1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
|
// SPDX-License-Identifier: GPL-2.0
/*
* Microchip Inter-Processor communication (IPC) driver
*
* Copyright (c) 2021 - 2024 Microchip Technology Inc. All rights reserved.
*
* Author: Valentina Fernandez <valentina.fernandezalanis@microchip.com>
*
*/
#include <linux/io.h>
#include <linux/err.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/of_device.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/mailbox/mchp-ipc.h>
#include <asm/sbi.h>
#include <asm/vendorid_list.h>
#define IRQ_STATUS_BITS 12
#define NUM_CHANS_PER_CLUSTER 5
#define IPC_DMA_BIT_MASK 32
#define SBI_EXT_MICROCHIP_TECHNOLOGY (SBI_EXT_VENDOR_START | \
MICROCHIP_VENDOR_ID)
enum {
SBI_EXT_IPC_PROBE = 0x100,
SBI_EXT_IPC_CH_INIT,
SBI_EXT_IPC_SEND,
SBI_EXT_IPC_RECEIVE,
SBI_EXT_IPC_STATUS,
};
enum ipc_hw {
MIV_IHC,
};
/**
* struct mchp_ipc_mbox_info - IPC probe message format
*
* @hw_type: IPC implementation available in the hardware
* @num_channels: number of IPC channels available in the hardware
*
* Used to retrieve information on the IPC implementation
* using the SBI_EXT_IPC_PROBE SBI function id.
*/
struct mchp_ipc_mbox_info {
enum ipc_hw hw_type;
u8 num_channels;
};
/**
* struct mchp_ipc_init - IPC channel init message format
*
* @max_msg_size: maxmimum message size in bytes of a given channel
*
* struct used by the SBI_EXT_IPC_CH_INIT SBI function id to get
* the max message size in bytes of the initialized channel.
*/
struct mchp_ipc_init {
u16 max_msg_size;
};
/**
* struct mchp_ipc_status - IPC status message format
*
* @status: interrupt status for all channels associated to a cluster
* @cluster: specifies the cluster instance that originated an irq
*
* struct used by the SBI_EXT_IPC_STATUS SBI function id to get
* the message present and message clear interrupt status for all the
* channels associated to a cluster.
*/
struct mchp_ipc_status {
u32 status;
u8 cluster;
};
/**
* struct mchp_ipc_sbi_msg - IPC SBI payload message
*
* @buf_addr: physical address where the received data should be copied to
* @size: maximum size(in bytes) that can be stored in the buffer pointed to by `buf`
* @irq_type: mask representing the irq types that triggered an irq
*
* struct used by the SBI_EXT_IPC_SEND/SBI_EXT_IPC_RECEIVE SBI function
* ids to send/receive a message from an associated processor using
* the IPC.
*/
struct mchp_ipc_sbi_msg {
u64 buf_addr;
u16 size;
u8 irq_type;
};
struct mchp_ipc_cluster_cfg {
void *buf_base;
phys_addr_t buf_base_addr;
int irq;
};
struct mchp_ipc_sbi_mbox {
struct device *dev;
struct mbox_chan *chans;
struct mchp_ipc_cluster_cfg *cluster_cfg;
void *buf_base;
unsigned long buf_base_addr;
struct mbox_controller controller;
enum ipc_hw hw_type;
};
static int mchp_ipc_sbi_chan_send(u32 command, u32 channel, unsigned long address)
{
struct sbiret ret;
ret = sbi_ecall(SBI_EXT_MICROCHIP_TECHNOLOGY, command, channel,
address, 0, 0, 0, 0);
if (ret.error)
return sbi_err_map_linux_errno(ret.error);
else
return ret.value;
}
static int mchp_ipc_sbi_send(u32 command, unsigned long address)
{
struct sbiret ret;
ret = sbi_ecall(SBI_EXT_MICROCHIP_TECHNOLOGY, command, address,
0, 0, 0, 0, 0);
if (ret.error)
return sbi_err_map_linux_errno(ret.error);
else
return ret.value;
}
static struct mchp_ipc_sbi_mbox *to_mchp_ipc_mbox(struct mbox_controller *mbox)
{
return container_of(mbox, struct mchp_ipc_sbi_mbox, controller);
}
static inline void mchp_ipc_prepare_receive_req(struct mbox_chan *chan)
{
struct mchp_ipc_sbi_chan *chan_info = (struct mchp_ipc_sbi_chan *)chan->con_priv;
struct mchp_ipc_sbi_msg request;
request.buf_addr = chan_info->msg_buf_rx_addr;
request.size = chan_info->max_msg_size;
memcpy(chan_info->buf_base_rx, &request, sizeof(struct mchp_ipc_sbi_msg));
}
static inline void mchp_ipc_process_received_data(struct mbox_chan *chan,
struct mchp_ipc_msg *ipc_msg)
{
struct mchp_ipc_sbi_chan *chan_info = (struct mchp_ipc_sbi_chan *)chan->con_priv;
struct mchp_ipc_sbi_msg sbi_msg;
memcpy(&sbi_msg, chan_info->buf_base_rx, sizeof(struct mchp_ipc_sbi_msg));
ipc_msg->buf = (u32 *)chan_info->msg_buf_rx;
ipc_msg->size = sbi_msg.size;
}
static irqreturn_t mchp_ipc_cluster_aggr_isr(int irq, void *data)
{
struct mbox_chan *chan;
struct mchp_ipc_sbi_chan *chan_info;
struct mchp_ipc_sbi_mbox *ipc = (struct mchp_ipc_sbi_mbox *)data;
struct mchp_ipc_msg ipc_msg;
struct mchp_ipc_status status_msg;
int ret;
unsigned long hartid;
u32 i, chan_index, chan_id;
/* Find out the hart that originated the irq */
for_each_online_cpu(i) {
hartid = cpuid_to_hartid_map(i);
if (irq == ipc->cluster_cfg[hartid].irq)
break;
}
status_msg.cluster = hartid;
memcpy(ipc->cluster_cfg[hartid].buf_base, &status_msg, sizeof(struct mchp_ipc_status));
ret = mchp_ipc_sbi_send(SBI_EXT_IPC_STATUS, ipc->cluster_cfg[hartid].buf_base_addr);
if (ret < 0) {
dev_err_ratelimited(ipc->dev, "could not get IHC irq status ret=%d\n", ret);
return IRQ_HANDLED;
}
memcpy(&status_msg, ipc->cluster_cfg[hartid].buf_base, sizeof(struct mchp_ipc_status));
/*
* Iterate over each bit set in the IHC interrupt status register (IRQ_STATUS) to identify
* the channel(s) that have a message to be processed/acknowledged.
* The bits are organized in alternating format, where each pair of bits represents
* the status of the message present and message clear interrupts for each cluster/hart
* (from hart 0 to hart 5). Each cluster can have up to 5 fixed channels associated.
*/
for_each_set_bit(i, (unsigned long *)&status_msg.status, IRQ_STATUS_BITS) {
/* Find out the destination hart that triggered the interrupt */
chan_index = i / 2;
/*
* The IP has no loopback channels, so we need to decrement the index when
* the target hart has a greater index than our own
*/
if (chan_index >= status_msg.cluster)
chan_index--;
/*
* Calculate the channel id given the hart and channel index. Channel IDs
* are unique across all clusters of an IPC, and iterate contiguously
* across all clusters.
*/
chan_id = status_msg.cluster * (NUM_CHANS_PER_CLUSTER + chan_index);
chan = &ipc->chans[chan_id];
chan_info = (struct mchp_ipc_sbi_chan *)chan->con_priv;
if (i % 2 == 0) {
mchp_ipc_prepare_receive_req(chan);
ret = mchp_ipc_sbi_chan_send(SBI_EXT_IPC_RECEIVE, chan_id,
chan_info->buf_base_rx_addr);
if (ret < 0)
continue;
mchp_ipc_process_received_data(chan, &ipc_msg);
mbox_chan_received_data(&ipc->chans[chan_id], (void *)&ipc_msg);
} else {
ret = mchp_ipc_sbi_chan_send(SBI_EXT_IPC_RECEIVE, chan_id,
chan_info->buf_base_rx_addr);
mbox_chan_txdone(&ipc->chans[chan_id], ret);
}
}
return IRQ_HANDLED;
}
static int mchp_ipc_send_data(struct mbox_chan *chan, void *data)
{
struct mchp_ipc_sbi_chan *chan_info = (struct mchp_ipc_sbi_chan *)chan->con_priv;
const struct mchp_ipc_msg *msg = data;
struct mchp_ipc_sbi_msg sbi_payload;
memcpy(chan_info->msg_buf_tx, msg->buf, msg->size);
sbi_payload.buf_addr = chan_info->msg_buf_tx_addr;
sbi_payload.size = msg->size;
memcpy(chan_info->buf_base_tx, &sbi_payload, sizeof(sbi_payload));
return mchp_ipc_sbi_chan_send(SBI_EXT_IPC_SEND, chan_info->id, chan_info->buf_base_tx_addr);
}
static int mchp_ipc_startup(struct mbox_chan *chan)
{
struct mchp_ipc_sbi_chan *chan_info = (struct mchp_ipc_sbi_chan *)chan->con_priv;
struct mchp_ipc_sbi_mbox *ipc = to_mchp_ipc_mbox(chan->mbox);
struct mchp_ipc_init ch_init_msg;
int ret;
/*
* The TX base buffer is used to transmit two types of messages:
* - struct mchp_ipc_init to initialize the channel
* - struct mchp_ipc_sbi_msg to transmit user data/payload
* Ensure the TX buffer size is large enough to accommodate either message type.
*/
size_t max_size = max(sizeof(struct mchp_ipc_init), sizeof(struct mchp_ipc_sbi_msg));
chan_info->buf_base_tx = kmalloc(max_size, GFP_KERNEL);
if (!chan_info->buf_base_tx) {
ret = -ENOMEM;
goto fail;
}
chan_info->buf_base_tx_addr = __pa(chan_info->buf_base_tx);
chan_info->buf_base_rx = kmalloc(max_size, GFP_KERNEL);
if (!chan_info->buf_base_rx) {
ret = -ENOMEM;
goto fail_free_buf_base_tx;
}
chan_info->buf_base_rx_addr = __pa(chan_info->buf_base_rx);
ret = mchp_ipc_sbi_chan_send(SBI_EXT_IPC_CH_INIT, chan_info->id,
chan_info->buf_base_tx_addr);
if (ret < 0) {
dev_err(ipc->dev, "channel %u init failed\n", chan_info->id);
goto fail_free_buf_base_rx;
}
memcpy(&ch_init_msg, chan_info->buf_base_tx, sizeof(struct mchp_ipc_init));
chan_info->max_msg_size = ch_init_msg.max_msg_size;
chan_info->msg_buf_tx = kmalloc(chan_info->max_msg_size, GFP_KERNEL);
if (!chan_info->msg_buf_tx) {
ret = -ENOMEM;
goto fail_free_buf_base_rx;
}
chan_info->msg_buf_tx_addr = __pa(chan_info->msg_buf_tx);
chan_info->msg_buf_rx = kmalloc(chan_info->max_msg_size, GFP_KERNEL);
if (!chan_info->msg_buf_rx) {
ret = -ENOMEM;
goto fail_free_buf_msg_tx;
}
chan_info->msg_buf_rx_addr = __pa(chan_info->msg_buf_rx);
switch (ipc->hw_type) {
case MIV_IHC:
return 0;
default:
goto fail_free_buf_msg_rx;
}
if (ret) {
dev_err(ipc->dev, "failed to register interrupt(s)\n");
goto fail_free_buf_msg_rx;
}
return ret;
fail_free_buf_msg_rx:
kfree(chan_info->msg_buf_rx);
fail_free_buf_msg_tx:
kfree(chan_info->msg_buf_tx);
fail_free_buf_base_rx:
kfree(chan_info->buf_base_rx);
fail_free_buf_base_tx:
kfree(chan_info->buf_base_tx);
fail:
return ret;
}
static void mchp_ipc_shutdown(struct mbox_chan *chan)
{
struct mchp_ipc_sbi_chan *chan_info = (struct mchp_ipc_sbi_chan *)chan->con_priv;
kfree(chan_info->buf_base_tx);
kfree(chan_info->buf_base_rx);
kfree(chan_info->msg_buf_tx);
kfree(chan_info->msg_buf_rx);
}
static const struct mbox_chan_ops mchp_ipc_ops = {
.startup = mchp_ipc_startup,
.send_data = mchp_ipc_send_data,
.shutdown = mchp_ipc_shutdown,
};
static struct mbox_chan *mchp_ipc_mbox_xlate(struct mbox_controller *controller,
const struct of_phandle_args *spec)
{
struct mchp_ipc_sbi_mbox *ipc = to_mchp_ipc_mbox(controller);
unsigned int chan_id = spec->args[0];
if (chan_id >= ipc->controller.num_chans) {
dev_err(ipc->dev, "invalid channel id %d\n", chan_id);
return ERR_PTR(-EINVAL);
}
return &ipc->chans[chan_id];
}
static int mchp_ipc_get_cluster_aggr_irq(struct mchp_ipc_sbi_mbox *ipc)
{
struct platform_device *pdev = to_platform_device(ipc->dev);
char *irq_name;
int cpuid, ret;
unsigned long hartid;
bool irq_found = false;
for_each_online_cpu(cpuid) {
hartid = cpuid_to_hartid_map(cpuid);
irq_name = devm_kasprintf(ipc->dev, GFP_KERNEL, "hart-%lu", hartid);
ret = platform_get_irq_byname_optional(pdev, irq_name);
if (ret <= 0)
continue;
ipc->cluster_cfg[hartid].irq = ret;
ret = devm_request_irq(ipc->dev, ipc->cluster_cfg[hartid].irq,
mchp_ipc_cluster_aggr_isr, IRQF_SHARED,
"miv-ihc-irq", ipc);
if (ret)
return ret;
ipc->cluster_cfg[hartid].buf_base = devm_kmalloc(ipc->dev,
sizeof(struct mchp_ipc_status),
GFP_KERNEL);
if (!ipc->cluster_cfg[hartid].buf_base)
return -ENOMEM;
ipc->cluster_cfg[hartid].buf_base_addr = __pa(ipc->cluster_cfg[hartid].buf_base);
irq_found = true;
}
return irq_found;
}
static int mchp_ipc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct mchp_ipc_mbox_info ipc_info;
struct mchp_ipc_sbi_mbox *ipc;
struct mchp_ipc_sbi_chan *priv;
bool irq_avail = false;
int ret;
u32 chan_id;
ret = sbi_probe_extension(SBI_EXT_MICROCHIP_TECHNOLOGY);
if (ret <= 0)
return dev_err_probe(dev, ret, "Microchip SBI extension not detected\n");
ipc = devm_kzalloc(dev, sizeof(*ipc), GFP_KERNEL);
if (!ipc)
return -ENOMEM;
platform_set_drvdata(pdev, ipc);
ipc->buf_base = devm_kmalloc(dev, sizeof(struct mchp_ipc_mbox_info), GFP_KERNEL);
if (!ipc->buf_base)
return -ENOMEM;
ipc->buf_base_addr = __pa(ipc->buf_base);
ret = mchp_ipc_sbi_send(SBI_EXT_IPC_PROBE, ipc->buf_base_addr);
if (ret < 0)
return dev_err_probe(dev, ret, "could not probe IPC SBI service\n");
memcpy(&ipc_info, ipc->buf_base, sizeof(struct mchp_ipc_mbox_info));
ipc->controller.num_chans = ipc_info.num_channels;
ipc->hw_type = ipc_info.hw_type;
ipc->chans = devm_kcalloc(dev, ipc->controller.num_chans, sizeof(*ipc->chans), GFP_KERNEL);
if (!ipc->chans)
return -ENOMEM;
ipc->dev = dev;
ipc->controller.txdone_irq = true;
ipc->controller.dev = ipc->dev;
ipc->controller.ops = &mchp_ipc_ops;
ipc->controller.chans = ipc->chans;
ipc->controller.of_xlate = mchp_ipc_mbox_xlate;
for (chan_id = 0; chan_id < ipc->controller.num_chans; chan_id++) {
priv = devm_kmalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
ipc->chans[chan_id].con_priv = priv;
priv->id = chan_id;
}
if (ipc->hw_type == MIV_IHC) {
ipc->cluster_cfg = devm_kcalloc(dev, num_online_cpus(),
sizeof(struct mchp_ipc_cluster_cfg),
GFP_KERNEL);
if (!ipc->cluster_cfg)
return -ENOMEM;
if (mchp_ipc_get_cluster_aggr_irq(ipc))
irq_avail = true;
}
if (!irq_avail)
return dev_err_probe(dev, -ENODEV, "missing interrupt property\n");
ret = devm_mbox_controller_register(dev, &ipc->controller);
if (ret)
return dev_err_probe(dev, ret,
"Inter-Processor communication (IPC) registration failed\n");
return 0;
}
static const struct of_device_id mchp_ipc_of_match[] = {
{.compatible = "microchip,sbi-ipc", },
{}
};
MODULE_DEVICE_TABLE(of, mchp_ipc_of_match);
static struct platform_driver mchp_ipc_driver = {
.driver = {
.name = "microchip_ipc",
.of_match_table = mchp_ipc_of_match,
},
.probe = mchp_ipc_probe,
};
module_platform_driver(mchp_ipc_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Valentina Fernandez <valentina.fernandezalanis@microchip.com>");
MODULE_DESCRIPTION("Microchip Inter-Processor Communication (IPC) driver");
|