1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
|
// SPDX-License-Identifier: GPL-2.0
/*
* Hyper-V HvFlushVirtualAddress{List,Space}{,Ex} tests
*
* Copyright (C) 2022, Red Hat, Inc.
*
*/
#include <asm/barrier.h>
#include <pthread.h>
#include <inttypes.h>
#include "kvm_util.h"
#include "processor.h"
#include "hyperv.h"
#include "test_util.h"
#include "vmx.h"
#define WORKER_VCPU_ID_1 2
#define WORKER_VCPU_ID_2 65
#define NTRY 100
#define NTEST_PAGES 2
struct hv_vpset {
u64 format;
u64 valid_bank_mask;
u64 bank_contents[];
};
enum HV_GENERIC_SET_FORMAT {
HV_GENERIC_SET_SPARSE_4K,
HV_GENERIC_SET_ALL,
};
#define HV_FLUSH_ALL_PROCESSORS BIT(0)
#define HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES BIT(1)
#define HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY BIT(2)
#define HV_FLUSH_USE_EXTENDED_RANGE_FORMAT BIT(3)
/* HvFlushVirtualAddressSpace, HvFlushVirtualAddressList hypercalls */
struct hv_tlb_flush {
u64 address_space;
u64 flags;
u64 processor_mask;
u64 gva_list[];
} __packed;
/* HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressListEx hypercalls */
struct hv_tlb_flush_ex {
u64 address_space;
u64 flags;
struct hv_vpset hv_vp_set;
u64 gva_list[];
} __packed;
/*
* Pass the following info to 'workers' and 'sender'
* - Hypercall page's GVA
* - Hypercall page's GPA
* - Test pages GVA
* - GVAs of the test pages' PTEs
*/
struct test_data {
vm_vaddr_t hcall_gva;
vm_paddr_t hcall_gpa;
vm_vaddr_t test_pages;
vm_vaddr_t test_pages_pte[NTEST_PAGES];
};
/* 'Worker' vCPU code checking the contents of the test page */
static void worker_guest_code(vm_vaddr_t test_data)
{
struct test_data *data = (struct test_data *)test_data;
u32 vcpu_id = rdmsr(HV_X64_MSR_VP_INDEX);
void *exp_page = (void *)data->test_pages + PAGE_SIZE * NTEST_PAGES;
u64 *this_cpu = (u64 *)(exp_page + vcpu_id * sizeof(u64));
u64 expected, val;
x2apic_enable();
wrmsr(HV_X64_MSR_GUEST_OS_ID, HYPERV_LINUX_OS_ID);
for (;;) {
cpu_relax();
expected = READ_ONCE(*this_cpu);
/*
* Make sure the value in the test page is read after reading
* the expectation for the first time. Pairs with wmb() in
* prepare_to_test().
*/
rmb();
val = READ_ONCE(*(u64 *)data->test_pages);
/*
* Make sure the value in the test page is read after before
* reading the expectation for the second time. Pairs with wmb()
* post_test().
*/
rmb();
/*
* '0' indicates the sender is between iterations, wait until
* the sender is ready for this vCPU to start checking again.
*/
if (!expected)
continue;
/*
* Re-read the per-vCPU byte to ensure the sender didn't move
* onto a new iteration.
*/
if (expected != READ_ONCE(*this_cpu))
continue;
GUEST_ASSERT(val == expected);
}
}
/*
* Write per-CPU info indicating what each 'worker' CPU is supposed to see in
* test page. '0' means don't check.
*/
static void set_expected_val(void *addr, u64 val, int vcpu_id)
{
void *exp_page = addr + PAGE_SIZE * NTEST_PAGES;
*(u64 *)(exp_page + vcpu_id * sizeof(u64)) = val;
}
/*
* Update PTEs swapping two test pages.
* TODO: use swap()/xchg() when these are provided.
*/
static void swap_two_test_pages(vm_paddr_t pte_gva1, vm_paddr_t pte_gva2)
{
uint64_t tmp = *(uint64_t *)pte_gva1;
*(uint64_t *)pte_gva1 = *(uint64_t *)pte_gva2;
*(uint64_t *)pte_gva2 = tmp;
}
/*
* TODO: replace the silly NOP loop with a proper udelay() implementation.
*/
static inline void do_delay(void)
{
int i;
for (i = 0; i < 1000000; i++)
asm volatile("nop");
}
/*
* Prepare to test: 'disable' workers by setting the expectation to '0',
* clear hypercall input page and then swap two test pages.
*/
static inline void prepare_to_test(struct test_data *data)
{
/* Clear hypercall input page */
memset((void *)data->hcall_gva, 0, PAGE_SIZE);
/* 'Disable' workers */
set_expected_val((void *)data->test_pages, 0x0, WORKER_VCPU_ID_1);
set_expected_val((void *)data->test_pages, 0x0, WORKER_VCPU_ID_2);
/* Make sure workers are 'disabled' before we swap PTEs. */
wmb();
/* Make sure workers have enough time to notice */
do_delay();
/* Swap test page mappings */
swap_two_test_pages(data->test_pages_pte[0], data->test_pages_pte[1]);
}
/*
* Finalize the test: check hypercall resule set the expected val for
* 'worker' CPUs and give them some time to test.
*/
static inline void post_test(struct test_data *data, u64 exp1, u64 exp2)
{
/* Make sure we change the expectation after swapping PTEs */
wmb();
/* Set the expectation for workers, '0' means don't test */
set_expected_val((void *)data->test_pages, exp1, WORKER_VCPU_ID_1);
set_expected_val((void *)data->test_pages, exp2, WORKER_VCPU_ID_2);
/* Make sure workers have enough time to test */
do_delay();
}
#define TESTVAL1 0x0101010101010101
#define TESTVAL2 0x0202020202020202
/* Main vCPU doing the test */
static void sender_guest_code(vm_vaddr_t test_data)
{
struct test_data *data = (struct test_data *)test_data;
struct hv_tlb_flush *flush = (struct hv_tlb_flush *)data->hcall_gva;
struct hv_tlb_flush_ex *flush_ex = (struct hv_tlb_flush_ex *)data->hcall_gva;
vm_paddr_t hcall_gpa = data->hcall_gpa;
int i, stage = 1;
wrmsr(HV_X64_MSR_GUEST_OS_ID, HYPERV_LINUX_OS_ID);
wrmsr(HV_X64_MSR_HYPERCALL, data->hcall_gpa);
/* "Slow" hypercalls */
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for WORKER_VCPU_ID_1 */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
flush->processor_mask = BIT(WORKER_VCPU_ID_1);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE, hcall_gpa,
hcall_gpa + PAGE_SIZE);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for WORKER_VCPU_ID_1 */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
flush->processor_mask = BIT(WORKER_VCPU_ID_1);
flush->gva_list[0] = (u64)data->test_pages;
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
hcall_gpa, hcall_gpa + PAGE_SIZE);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for HV_FLUSH_ALL_PROCESSORS */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
HV_FLUSH_ALL_PROCESSORS;
flush->processor_mask = 0;
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE, hcall_gpa,
hcall_gpa + PAGE_SIZE);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for HV_FLUSH_ALL_PROCESSORS */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
HV_FLUSH_ALL_PROCESSORS;
flush->gva_list[0] = (u64)data->test_pages;
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
hcall_gpa, hcall_gpa + PAGE_SIZE);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for WORKER_VCPU_ID_2 */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
(1 << HV_HYPERCALL_VARHEAD_OFFSET),
hcall_gpa, hcall_gpa + PAGE_SIZE);
post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for WORKER_VCPU_ID_2 */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
/* bank_contents and gva_list occupy the same space, thus [1] */
flush_ex->gva_list[1] = (u64)data->test_pages;
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
(1 << HV_HYPERCALL_VARHEAD_OFFSET) |
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
hcall_gpa, hcall_gpa + PAGE_SIZE);
post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for both vCPUs */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64) |
BIT_ULL(WORKER_VCPU_ID_1 / 64);
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
(2 << HV_HYPERCALL_VARHEAD_OFFSET),
hcall_gpa, hcall_gpa + PAGE_SIZE);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for both vCPUs */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_1 / 64) |
BIT_ULL(WORKER_VCPU_ID_2 / 64);
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
/* bank_contents and gva_list occupy the same space, thus [2] */
flush_ex->gva_list[2] = (u64)data->test_pages;
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
(2 << HV_HYPERCALL_VARHEAD_OFFSET) |
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
hcall_gpa, hcall_gpa + PAGE_SIZE);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for HV_GENERIC_SET_ALL */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX,
hcall_gpa, hcall_gpa + PAGE_SIZE);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for HV_GENERIC_SET_ALL */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
flush_ex->gva_list[0] = (u64)data->test_pages;
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
hcall_gpa, hcall_gpa + PAGE_SIZE);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
i % 2 ? TESTVAL1 : TESTVAL2);
}
/* "Fast" hypercalls */
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for WORKER_VCPU_ID_1 */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush->processor_mask = BIT(WORKER_VCPU_ID_1);
hyperv_write_xmm_input(&flush->processor_mask, 1);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE |
HV_HYPERCALL_FAST_BIT, 0x0,
HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for WORKER_VCPU_ID_1 */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush->processor_mask = BIT(WORKER_VCPU_ID_1);
flush->gva_list[0] = (u64)data->test_pages;
hyperv_write_xmm_input(&flush->processor_mask, 1);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
HV_HYPERCALL_FAST_BIT |
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for HV_FLUSH_ALL_PROCESSORS */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
hyperv_write_xmm_input(&flush->processor_mask, 1);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE |
HV_HYPERCALL_FAST_BIT, 0x0,
HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
HV_FLUSH_ALL_PROCESSORS);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for HV_FLUSH_ALL_PROCESSORS */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush->gva_list[0] = (u64)data->test_pages;
hyperv_write_xmm_input(&flush->processor_mask, 1);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
HV_HYPERCALL_FAST_BIT |
(1UL << HV_HYPERCALL_REP_COMP_OFFSET), 0x0,
HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
HV_FLUSH_ALL_PROCESSORS);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for WORKER_VCPU_ID_2 */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
HV_HYPERCALL_FAST_BIT |
(1 << HV_HYPERCALL_VARHEAD_OFFSET),
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for WORKER_VCPU_ID_2 */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
/* bank_contents and gva_list occupy the same space, thus [1] */
flush_ex->gva_list[1] = (u64)data->test_pages;
hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
HV_HYPERCALL_FAST_BIT |
(1 << HV_HYPERCALL_VARHEAD_OFFSET) |
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for both vCPUs */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64) |
BIT_ULL(WORKER_VCPU_ID_1 / 64);
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
HV_HYPERCALL_FAST_BIT |
(2 << HV_HYPERCALL_VARHEAD_OFFSET),
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
post_test(data, i % 2 ? TESTVAL1 :
TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for both vCPUs */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_1 / 64) |
BIT_ULL(WORKER_VCPU_ID_2 / 64);
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
/* bank_contents and gva_list occupy the same space, thus [2] */
flush_ex->gva_list[2] = (u64)data->test_pages;
hyperv_write_xmm_input(&flush_ex->hv_vp_set, 3);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
HV_HYPERCALL_FAST_BIT |
(2 << HV_HYPERCALL_VARHEAD_OFFSET) |
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for HV_GENERIC_SET_ALL */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
HV_HYPERCALL_FAST_BIT,
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for HV_GENERIC_SET_ALL */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
flush_ex->gva_list[0] = (u64)data->test_pages;
hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
HV_HYPERCALL_FAST_BIT |
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_DONE();
}
static void *vcpu_thread(void *arg)
{
struct kvm_vcpu *vcpu = (struct kvm_vcpu *)arg;
struct ucall uc;
int old;
int r;
r = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old);
TEST_ASSERT(!r, "pthread_setcanceltype failed on vcpu_id=%u with errno=%d",
vcpu->id, r);
vcpu_run(vcpu);
TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO);
switch (get_ucall(vcpu, &uc)) {
case UCALL_ABORT:
REPORT_GUEST_ASSERT(uc);
/* NOT REACHED */
default:
TEST_FAIL("Unexpected ucall %lu, vCPU %d", uc.cmd, vcpu->id);
}
return NULL;
}
static void cancel_join_vcpu_thread(pthread_t thread, struct kvm_vcpu *vcpu)
{
void *retval;
int r;
r = pthread_cancel(thread);
TEST_ASSERT(!r, "pthread_cancel on vcpu_id=%d failed with errno=%d",
vcpu->id, r);
r = pthread_join(thread, &retval);
TEST_ASSERT(!r, "pthread_join on vcpu_id=%d failed with errno=%d",
vcpu->id, r);
TEST_ASSERT(retval == PTHREAD_CANCELED,
"expected retval=%p, got %p", PTHREAD_CANCELED,
retval);
}
int main(int argc, char *argv[])
{
struct kvm_vm *vm;
struct kvm_vcpu *vcpu[3];
pthread_t threads[2];
vm_vaddr_t test_data_page, gva;
vm_paddr_t gpa;
uint64_t *pte;
struct test_data *data;
struct ucall uc;
int stage = 1, r, i;
TEST_REQUIRE(kvm_has_cap(KVM_CAP_HYPERV_TLBFLUSH));
vm = vm_create_with_one_vcpu(&vcpu[0], sender_guest_code);
/* Test data page */
test_data_page = vm_vaddr_alloc_page(vm);
data = (struct test_data *)addr_gva2hva(vm, test_data_page);
/* Hypercall input/output */
data->hcall_gva = vm_vaddr_alloc_pages(vm, 2);
data->hcall_gpa = addr_gva2gpa(vm, data->hcall_gva);
memset(addr_gva2hva(vm, data->hcall_gva), 0x0, 2 * PAGE_SIZE);
/*
* Test pages: the first one is filled with '0x01's, the second with '0x02's
* and the test will swap their mappings. The third page keeps the indication
* about the current state of mappings.
*/
data->test_pages = vm_vaddr_alloc_pages(vm, NTEST_PAGES + 1);
for (i = 0; i < NTEST_PAGES; i++)
memset(addr_gva2hva(vm, data->test_pages + PAGE_SIZE * i),
(u8)(i + 1), PAGE_SIZE);
set_expected_val(addr_gva2hva(vm, data->test_pages), 0x0, WORKER_VCPU_ID_1);
set_expected_val(addr_gva2hva(vm, data->test_pages), 0x0, WORKER_VCPU_ID_2);
/*
* Get PTE pointers for test pages and map them inside the guest.
* Use separate page for each PTE for simplicity.
*/
gva = vm_vaddr_unused_gap(vm, NTEST_PAGES * PAGE_SIZE, KVM_UTIL_MIN_VADDR);
for (i = 0; i < NTEST_PAGES; i++) {
pte = vm_get_page_table_entry(vm, data->test_pages + i * PAGE_SIZE);
gpa = addr_hva2gpa(vm, pte);
__virt_pg_map(vm, gva + PAGE_SIZE * i, gpa & PAGE_MASK, PG_LEVEL_4K);
data->test_pages_pte[i] = gva + (gpa & ~PAGE_MASK);
}
/*
* Sender vCPU which performs the test: swaps test pages, sets expectation
* for 'workers' and issues TLB flush hypercalls.
*/
vcpu_args_set(vcpu[0], 1, test_data_page);
vcpu_set_hv_cpuid(vcpu[0]);
/* Create worker vCPUs which check the contents of the test pages */
vcpu[1] = vm_vcpu_add(vm, WORKER_VCPU_ID_1, worker_guest_code);
vcpu_args_set(vcpu[1], 1, test_data_page);
vcpu_set_msr(vcpu[1], HV_X64_MSR_VP_INDEX, WORKER_VCPU_ID_1);
vcpu_set_hv_cpuid(vcpu[1]);
vcpu[2] = vm_vcpu_add(vm, WORKER_VCPU_ID_2, worker_guest_code);
vcpu_args_set(vcpu[2], 1, test_data_page);
vcpu_set_msr(vcpu[2], HV_X64_MSR_VP_INDEX, WORKER_VCPU_ID_2);
vcpu_set_hv_cpuid(vcpu[2]);
r = pthread_create(&threads[0], NULL, vcpu_thread, vcpu[1]);
TEST_ASSERT(!r, "pthread_create() failed");
r = pthread_create(&threads[1], NULL, vcpu_thread, vcpu[2]);
TEST_ASSERT(!r, "pthread_create() failed");
while (true) {
vcpu_run(vcpu[0]);
TEST_ASSERT_KVM_EXIT_REASON(vcpu[0], KVM_EXIT_IO);
switch (get_ucall(vcpu[0], &uc)) {
case UCALL_SYNC:
TEST_ASSERT(uc.args[1] == stage,
"Unexpected stage: %ld (%d expected)",
uc.args[1], stage);
break;
case UCALL_ABORT:
REPORT_GUEST_ASSERT(uc);
/* NOT REACHED */
case UCALL_DONE:
goto done;
default:
TEST_FAIL("Unknown ucall %lu", uc.cmd);
}
stage++;
}
done:
cancel_join_vcpu_thread(threads[0], vcpu[1]);
cancel_join_vcpu_thread(threads[1], vcpu[2]);
kvm_vm_free(vm);
return 0;
}
|