1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020, Google LLC.
*/
#include <inttypes.h>
#include <linux/bitmap.h>
#include "kvm_util.h"
#include "memstress.h"
#include "processor.h"
#include "ucall_common.h"
struct memstress_args memstress_args;
/*
* Guest virtual memory offset of the testing memory slot.
* Must not conflict with identity mapped test code.
*/
static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM;
struct vcpu_thread {
/* The index of the vCPU. */
int vcpu_idx;
/* The pthread backing the vCPU. */
pthread_t thread;
/* Set to true once the vCPU thread is up and running. */
bool running;
};
/* The vCPU threads involved in this test. */
static struct vcpu_thread vcpu_threads[KVM_MAX_VCPUS];
/* The function run by each vCPU thread, as provided by the test. */
static void (*vcpu_thread_fn)(struct memstress_vcpu_args *);
/* Set to true once all vCPU threads are up and running. */
static bool all_vcpu_threads_running;
static struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
/*
* Continuously write to the first 8 bytes of each page in the
* specified region.
*/
void memstress_guest_code(uint32_t vcpu_idx)
{
struct memstress_args *args = &memstress_args;
struct memstress_vcpu_args *vcpu_args = &args->vcpu_args[vcpu_idx];
struct guest_random_state rand_state;
uint64_t gva;
uint64_t pages;
uint64_t addr;
uint64_t page;
int i;
rand_state = new_guest_random_state(guest_random_seed + vcpu_idx);
gva = vcpu_args->gva;
pages = vcpu_args->pages;
/* Make sure vCPU args data structure is not corrupt. */
GUEST_ASSERT(vcpu_args->vcpu_idx == vcpu_idx);
while (true) {
for (i = 0; i < sizeof(memstress_args); i += args->guest_page_size)
(void) *((volatile char *)args + i);
for (i = 0; i < pages; i++) {
if (args->random_access)
page = guest_random_u32(&rand_state) % pages;
else
page = i;
addr = gva + (page * args->guest_page_size);
if (__guest_random_bool(&rand_state, args->write_percent))
*(uint64_t *)addr = 0x0123456789ABCDEF;
else
READ_ONCE(*(uint64_t *)addr);
}
GUEST_SYNC(1);
}
}
void memstress_setup_vcpus(struct kvm_vm *vm, int nr_vcpus,
struct kvm_vcpu *vcpus[],
uint64_t vcpu_memory_bytes,
bool partition_vcpu_memory_access)
{
struct memstress_args *args = &memstress_args;
struct memstress_vcpu_args *vcpu_args;
int i;
for (i = 0; i < nr_vcpus; i++) {
vcpu_args = &args->vcpu_args[i];
vcpu_args->vcpu = vcpus[i];
vcpu_args->vcpu_idx = i;
if (partition_vcpu_memory_access) {
vcpu_args->gva = guest_test_virt_mem +
(i * vcpu_memory_bytes);
vcpu_args->pages = vcpu_memory_bytes /
args->guest_page_size;
vcpu_args->gpa = args->gpa + (i * vcpu_memory_bytes);
} else {
vcpu_args->gva = guest_test_virt_mem;
vcpu_args->pages = (nr_vcpus * vcpu_memory_bytes) /
args->guest_page_size;
vcpu_args->gpa = args->gpa;
}
vcpu_args_set(vcpus[i], 1, i);
pr_debug("Added VCPU %d with test mem gpa [%lx, %lx)\n",
i, vcpu_args->gpa, vcpu_args->gpa +
(vcpu_args->pages * args->guest_page_size));
}
}
struct kvm_vm *memstress_create_vm(enum vm_guest_mode mode, int nr_vcpus,
uint64_t vcpu_memory_bytes, int slots,
enum vm_mem_backing_src_type backing_src,
bool partition_vcpu_memory_access)
{
struct memstress_args *args = &memstress_args;
struct kvm_vm *vm;
uint64_t guest_num_pages, slot0_pages = 0;
uint64_t backing_src_pagesz = get_backing_src_pagesz(backing_src);
uint64_t region_end_gfn;
int i;
pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode));
/* By default vCPUs will write to memory. */
args->write_percent = 100;
/*
* Snapshot the non-huge page size. This is used by the guest code to
* access/dirty pages at the logging granularity.
*/
args->guest_page_size = vm_guest_mode_params[mode].page_size;
guest_num_pages = vm_adjust_num_guest_pages(mode,
(nr_vcpus * vcpu_memory_bytes) / args->guest_page_size);
TEST_ASSERT(vcpu_memory_bytes % getpagesize() == 0,
"Guest memory size is not host page size aligned.");
TEST_ASSERT(vcpu_memory_bytes % args->guest_page_size == 0,
"Guest memory size is not guest page size aligned.");
TEST_ASSERT(guest_num_pages % slots == 0,
"Guest memory cannot be evenly divided into %d slots.",
slots);
/*
* If using nested, allocate extra pages for the nested page tables and
* in-memory data structures.
*/
if (args->nested)
slot0_pages += memstress_nested_pages(nr_vcpus);
/*
* Pass guest_num_pages to populate the page tables for test memory.
* The memory is also added to memslot 0, but that's a benign side
* effect as KVM allows aliasing HVAs in meslots.
*/
vm = __vm_create_with_vcpus(VM_SHAPE(mode), nr_vcpus,
slot0_pages + guest_num_pages,
memstress_guest_code, vcpus);
args->vm = vm;
/* Put the test region at the top guest physical memory. */
region_end_gfn = vm->max_gfn + 1;
#ifdef __x86_64__
/*
* When running vCPUs in L2, restrict the test region to 48 bits to
* avoid needing 5-level page tables to identity map L2.
*/
if (args->nested)
region_end_gfn = min(region_end_gfn, (1UL << 48) / args->guest_page_size);
#endif
/*
* If there should be more memory in the guest test region than there
* can be pages in the guest, it will definitely cause problems.
*/
TEST_ASSERT(guest_num_pages < region_end_gfn,
"Requested more guest memory than address space allows.\n"
" guest pages: %" PRIx64 " max gfn: %" PRIx64
" nr_vcpus: %d wss: %" PRIx64 "]",
guest_num_pages, region_end_gfn - 1, nr_vcpus, vcpu_memory_bytes);
args->gpa = (region_end_gfn - guest_num_pages - 1) * args->guest_page_size;
args->gpa = align_down(args->gpa, backing_src_pagesz);
#ifdef __s390x__
/* Align to 1M (segment size) */
args->gpa = align_down(args->gpa, 1 << 20);
#endif
args->size = guest_num_pages * args->guest_page_size;
pr_info("guest physical test memory: [0x%lx, 0x%lx)\n",
args->gpa, args->gpa + args->size);
/* Add extra memory slots for testing */
for (i = 0; i < slots; i++) {
uint64_t region_pages = guest_num_pages / slots;
vm_paddr_t region_start = args->gpa + region_pages * args->guest_page_size * i;
vm_userspace_mem_region_add(vm, backing_src, region_start,
MEMSTRESS_MEM_SLOT_INDEX + i,
region_pages, 0);
}
/* Do mapping for the demand paging memory slot */
virt_map(vm, guest_test_virt_mem, args->gpa, guest_num_pages);
memstress_setup_vcpus(vm, nr_vcpus, vcpus, vcpu_memory_bytes,
partition_vcpu_memory_access);
if (args->nested) {
pr_info("Configuring vCPUs to run in L2 (nested).\n");
memstress_setup_nested(vm, nr_vcpus, vcpus);
}
/* Export the shared variables to the guest. */
sync_global_to_guest(vm, memstress_args);
return vm;
}
void memstress_destroy_vm(struct kvm_vm *vm)
{
kvm_vm_free(vm);
}
void memstress_set_write_percent(struct kvm_vm *vm, uint32_t write_percent)
{
memstress_args.write_percent = write_percent;
sync_global_to_guest(vm, memstress_args.write_percent);
}
void memstress_set_random_access(struct kvm_vm *vm, bool random_access)
{
memstress_args.random_access = random_access;
sync_global_to_guest(vm, memstress_args.random_access);
}
uint64_t __weak memstress_nested_pages(int nr_vcpus)
{
return 0;
}
void __weak memstress_setup_nested(struct kvm_vm *vm, int nr_vcpus, struct kvm_vcpu **vcpus)
{
pr_info("%s() not support on this architecture, skipping.\n", __func__);
exit(KSFT_SKIP);
}
static void *vcpu_thread_main(void *data)
{
struct vcpu_thread *vcpu = data;
int vcpu_idx = vcpu->vcpu_idx;
if (memstress_args.pin_vcpus)
pin_self_to_cpu(memstress_args.vcpu_to_pcpu[vcpu_idx]);
WRITE_ONCE(vcpu->running, true);
/*
* Wait for all vCPU threads to be up and running before calling the test-
* provided vCPU thread function. This prevents thread creation (which
* requires taking the mmap_sem in write mode) from interfering with the
* guest faulting in its memory.
*/
while (!READ_ONCE(all_vcpu_threads_running))
;
vcpu_thread_fn(&memstress_args.vcpu_args[vcpu_idx]);
return NULL;
}
void memstress_start_vcpu_threads(int nr_vcpus,
void (*vcpu_fn)(struct memstress_vcpu_args *))
{
int i;
vcpu_thread_fn = vcpu_fn;
WRITE_ONCE(all_vcpu_threads_running, false);
WRITE_ONCE(memstress_args.stop_vcpus, false);
for (i = 0; i < nr_vcpus; i++) {
struct vcpu_thread *vcpu = &vcpu_threads[i];
vcpu->vcpu_idx = i;
WRITE_ONCE(vcpu->running, false);
pthread_create(&vcpu->thread, NULL, vcpu_thread_main, vcpu);
}
for (i = 0; i < nr_vcpus; i++) {
while (!READ_ONCE(vcpu_threads[i].running))
;
}
WRITE_ONCE(all_vcpu_threads_running, true);
}
void memstress_join_vcpu_threads(int nr_vcpus)
{
int i;
WRITE_ONCE(memstress_args.stop_vcpus, true);
for (i = 0; i < nr_vcpus; i++)
pthread_join(vcpu_threads[i].thread, NULL);
}
static void toggle_dirty_logging(struct kvm_vm *vm, int slots, bool enable)
{
int i;
for (i = 0; i < slots; i++) {
int slot = MEMSTRESS_MEM_SLOT_INDEX + i;
int flags = enable ? KVM_MEM_LOG_DIRTY_PAGES : 0;
vm_mem_region_set_flags(vm, slot, flags);
}
}
void memstress_enable_dirty_logging(struct kvm_vm *vm, int slots)
{
toggle_dirty_logging(vm, slots, true);
}
void memstress_disable_dirty_logging(struct kvm_vm *vm, int slots)
{
toggle_dirty_logging(vm, slots, false);
}
void memstress_get_dirty_log(struct kvm_vm *vm, unsigned long *bitmaps[], int slots)
{
int i;
for (i = 0; i < slots; i++) {
int slot = MEMSTRESS_MEM_SLOT_INDEX + i;
kvm_vm_get_dirty_log(vm, slot, bitmaps[i]);
}
}
void memstress_clear_dirty_log(struct kvm_vm *vm, unsigned long *bitmaps[],
int slots, uint64_t pages_per_slot)
{
int i;
for (i = 0; i < slots; i++) {
int slot = MEMSTRESS_MEM_SLOT_INDEX + i;
kvm_vm_clear_dirty_log(vm, slot, bitmaps[i], 0, pages_per_slot);
}
}
unsigned long **memstress_alloc_bitmaps(int slots, uint64_t pages_per_slot)
{
unsigned long **bitmaps;
int i;
bitmaps = malloc(slots * sizeof(bitmaps[0]));
TEST_ASSERT(bitmaps, "Failed to allocate bitmaps array.");
for (i = 0; i < slots; i++) {
bitmaps[i] = bitmap_zalloc(pages_per_slot);
TEST_ASSERT(bitmaps[i], "Failed to allocate slot bitmap.");
}
return bitmaps;
}
void memstress_free_bitmaps(unsigned long *bitmaps[], int slots)
{
int i;
for (i = 0; i < slots; i++)
free(bitmaps[i]);
free(bitmaps);
}
|