1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2022-2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
*/
#include <linux/array_size.h>
#include <linux/minmax.h>
#include <vdso/datapage.h>
#include <vdso/getrandom.h>
#include <vdso/unaligned.h>
#include <asm/vdso/getrandom.h>
#include <uapi/linux/mman.h>
#include <uapi/linux/random.h>
/* Bring in default accessors */
#include <vdso/vsyscall.h>
#undef PAGE_SIZE
#undef PAGE_MASK
#define PAGE_SIZE (1UL << CONFIG_PAGE_SHIFT)
#define PAGE_MASK (~(PAGE_SIZE - 1))
#define MEMCPY_AND_ZERO_SRC(type, dst, src, len) do { \
while (len >= sizeof(type)) { \
__put_unaligned_t(type, __get_unaligned_t(type, src), dst); \
__put_unaligned_t(type, 0, src); \
dst += sizeof(type); \
src += sizeof(type); \
len -= sizeof(type); \
} \
} while (0)
static void memcpy_and_zero_src(void *dst, void *src, size_t len)
{
if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) {
if (IS_ENABLED(CONFIG_64BIT))
MEMCPY_AND_ZERO_SRC(u64, dst, src, len);
MEMCPY_AND_ZERO_SRC(u32, dst, src, len);
MEMCPY_AND_ZERO_SRC(u16, dst, src, len);
}
MEMCPY_AND_ZERO_SRC(u8, dst, src, len);
}
/**
* __cvdso_getrandom_data - Generic vDSO implementation of getrandom() syscall.
* @rng_info: Describes state of kernel RNG, memory shared with kernel.
* @buffer: Destination buffer to fill with random bytes.
* @len: Size of @buffer in bytes.
* @flags: Zero or more GRND_* flags.
* @opaque_state: Pointer to an opaque state area.
* @opaque_len: Length of opaque state area.
*
* This implements a "fast key erasure" RNG using ChaCha20, in the same way that the kernel's
* getrandom() syscall does. It periodically reseeds its key from the kernel's RNG, at the same
* schedule that the kernel's RNG is reseeded. If the kernel's RNG is not ready, then this always
* calls into the syscall.
*
* If @buffer, @len, and @flags are 0, and @opaque_len is ~0UL, then @opaque_state is populated
* with a struct vgetrandom_opaque_params and the function returns 0; if it does not return 0,
* this function should not be used.
*
* @opaque_state *must* be allocated by calling mmap(2) using the mmap_prot and mmap_flags fields
* from the struct vgetrandom_opaque_params, and states must not straddle pages. Unless external
* locking is used, one state must be allocated per thread, as it is not safe to call this function
* concurrently with the same @opaque_state. However, it is safe to call this using the same
* @opaque_state that is shared between main code and signal handling code, within the same thread.
*
* Returns: The number of random bytes written to @buffer, or a negative value indicating an error.
*/
static __always_inline ssize_t
__cvdso_getrandom_data(const struct vdso_rng_data *rng_info, void *buffer, size_t len,
unsigned int flags, void *opaque_state, size_t opaque_len)
{
ssize_t ret = min_t(size_t, INT_MAX & PAGE_MASK /* = MAX_RW_COUNT */, len);
struct vgetrandom_state *state = opaque_state;
size_t batch_len, nblocks, orig_len = len;
bool in_use, have_retried = false;
void *orig_buffer = buffer;
u64 current_generation;
u32 counter[2] = { 0 };
if (unlikely(opaque_len == ~0UL && !buffer && !len && !flags)) {
struct vgetrandom_opaque_params *params = opaque_state;
params->size_of_opaque_state = sizeof(*state);
params->mmap_prot = PROT_READ | PROT_WRITE;
params->mmap_flags = MAP_DROPPABLE | MAP_ANONYMOUS;
for (size_t i = 0; i < ARRAY_SIZE(params->reserved); ++i)
params->reserved[i] = 0;
return 0;
}
/* The state must not straddle a page, since pages can be zeroed at any time. */
if (unlikely(((unsigned long)opaque_state & ~PAGE_MASK) + sizeof(*state) > PAGE_SIZE))
return -EFAULT;
/* Handle unexpected flags by falling back to the kernel. */
if (unlikely(flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)))
goto fallback_syscall;
/* If the caller passes the wrong size, which might happen due to CRIU, fallback. */
if (unlikely(opaque_len != sizeof(*state)))
goto fallback_syscall;
/*
* If the kernel's RNG is not yet ready, then it's not possible to provide random bytes from
* userspace, because A) the various @flags require this to block, or not, depending on
* various factors unavailable to userspace, and B) the kernel's behavior before the RNG is
* ready is to reseed from the entropy pool at every invocation.
*/
if (unlikely(!READ_ONCE(rng_info->is_ready)))
goto fallback_syscall;
/*
* This condition is checked after @rng_info->is_ready, because before the kernel's RNG is
* initialized, the @flags parameter may require this to block or return an error, even when
* len is zero.
*/
if (unlikely(!len))
return 0;
/*
* @state->in_use is basic reentrancy protection against this running in a signal handler
* with the same @opaque_state, but obviously not atomic wrt multiple CPUs or more than one
* level of reentrancy. If a signal interrupts this after reading @state->in_use, but before
* writing @state->in_use, there is still no race, because the signal handler will run to
* its completion before returning execution.
*/
in_use = READ_ONCE(state->in_use);
if (unlikely(in_use))
/* The syscall simply fills the buffer and does not touch @state, so fallback. */
goto fallback_syscall;
WRITE_ONCE(state->in_use, true);
retry_generation:
/*
* @rng_info->generation must always be read here, as it serializes @state->key with the
* kernel's RNG reseeding schedule.
*/
current_generation = READ_ONCE(rng_info->generation);
/*
* If @state->generation doesn't match the kernel RNG's generation, then it means the
* kernel's RNG has reseeded, and so @state->key is reseeded as well.
*/
if (unlikely(state->generation != current_generation)) {
/*
* Write the generation before filling the key, in case of fork. If there is a fork
* just after this line, the parent and child will get different random bytes from
* the syscall, which is good. However, were this line to occur after the getrandom
* syscall, then both child and parent could have the same bytes and the same
* generation counter, so the fork would not be detected. Therefore, write
* @state->generation before the call to the getrandom syscall.
*/
WRITE_ONCE(state->generation, current_generation);
/*
* Prevent the syscall from being reordered wrt current_generation. Pairs with the
* smp_store_release(&vdso_k_rng_data->generation) in random.c.
*/
smp_rmb();
/* Reseed @state->key using fresh bytes from the kernel. */
if (getrandom_syscall(state->key, sizeof(state->key), 0) != sizeof(state->key)) {
/*
* If the syscall failed to refresh the key, then @state->key is now
* invalid, so invalidate the generation so that it is not used again, and
* fallback to using the syscall entirely.
*/
WRITE_ONCE(state->generation, 0);
/*
* Set @state->in_use to false only after the last write to @state in the
* line above.
*/
WRITE_ONCE(state->in_use, false);
goto fallback_syscall;
}
/*
* Set @state->pos to beyond the end of the batch, so that the batch is refilled
* using the new key.
*/
state->pos = sizeof(state->batch);
}
/* Set len to the total amount of bytes that this function is allowed to read, ret. */
len = ret;
more_batch:
/*
* First use bytes out of @state->batch, which may have been filled by the last call to this
* function.
*/
batch_len = min_t(size_t, sizeof(state->batch) - state->pos, len);
if (batch_len) {
/* Zeroing at the same time as memcpying helps preserve forward secrecy. */
memcpy_and_zero_src(buffer, state->batch + state->pos, batch_len);
state->pos += batch_len;
buffer += batch_len;
len -= batch_len;
}
if (!len) {
/* Prevent the loop from being reordered wrt ->generation. */
barrier();
/*
* Since @rng_info->generation will never be 0, re-read @state->generation, rather
* than using the local current_generation variable, to learn whether a fork
* occurred or if @state was zeroed due to memory pressure. Primarily, though, this
* indicates whether the kernel's RNG has reseeded, in which case generate a new key
* and start over.
*/
if (unlikely(READ_ONCE(state->generation) != READ_ONCE(rng_info->generation))) {
/*
* Prevent this from looping forever in case of low memory or racing with a
* user force-reseeding the kernel's RNG using the ioctl.
*/
if (have_retried) {
WRITE_ONCE(state->in_use, false);
goto fallback_syscall;
}
have_retried = true;
buffer = orig_buffer;
goto retry_generation;
}
/*
* Set @state->in_use to false only when there will be no more reads or writes of
* @state.
*/
WRITE_ONCE(state->in_use, false);
return ret;
}
/* Generate blocks of RNG output directly into @buffer while there's enough room left. */
nblocks = len / CHACHA_BLOCK_SIZE;
if (nblocks) {
__arch_chacha20_blocks_nostack(buffer, state->key, counter, nblocks);
buffer += nblocks * CHACHA_BLOCK_SIZE;
len -= nblocks * CHACHA_BLOCK_SIZE;
}
BUILD_BUG_ON(sizeof(state->batch_key) % CHACHA_BLOCK_SIZE != 0);
/* Refill the batch and overwrite the key, in order to preserve forward secrecy. */
__arch_chacha20_blocks_nostack(state->batch_key, state->key, counter,
sizeof(state->batch_key) / CHACHA_BLOCK_SIZE);
/* Since the batch was just refilled, set the position back to 0 to indicate a full batch. */
state->pos = 0;
goto more_batch;
fallback_syscall:
return getrandom_syscall(orig_buffer, orig_len, flags);
}
static __always_inline ssize_t
__cvdso_getrandom(void *buffer, size_t len, unsigned int flags, void *opaque_state, size_t opaque_len)
{
return __cvdso_getrandom_data(__arch_get_vdso_u_rng_data(), buffer, len, flags,
opaque_state, opaque_len);
}
|