1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
|
// SPDX-License-Identifier: GPL-2.0
/*
* access_tracking_perf_test
*
* Copyright (C) 2021, Google, Inc.
*
* This test measures the performance effects of KVM's access tracking.
* Access tracking is driven by the MMU notifiers test_young, clear_young, and
* clear_flush_young. These notifiers do not have a direct userspace API,
* however the clear_young notifier can be triggered either by
* 1. marking a pages as idle in /sys/kernel/mm/page_idle/bitmap OR
* 2. adding a new MGLRU generation using the lru_gen debugfs file.
* This test leverages page_idle to enable access tracking on guest memory
* unless MGLRU is enabled, in which case MGLRU is used.
*
* To measure performance this test runs a VM with a configurable number of
* vCPUs that each touch every page in disjoint regions of memory. Performance
* is measured in the time it takes all vCPUs to finish touching their
* predefined region.
*
* Note that a deterministic correctness test of access tracking is not possible
* by using page_idle or MGLRU aging as it exists today. This is for a few
* reasons:
*
* 1. page_idle and MGLRU only issue clear_young notifiers, which lack a TLB flush.
* This means subsequent guest accesses are not guaranteed to see page table
* updates made by KVM until some time in the future.
*
* 2. page_idle only operates on LRU pages. Newly allocated pages are not
* immediately allocated to LRU lists. Instead they are held in a "pagevec",
* which is drained to LRU lists some time in the future. There is no
* userspace API to force this drain to occur.
*
* These limitations are worked around in this test by using a large enough
* region of memory for each vCPU such that the number of translations cached in
* the TLB and the number of pages held in pagevecs are a small fraction of the
* overall workload. And if either of those conditions are not true (for example
* in nesting, where TLB size is unlimited) this test will print a warning
* rather than silently passing.
*/
#include <inttypes.h>
#include <limits.h>
#include <pthread.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "kvm_util.h"
#include "test_util.h"
#include "memstress.h"
#include "guest_modes.h"
#include "processor.h"
#include "cgroup_util.h"
#include "lru_gen_util.h"
static const char *TEST_MEMCG_NAME = "access_tracking_perf_test";
/* Global variable used to synchronize all of the vCPU threads. */
static int iteration;
/* The cgroup memory controller root. Needed for lru_gen-based aging. */
char cgroup_root[PATH_MAX];
/* Defines what vCPU threads should do during a given iteration. */
static enum {
/* Run the vCPU to access all its memory. */
ITERATION_ACCESS_MEMORY,
/* Mark the vCPU's memory idle in page_idle. */
ITERATION_MARK_IDLE,
} iteration_work;
/* The iteration that was last completed by each vCPU. */
static int vcpu_last_completed_iteration[KVM_MAX_VCPUS];
/* Whether to overlap the regions of memory vCPUs access. */
static bool overlap_memory_access;
/*
* If the test should only warn if there are too many idle pages (i.e., it is
* expected).
* -1: Not yet set.
* 0: We do not expect too many idle pages, so FAIL if too many idle pages.
* 1: Having too many idle pages is expected, so merely print a warning if
* too many idle pages are found.
*/
static int idle_pages_warn_only = -1;
/* Whether or not to use MGLRU instead of page_idle for access tracking */
static bool use_lru_gen;
/* Total number of pages to expect in the memcg after touching everything */
static long test_pages;
/* Last generation we found the pages in */
static int lru_gen_last_gen = -1;
struct test_params {
/* The backing source for the region of memory. */
enum vm_mem_backing_src_type backing_src;
/* The amount of memory to allocate for each vCPU. */
uint64_t vcpu_memory_bytes;
/* The number of vCPUs to create in the VM. */
int nr_vcpus;
};
static uint64_t pread_uint64(int fd, const char *filename, uint64_t index)
{
uint64_t value;
off_t offset = index * sizeof(value);
TEST_ASSERT(pread(fd, &value, sizeof(value), offset) == sizeof(value),
"pread from %s offset 0x%" PRIx64 " failed!",
filename, offset);
return value;
}
#define PAGEMAP_PRESENT (1ULL << 63)
#define PAGEMAP_PFN_MASK ((1ULL << 55) - 1)
static uint64_t lookup_pfn(int pagemap_fd, struct kvm_vm *vm, uint64_t gva)
{
uint64_t hva = (uint64_t) addr_gva2hva(vm, gva);
uint64_t entry;
uint64_t pfn;
entry = pread_uint64(pagemap_fd, "pagemap", hva / getpagesize());
if (!(entry & PAGEMAP_PRESENT))
return 0;
pfn = entry & PAGEMAP_PFN_MASK;
__TEST_REQUIRE(pfn, "Looking up PFNs requires CAP_SYS_ADMIN");
return pfn;
}
static bool is_page_idle(int page_idle_fd, uint64_t pfn)
{
uint64_t bits = pread_uint64(page_idle_fd, "page_idle", pfn / 64);
return !!((bits >> (pfn % 64)) & 1);
}
static void mark_page_idle(int page_idle_fd, uint64_t pfn)
{
uint64_t bits = 1ULL << (pfn % 64);
TEST_ASSERT(pwrite(page_idle_fd, &bits, 8, 8 * (pfn / 64)) == 8,
"Set page_idle bits for PFN 0x%" PRIx64, pfn);
}
static void too_many_idle_pages(long idle_pages, long total_pages, int vcpu_idx)
{
char prefix[18] = {};
if (vcpu_idx >= 0)
snprintf(prefix, 18, "vCPU%d: ", vcpu_idx);
TEST_ASSERT(idle_pages_warn_only,
"%sToo many pages still idle (%lu out of %lu)",
prefix, idle_pages, total_pages);
printf("WARNING: %sToo many pages still idle (%lu out of %lu), "
"this will affect performance results.\n",
prefix, idle_pages, total_pages);
}
static void pageidle_mark_vcpu_memory_idle(struct kvm_vm *vm,
struct memstress_vcpu_args *vcpu_args)
{
int vcpu_idx = vcpu_args->vcpu_idx;
uint64_t base_gva = vcpu_args->gva;
uint64_t pages = vcpu_args->pages;
uint64_t page;
uint64_t still_idle = 0;
uint64_t no_pfn = 0;
int page_idle_fd;
int pagemap_fd;
/* If vCPUs are using an overlapping region, let vCPU 0 mark it idle. */
if (overlap_memory_access && vcpu_idx)
return;
page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR);
TEST_ASSERT(page_idle_fd > 0, "Failed to open page_idle.");
pagemap_fd = open("/proc/self/pagemap", O_RDONLY);
TEST_ASSERT(pagemap_fd > 0, "Failed to open pagemap.");
for (page = 0; page < pages; page++) {
uint64_t gva = base_gva + page * memstress_args.guest_page_size;
uint64_t pfn = lookup_pfn(pagemap_fd, vm, gva);
if (!pfn) {
no_pfn++;
continue;
}
if (is_page_idle(page_idle_fd, pfn)) {
still_idle++;
continue;
}
mark_page_idle(page_idle_fd, pfn);
}
/*
* Assumption: Less than 1% of pages are going to be swapped out from
* under us during this test.
*/
TEST_ASSERT(no_pfn < pages / 100,
"vCPU %d: No PFN for %" PRIu64 " out of %" PRIu64 " pages.",
vcpu_idx, no_pfn, pages);
/*
* Check that at least 90% of memory has been marked idle (the rest
* might not be marked idle because the pages have not yet made it to an
* LRU list or the translations are still cached in the TLB). 90% is
* arbitrary; high enough that we ensure most memory access went through
* access tracking but low enough as to not make the test too brittle
* over time and across architectures.
*/
if (still_idle >= pages / 10)
too_many_idle_pages(still_idle, pages,
overlap_memory_access ? -1 : vcpu_idx);
close(page_idle_fd);
close(pagemap_fd);
}
int find_generation(struct memcg_stats *stats, long total_pages)
{
/*
* For finding the generation that contains our pages, use the same
* 90% threshold that page_idle uses.
*/
int gen = lru_gen_find_generation(stats, total_pages * 9 / 10);
if (gen >= 0)
return gen;
if (!idle_pages_warn_only) {
TEST_FAIL("Could not find a generation with 90%% of guest memory (%ld pages).",
total_pages * 9 / 10);
return gen;
}
/*
* We couldn't find a generation with 90% of guest memory, which can
* happen if access tracking is unreliable. Simply look for a majority
* of pages.
*/
puts("WARNING: Couldn't find a generation with 90% of guest memory. "
"Performance results may not be accurate.");
gen = lru_gen_find_generation(stats, total_pages / 2);
TEST_ASSERT(gen >= 0,
"Could not find a generation with 50%% of guest memory (%ld pages).",
total_pages / 2);
return gen;
}
static void lru_gen_mark_memory_idle(struct kvm_vm *vm)
{
struct timespec ts_start;
struct timespec ts_elapsed;
struct memcg_stats stats;
int new_gen;
/* Make a new generation */
clock_gettime(CLOCK_MONOTONIC, &ts_start);
lru_gen_do_aging(&stats, TEST_MEMCG_NAME);
ts_elapsed = timespec_elapsed(ts_start);
/* Check the generation again */
new_gen = find_generation(&stats, test_pages);
/*
* This function should only be invoked with newly-accessed pages,
* so pages should always move to a newer generation.
*/
if (new_gen <= lru_gen_last_gen) {
/* We did not move to a newer generation. */
long idle_pages = lru_gen_sum_memcg_stats_for_gen(lru_gen_last_gen,
&stats);
too_many_idle_pages(min_t(long, idle_pages, test_pages),
test_pages, -1);
}
pr_info("%-30s: %ld.%09lds\n",
"Mark memory idle (lru_gen)", ts_elapsed.tv_sec,
ts_elapsed.tv_nsec);
lru_gen_last_gen = new_gen;
}
static void assert_ucall(struct kvm_vcpu *vcpu, uint64_t expected_ucall)
{
struct ucall uc;
uint64_t actual_ucall = get_ucall(vcpu, &uc);
TEST_ASSERT(expected_ucall == actual_ucall,
"Guest exited unexpectedly (expected ucall %" PRIu64
", got %" PRIu64 ")",
expected_ucall, actual_ucall);
}
static bool spin_wait_for_next_iteration(int *current_iteration)
{
int last_iteration = *current_iteration;
do {
if (READ_ONCE(memstress_args.stop_vcpus))
return false;
*current_iteration = READ_ONCE(iteration);
} while (last_iteration == *current_iteration);
return true;
}
static void vcpu_thread_main(struct memstress_vcpu_args *vcpu_args)
{
struct kvm_vcpu *vcpu = vcpu_args->vcpu;
struct kvm_vm *vm = memstress_args.vm;
int vcpu_idx = vcpu_args->vcpu_idx;
int current_iteration = 0;
while (spin_wait_for_next_iteration(¤t_iteration)) {
switch (READ_ONCE(iteration_work)) {
case ITERATION_ACCESS_MEMORY:
vcpu_run(vcpu);
assert_ucall(vcpu, UCALL_SYNC);
break;
case ITERATION_MARK_IDLE:
pageidle_mark_vcpu_memory_idle(vm, vcpu_args);
break;
}
vcpu_last_completed_iteration[vcpu_idx] = current_iteration;
}
}
static void spin_wait_for_vcpu(int vcpu_idx, int target_iteration)
{
while (READ_ONCE(vcpu_last_completed_iteration[vcpu_idx]) !=
target_iteration) {
continue;
}
}
/* The type of memory accesses to perform in the VM. */
enum access_type {
ACCESS_READ,
ACCESS_WRITE,
};
static void run_iteration(struct kvm_vm *vm, int nr_vcpus, const char *description)
{
struct timespec ts_start;
struct timespec ts_elapsed;
int next_iteration, i;
/* Kick off the vCPUs by incrementing iteration. */
next_iteration = ++iteration;
clock_gettime(CLOCK_MONOTONIC, &ts_start);
/* Wait for all vCPUs to finish the iteration. */
for (i = 0; i < nr_vcpus; i++)
spin_wait_for_vcpu(i, next_iteration);
ts_elapsed = timespec_elapsed(ts_start);
pr_info("%-30s: %ld.%09lds\n",
description, ts_elapsed.tv_sec, ts_elapsed.tv_nsec);
}
static void access_memory(struct kvm_vm *vm, int nr_vcpus,
enum access_type access, const char *description)
{
memstress_set_write_percent(vm, (access == ACCESS_READ) ? 0 : 100);
iteration_work = ITERATION_ACCESS_MEMORY;
run_iteration(vm, nr_vcpus, description);
}
static void mark_memory_idle(struct kvm_vm *vm, int nr_vcpus)
{
if (use_lru_gen)
return lru_gen_mark_memory_idle(vm);
/*
* Even though this parallelizes the work across vCPUs, this is still a
* very slow operation because page_idle forces the test to mark one pfn
* at a time and the clear_young notifier may serialize on the KVM MMU
* lock.
*/
pr_debug("Marking VM memory idle (slow)...\n");
iteration_work = ITERATION_MARK_IDLE;
run_iteration(vm, nr_vcpus, "Mark memory idle (page_idle)");
}
static void run_test(enum vm_guest_mode mode, void *arg)
{
struct test_params *params = arg;
struct kvm_vm *vm;
int nr_vcpus = params->nr_vcpus;
vm = memstress_create_vm(mode, nr_vcpus, params->vcpu_memory_bytes, 1,
params->backing_src, !overlap_memory_access);
/*
* If guest_page_size is larger than the host's page size, the
* guest (memstress) will only fault in a subset of the host's pages.
*/
test_pages = params->nr_vcpus * params->vcpu_memory_bytes /
max(memstress_args.guest_page_size,
(uint64_t)getpagesize());
memstress_start_vcpu_threads(nr_vcpus, vcpu_thread_main);
pr_info("\n");
access_memory(vm, nr_vcpus, ACCESS_WRITE, "Populating memory");
if (use_lru_gen) {
struct memcg_stats stats;
/*
* Do a page table scan now. Following initial population, aging
* may not cause the pages to move to a newer generation. Do
* an aging pass now so that future aging passes always move
* pages to a newer generation.
*/
printf("Initial aging pass (lru_gen)\n");
lru_gen_do_aging(&stats, TEST_MEMCG_NAME);
TEST_ASSERT(lru_gen_sum_memcg_stats(&stats) >= test_pages,
"Not all pages accounted for (looking for %ld). "
"Was the memcg set up correctly?", test_pages);
access_memory(vm, nr_vcpus, ACCESS_WRITE, "Re-populating memory");
lru_gen_read_memcg_stats(&stats, TEST_MEMCG_NAME);
lru_gen_last_gen = find_generation(&stats, test_pages);
}
/* As a control, read and write to the populated memory first. */
access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to populated memory");
access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from populated memory");
/* Repeat on memory that has been marked as idle. */
mark_memory_idle(vm, nr_vcpus);
access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to idle memory");
mark_memory_idle(vm, nr_vcpus);
access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from idle memory");
memstress_join_vcpu_threads(nr_vcpus);
memstress_destroy_vm(vm);
}
static int access_tracking_unreliable(void)
{
#ifdef __x86_64__
/*
* When running nested, the TLB size may be effectively unlimited (for
* example, this is the case when running on KVM L0), and KVM doesn't
* explicitly flush the TLB when aging SPTEs. As a result, more pages
* are cached and the guest won't see the "idle" bit cleared.
*/
if (this_cpu_has(X86_FEATURE_HYPERVISOR)) {
puts("Skipping idle page count sanity check, because the test is run nested");
return 1;
}
#endif
/*
* When NUMA balancing is enabled, guest memory will be unmapped to get
* NUMA faults, dropping the Accessed bits.
*/
if (is_numa_balancing_enabled()) {
puts("Skipping idle page count sanity check, because NUMA balancing is enabled");
return 1;
}
return 0;
}
static int run_test_for_each_guest_mode(const char *cgroup, void *arg)
{
for_each_guest_mode(run_test, arg);
return 0;
}
static void help(char *name)
{
puts("");
printf("usage: %s [-h] [-m mode] [-b vcpu_bytes] [-v vcpus] [-o] [-s mem_type]\n",
name);
puts("");
printf(" -h: Display this help message.");
guest_modes_help();
printf(" -b: specify the size of the memory region which should be\n"
" dirtied by each vCPU. e.g. 10M or 3G.\n"
" (default: 1G)\n");
printf(" -v: specify the number of vCPUs to run.\n");
printf(" -o: Overlap guest memory accesses instead of partitioning\n"
" them into a separate region of memory for each vCPU.\n");
printf(" -w: Control whether the test warns or fails if more than 10%%\n"
" of pages are still seen as idle/old after accessing guest\n"
" memory. >0 == warn only, 0 == fail, <0 == auto. For auto\n"
" mode, the test fails by default, but switches to warn only\n"
" if NUMA balancing is enabled or the test detects it's running\n"
" in a VM.\n");
backing_src_help("-s");
puts("");
exit(0);
}
void destroy_cgroup(char *cg)
{
printf("Destroying cgroup: %s\n", cg);
}
int main(int argc, char *argv[])
{
struct test_params params = {
.backing_src = DEFAULT_VM_MEM_SRC,
.vcpu_memory_bytes = DEFAULT_PER_VCPU_MEM_SIZE,
.nr_vcpus = 1,
};
char *new_cg = NULL;
int page_idle_fd;
int opt;
guest_modes_append_default();
while ((opt = getopt(argc, argv, "hm:b:v:os:w:")) != -1) {
switch (opt) {
case 'm':
guest_modes_cmdline(optarg);
break;
case 'b':
params.vcpu_memory_bytes = parse_size(optarg);
break;
case 'v':
params.nr_vcpus = atoi_positive("Number of vCPUs", optarg);
break;
case 'o':
overlap_memory_access = true;
break;
case 's':
params.backing_src = parse_backing_src_type(optarg);
break;
case 'w':
idle_pages_warn_only =
atoi_non_negative("Idle pages warning",
optarg);
break;
case 'h':
default:
help(argv[0]);
break;
}
}
if (idle_pages_warn_only == -1)
idle_pages_warn_only = access_tracking_unreliable();
if (lru_gen_usable()) {
bool cg_created = true;
int ret;
puts("Using lru_gen for aging");
use_lru_gen = true;
if (cg_find_controller_root(cgroup_root, sizeof(cgroup_root), "memory"))
ksft_exit_skip("Cannot find memory cgroup controller\n");
new_cg = cg_name(cgroup_root, TEST_MEMCG_NAME);
printf("Creating cgroup: %s\n", new_cg);
if (cg_create(new_cg)) {
if (errno == EEXIST) {
printf("Found existing cgroup");
cg_created = false;
} else {
ksft_exit_skip("could not create new cgroup: %s\n", new_cg);
}
}
/*
* This will fork off a new process to run the test within
* a new memcg, so we need to properly propagate the return
* value up.
*/
ret = cg_run(new_cg, &run_test_for_each_guest_mode, ¶ms);
if (cg_created)
cg_destroy(new_cg);
if (ret < 0)
TEST_FAIL("child did not spawn or was abnormally killed");
if (ret)
return ret;
} else {
page_idle_fd = __open_path_or_exit("/sys/kernel/mm/page_idle/bitmap", O_RDWR,
"Is CONFIG_IDLE_PAGE_TRACKING enabled?");
close(page_idle_fd);
puts("Using page_idle for aging");
run_test_for_each_guest_mode(NULL, ¶ms);
}
return 0;
}
|