len);
bool left_end = rand_bool();
u8 *ovl_hash = left_end ? &test_buf[offset] :
&test_buf[offset + len - HASH_SIZE];
HASH(&test_buf[offset], len, hash);
HASH(&test_buf[offset], len, ovl_hash);
KUNIT_ASSERT_MEMEQ_MSG(
test, hash, ovl_hash, HASH_SIZE,
"Overlap test 1 failed with len=%zu offset=%zu left_end=%d",
len, offset, left_end);
/* Repeat the above test, but this time use init+update+final */
HASH(&test_buf[offset], len, hash);
HASH_INIT(&ctx);
HASH_UPDATE(&ctx, &test_buf[offset], len);
HASH_FINAL(&ctx, ovl_hash);
KUNIT_ASSERT_MEMEQ_MSG(
test, hash, ovl_hash, HASH_SIZE,
"Overlap test 2 failed with len=%zu offset=%zu left_end=%d",
len, offset, left_end);
/* Test modifying the source data after it was used. */
HASH(&test_buf[offset], len, hash);
HASH_INIT(&ctx);
HASH_UPDATE(&ctx, &test_buf[offset], len);
rand_bytes(&test_buf[offset], len);
HASH_FINAL(&ctx, ovl_hash);
KUNIT_ASSERT_MEMEQ_MSG(
test, hash, ovl_hash, HASH_SIZE,
"Overlap test 3 failed with len=%zu offset=%zu left_end=%d",
len, offset, left_end);
}
}
/*
* Test that if the same data is hashed at different alignments in memory, the
* results are the same.
*/
static void test_hash_alignment_consistency(struct kunit *test)
{
u8 hash1[128 + HASH_SIZE];
u8 hash2[128 + HASH_SIZE];
for (int i = 0; i < 100; i++) {
size_t len = rand_length(TEST_BUF_LEN);
size_t data_offs1 = rand_offset(TEST_BUF_LEN - len);
size_t data_offs2 = rand_offset(TEST_BUF_LEN - len);
size_t hash_offs1 = rand_offset(128);
size_t hash_offs2 = rand_offset(128);
rand_bytes(&test_buf[data_offs1], len);
HASH(&test_buf[data_offs1], len, &hash1[hash_offs1]);
memmove(&test_buf[data_offs2], &test_buf[data_offs1], len);
HASH(&test_buf[data_offs2], len, &hash2[hash_offs2]);
KUNIT_ASSERT_MEMEQ_MSG(
test, &hash1[hash_offs1], &hash2[hash_offs2], HASH_SIZE,
"Alignment consistency test failed with len=%zu data_offs=(%zu,%zu) hash_offs=(%zu,%zu)",
len, data_offs1, data_offs2, hash_offs1, hash_offs2);
}
}
/* Test that HASH_FINAL zeroizes the context. */
static void test_hash_ctx_zeroization(struct kunit *test)
{
static const u8 zeroes[sizeof(struct HASH_CTX)];
struct HASH_CTX ctx;
rand_bytes(test_buf, 128);
HASH_INIT(&ctx);
HASH_UPDATE(&ctx, test_buf, 128);
HASH_FINAL(&ctx, test_buf);
KUNIT_ASSERT_MEMEQ_MSG(test, &ctx, zeroes, sizeof(ctx),
"Hash context was not zeroized by finalization");
}
#define IRQ_TEST_HRTIMER_INTERVAL us_to_ktime(5)
struct hash_irq_test_state {
bool (*func)(void *test_specific_state);
void *test_specific_state;
bool task_func_reported_failure;
bool hardirq_func_reported_failure;
bool softirq_func_reported_failure;
unsigned long hardirq_func_calls;
unsigned long softirq_func_calls;
struct hrtimer timer;
struct work_struct bh_work;
};
static enum hrtimer_restart hash_irq_test_timer_func(struct hrtimer *timer)
{
struct hash_irq_test_state *state =
container_of(timer, typeof(*state), timer);
WARN_ON_ONCE(!in_hardirq());
state->hardirq_func_calls++;
if (!state->func(state->test_specific_state))
state->hardirq_func_reported_failure = true;
hrtimer_forward_now(&state->timer, IRQ_TEST_HRTIMER_INTERVAL);
queue_work(system_bh_wq, &state->bh_work);
return HRTIMER_RESTART;
}
static void hash_irq_test_bh_work_func(struct work_struct *work)
{
struct hash_irq_test_state *state =
container_of(work, typeof(*state), bh_work);
WARN_ON_ONCE(!in_serving_softirq());
state->softirq_func_calls++;
if (!state->func(state->test_specific_state))
state->softirq_func_reported_failure = true;
}
/*
* Helper function which repeatedly runs the given @func in task, softirq, and
* hardirq context concurrently, and reports a failure to KUnit if any
* invocation of @func in any context returns false. @func is passed
* @test_specific_state as its argument. At most 3 invocations of @func will
* run concurrently: one in each of task, softirq, and hardirq context.
*
* The main purpose of this interrupt context testing is to validate fallback
* code paths that run in contexts where the normal code path cannot be used,
* typically due to the FPU or vector registers already being in-use in kernel
* mode. These code paths aren't covered when the test code is executed only by
* the KUnit test runner thread in task context. The reason for the concurrency
* is because merely using hardirq context is not sufficient to reach a fallback
* code path on some architectures; the hardirq actually has to occur while the
* FPU or vector unit was already in-use in kernel mode.
*
* Another purpose of this testing is to detect issues with the architecture's
* irq_fpu_usable() and kernel_fpu_begin/end() or equivalent functions,
* especially in softirq context when the softirq may have interrupted a task
* already using kernel-mode FPU or vector (if the arch didn't prevent that).
* Crypto functions are often executed in softirqs, so this is important.
*/
static void run_irq_test(struct kunit *test, bool (*func)(void *),
int max_iterations, void *test_specific_state)
{
struct hash_irq_test_state state = {
.func = func,
.test_specific_state = test_specific_state,
};
unsigned long end_jiffies;
/*
* Set up a hrtimer (the way we access hardirq context) and a work
* struct for the BH workqueue (the way we access softirq context).
*/
hrtimer_setup_on_stack(&state.timer, hash_irq_test_timer_func,
CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
INIT_WORK_ONSTACK(&state.bh_work, hash_irq_test_bh_work_func);
/* Run for up to max_iterations or 1 second, whichever comes first. */
end_jiffies = jiffies + HZ;
hrtimer_start(&state.timer, IRQ_TEST_HRTIMER_INTERVAL,
HRTIMER_MODE_REL_HARD);
for (int i = 0; i < max_iterations && !time_after(jiffies, end_jiffies);
i++) {
if (!func(test_specific_state))
state.task_func_reported_failure = true;
}
/* Cancel the timer and work. */
hrtimer_cancel(&state.timer);
flush_work(&state.bh_work);
/* Sanity check: the timer and BH functions should have been run. */
KUNIT_EXPECT_GT_MSG(test, state.hardirq_func_calls, 0,
"Timer function was not called");
KUNIT_EXPECT_GT_MSG(test, state.softirq_func_calls, 0,
"BH work function was not called");
/* Check for incorrect hash values reported from any context. */
KUNIT_EXPECT_FALSE_MSG(
test, state.task_func_reported_failure,
"Incorrect hash values reported from task context");
KUNIT_EXPECT_FALSE_MSG(
test, state.hardirq_func_reported_failure,
"Incorrect hash values reported from hardirq context");
KUNIT_EXPECT_FALSE_MSG(
test, state.softirq_func_reported_failure,
"Incorrect hash values reported from softirq context");
}
#define IRQ_TEST_DATA_LEN 256
#define IRQ_TEST_NUM_BUFFERS 3 /* matches max concurrency level */
struct hash_irq_test1_state {
u8 expected_hashes[IRQ_TEST_NUM_BUFFERS][HASH_SIZE];
atomic_t seqno;
};
/*
* Compute the hash of one of the test messages and verify that it matches the
* expected hash from @state->expected_hashes. To increase the chance of
* detecting problems, cycle through multiple messages.
*/
static bool hash_irq_test1_func(void *state_)
{
struct hash_irq_test1_state *state = state_;
u32 i = (u32)atomic_inc_return(&state->seqno) % IRQ_TEST_NUM_BUFFERS;
u8 actual_hash[HASH_SIZE];
HASH(&test_buf[i * IRQ_TEST_DATA_LEN], IRQ_TEST_DATA_LEN, actual_hash);
return memcmp(actual_hash, state->expected_hashes[i], HASH_SIZE) == 0;
}
/*
* Test that if hashes are computed in task, softirq, and hardirq context
* concurrently, then all results are as expected.
*/
static void test_hash_interrupt_context_1(struct kunit *test)
{
struct hash_irq_test1_state state = {};
/* Prepare some test messages and compute the expected hash of each. */
rand_bytes(test_buf, IRQ_TEST_NUM_BUFFERS * IRQ_TEST_DATA_LEN);
for (int i = 0; i < IRQ_TEST_NUM_BUFFERS; i++)
HASH(&test_buf[i * IRQ_TEST_DATA_LEN], IRQ_TEST_DATA_LEN,
state.expected_hashes[i]);
run_irq_test(test, hash_irq_test1_func, 100000, &state);
}
struct hash_irq_test2_hash_ctx {
struct HASH_CTX hash_ctx;
atomic_t in_use;
int offset;
int step;
};
struct hash_irq_test2_state {
struct hash_irq_test2_hash_ctx ctxs[IRQ_TEST_NUM_BUFFERS];
u8 expected_hash[HASH_SIZE];
u16 update_lens[32];
int num_steps;
};
static bool hash_irq_test2_func(void *state_)
{
struct hash_irq_test2_state *state = state_;
struct hash_irq_test2_hash_ctx *ctx;
bool ret = true;
for (ctx = &state->ctxs[0]; ctx < &state->ctxs[ARRAY_SIZE(state->ctxs)];
ctx++) {
if (atomic_cmpxchg(&ctx->in_use, 0, 1) == 0)
break;
}
if (WARN_ON_ONCE(ctx == &state->ctxs[ARRAY_SIZE(state->ctxs)])) {
/*
* This should never happen, as the number of contexts is equal
* to the maximum concurrency level of run_irq_test().
*/
return false;
}
if (ctx->step == 0) {
/* Init step */
HASH_INIT(&ctx->hash_ctx);
ctx->offset = 0;
ctx->step++;
} else if (ctx->step < state->num_steps - 1) {
/* Update step */
HASH_UPDATE(&ctx->hash_ctx, &test_buf[ctx->offset],
state->update_lens[ctx->step - 1]);
ctx->offset += state->update_lens[ctx->step - 1];
ctx->step++;
} else {
/* Final step */
u8 actual_hash[HASH_SIZE];
if (WARN_ON_ONCE(ctx->offset != TEST_BUF_LEN))
ret = false;
HASH_FINAL(&ctx->hash_ctx, actual_hash);
if (memcmp(actual_hash, state->expected_hash, HASH_SIZE) != 0)
ret = false;
ctx->step = 0;
}
atomic_set_release(&ctx->in_use, 0);
return ret;
}
/*
* Test that if hashes are computed in task, softirq, and hardirq context
* concurrently, *including doing different parts of the same incremental
* computation in different contexts*, then all results are as expected.
* Besides detecting bugs similar to those that test_hash_interrupt_context_1
* can detect, this test case can also detect bugs where hash function
* implementations don't correctly handle these mixed incremental computations.
*/
static void test_hash_interrupt_context_2(struct kunit *test)
{
struct hash_irq_test2_state *state;
int remaining = TEST_BUF_LEN;
state = kunit_kzalloc(test, sizeof(*state), GFP_KERNEL);
KUNIT_ASSERT_NOT_NULL(test, state);
rand_bytes(test_buf, TEST_BUF_LEN);
HASH(test_buf, TEST_BUF_LEN, state->expected_hash);
/*
* Generate a list of update lengths to use. Ensure that it contains
* multiple entries but is limited to a maximum length.
*/
static_assert(TEST_BUF_LEN / 4096 > 1);
for (state->num_steps = 0;
state->num_steps < ARRAY_SIZE(state->update_lens) - 1 && remaining;
state->num_steps++) {
state->update_lens[state->num_steps] =
rand_length(min(remaining, 4096));
remaining -= state->update_lens[state->num_steps];
}
if (remaining)
state->update_lens[state->num_steps++] = remaining;
state->num_steps += 2; /* for init and final */
run_irq_test(test, hash_irq_test2_func, 250000, state);
}
#define UNKEYED_HASH_KUNIT_CASES \
KUNIT_CASE(test_hash_test_vectors), \
KUNIT_CASE(test_hash_all_lens_up_to_4096), \
KUNIT_CASE(test_hash_incremental_updates), \
KUNIT_CASE(test_hash_buffer_overruns), \
KUNIT_CASE(test_hash_overlaps), \
KUNIT_CASE(test_hash_alignment_consistency), \
KUNIT_CASE(test_hash_ctx_zeroization), \
KUNIT_CASE(test_hash_interrupt_context_1), \
KUNIT_CASE(test_hash_interrupt_context_2)
/* benchmark_hash is omitted so that the suites can put it last. */
#ifdef HMAC
/*
* Test the corresponding HMAC variant.
*
* This test case is fairly short, since HMAC is just a simple C wrapper around
* the underlying unkeyed hash function, which is already well-tested by the
* other test cases. It's not useful to test things like data alignment or
* interrupt context again for HMAC, nor to have a long list of test vectors.
*
* Thus, just do a single consolidated test, which covers all data lengths up to
* 4096 bytes and all key lengths up to 292 bytes. For each data length, select
* a key length, generate the inputs from a seed, and compute the HMAC value.
* Concatenate all these HMAC values together, and compute the HMAC of that.
* Verify that value. If this fails, then the HMAC implementation is wrong.
* This won't show which specific input failed, but that should be fine. Any
* failure would likely be non-input-specific or also show in the unkeyed tests.
*/
static void test_hmac(struct kunit *test)
{
static const u8 zeroes[sizeof(struct HMAC_CTX)];
u8 *raw_key;
struct HMAC_KEY key;
struct HMAC_CTX ctx;
u8 mac[HASH_SIZE];
u8 mac2[HASH_SIZE];
static_assert(TEST_BUF_LEN >= 4096 + 293);
rand_bytes_seeded_from_len(test_buf, 4096);
raw_key = &test_buf[4096];
rand_bytes_seeded_from_len(raw_key, 32);
HMAC_PREPAREKEY(&key, raw_key, 32);
HMAC_INIT(&ctx, &key);
for (size_t data_len = 0; data_len <= 4096; data_len++) {
/*
* Cycle through key lengths as well. Somewhat arbitrarily go
* up to 293, which is somewhat larger than the largest hash
* block size (which is the size at which the key starts being
* hashed down to one block); going higher would not be useful.
* To reduce correlation with data_len, use a prime number here.
*/
size_t key_len = data_len % 293;
HMAC_UPDATE(&ctx, test_buf, data_len);
rand_bytes_seeded_from_len(raw_key, key_len);
HMAC_USINGRAWKEY(raw_key, key_len, test_buf, data_len, mac);
HMAC_UPDATE(&ctx, mac, HASH_SIZE);
/* Verify that HMAC() is consistent with HMAC_USINGRAWKEY(). */
HMAC_PREPAREKEY(&key, raw_key, key_len);
HMAC(&key, test_buf, data_len, mac2);
KUNIT_ASSERT_MEMEQ_MSG(
test, mac, mac2, HASH_SIZE,
"HMAC gave different results with raw and prepared keys");
}
HMAC_FINAL(&ctx, mac);
KUNIT_EXPECT_MEMEQ_MSG(test, mac, hmac_testvec_consolidated, HASH_SIZE,
"HMAC gave wrong result");
KUNIT_EXPECT_MEMEQ_MSG(test, &ctx, zeroes, sizeof(ctx),
"HMAC context was not zeroized by finalization");
}
#define HASH_KUNIT_CASES UNKEYED_HASH_KUNIT_CASES, KUNIT_CASE(test_hmac)
#else
#define HASH_KUNIT_CASES UNKEYED_HASH_KUNIT_CASES
#endif
/* Benchmark the hash function on various data lengths. */
static void benchmark_hash(struct kunit *test)
{
static const size_t lens_to_test[] = {
1, 16, 64, 127, 128, 200, 256,
511, 512, 1024, 3173, 4096, 16384,
};
u8 hash[HASH_SIZE];
if (!IS_ENABLED(CONFIG_CRYPTO_LIB_BENCHMARK))
kunit_skip(test, "not enabled");
/* Warm-up */
for (size_t i = 0; i < 10000000; i += TEST_BUF_LEN)
HASH(test_buf, TEST_BUF_LEN, hash);
for (size_t i = 0; i < ARRAY_SIZE(lens_to_test); i++) {
size_t len = lens_to_test[i];
/* The '+ 128' tries to account for per-message overhead. */
size_t num_iters = 10000000 / (len + 128);
u64 t;
KUNIT_ASSERT_LE(test, len, TEST_BUF_LEN);
preempt_disable();
t = ktime_get_ns();
for (size_t j = 0; j < num_iters; j++)
HASH(test_buf, len, hash);
t = ktime_get_ns() - t;
preempt_enable();
kunit_info(test, "len=%zu: %llu MB/s", len,
div64_u64((u64)len * num_iters * 1000, t ?: 1));
}
}
|