1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
|
// SPDX-License-Identifier: GPL-2.0
/*
* On-Chip RTC Support available on RZ/G3S SoC
*
* Copyright (C) 2024 Renesas Electronics Corp.
*/
#include <linux/bcd.h>
#include <linux/bitfield.h>
#include <linux/cleanup.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <linux/interrupt.h>
#include <linux/jiffies.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/rtc.h>
/* Counter registers. */
#define RTCA3_RSECCNT 0x2
#define RTCA3_RSECCNT_SEC GENMASK(6, 0)
#define RTCA3_RMINCNT 0x4
#define RTCA3_RMINCNT_MIN GENMASK(6, 0)
#define RTCA3_RHRCNT 0x6
#define RTCA3_RHRCNT_HR GENMASK(5, 0)
#define RTCA3_RHRCNT_PM BIT(6)
#define RTCA3_RWKCNT 0x8
#define RTCA3_RWKCNT_WK GENMASK(2, 0)
#define RTCA3_RDAYCNT 0xa
#define RTCA3_RDAYCNT_DAY GENMASK(5, 0)
#define RTCA3_RMONCNT 0xc
#define RTCA3_RMONCNT_MONTH GENMASK(4, 0)
#define RTCA3_RYRCNT 0xe
#define RTCA3_RYRCNT_YEAR GENMASK(7, 0)
/* Alarm registers. */
#define RTCA3_RSECAR 0x10
#define RTCA3_RSECAR_SEC GENMASK(6, 0)
#define RTCA3_RMINAR 0x12
#define RTCA3_RMINAR_MIN GENMASK(6, 0)
#define RTCA3_RHRAR 0x14
#define RTCA3_RHRAR_HR GENMASK(5, 0)
#define RTCA3_RHRAR_PM BIT(6)
#define RTCA3_RWKAR 0x16
#define RTCA3_RWKAR_DAYW GENMASK(2, 0)
#define RTCA3_RDAYAR 0x18
#define RTCA3_RDAYAR_DATE GENMASK(5, 0)
#define RTCA3_RMONAR 0x1a
#define RTCA3_RMONAR_MON GENMASK(4, 0)
#define RTCA3_RYRAR 0x1c
#define RTCA3_RYRAR_YR GENMASK(7, 0)
#define RTCA3_RYRAREN 0x1e
/* Alarm enable bit (for all alarm registers). */
#define RTCA3_AR_ENB BIT(7)
/* Control registers. */
#define RTCA3_RCR1 0x22
#define RTCA3_RCR1_AIE BIT(0)
#define RTCA3_RCR1_CIE BIT(1)
#define RTCA3_RCR1_PIE BIT(2)
#define RTCA3_RCR1_PES GENMASK(7, 4)
#define RTCA3_RCR1_PES_1_64_SEC 0x8
#define RTCA3_RCR2 0x24
#define RTCA3_RCR2_START BIT(0)
#define RTCA3_RCR2_RESET BIT(1)
#define RTCA3_RCR2_AADJE BIT(4)
#define RTCA3_RCR2_ADJP BIT(5)
#define RTCA3_RCR2_HR24 BIT(6)
#define RTCA3_RCR2_CNTMD BIT(7)
#define RTCA3_RSR 0x20
#define RTCA3_RSR_AF BIT(0)
#define RTCA3_RSR_CF BIT(1)
#define RTCA3_RSR_PF BIT(2)
#define RTCA3_RADJ 0x2e
#define RTCA3_RADJ_ADJ GENMASK(5, 0)
#define RTCA3_RADJ_ADJ_MAX 0x3f
#define RTCA3_RADJ_PMADJ GENMASK(7, 6)
#define RTCA3_RADJ_PMADJ_NONE 0
#define RTCA3_RADJ_PMADJ_ADD 1
#define RTCA3_RADJ_PMADJ_SUB 2
/* Polling operation timeouts. */
#define RTCA3_DEFAULT_TIMEOUT_US 150
#define RTCA3_IRQSET_TIMEOUT_US 5000
#define RTCA3_START_TIMEOUT_US 150000
#define RTCA3_RESET_TIMEOUT_US 200000
/**
* enum rtca3_alrm_set_step - RTCA3 alarm set steps
* @RTCA3_ALRM_SSTEP_DONE: alarm setup done step
* @RTCA3_ALRM_SSTEP_IRQ: two 1/64 periodic IRQs were generated step
* @RTCA3_ALRM_SSTEP_INIT: alarm setup initialization step
*/
enum rtca3_alrm_set_step {
RTCA3_ALRM_SSTEP_DONE = 0,
RTCA3_ALRM_SSTEP_IRQ = 1,
RTCA3_ALRM_SSTEP_INIT = 3,
};
/**
* struct rtca3_ppb_per_cycle - PPB per cycle
* @ten_sec: PPB per cycle in 10 seconds adjutment mode
* @sixty_sec: PPB per cycle in 60 seconds adjustment mode
*/
struct rtca3_ppb_per_cycle {
int ten_sec;
int sixty_sec;
};
/**
* struct rtca3_priv - RTCA3 private data structure
* @base: base address
* @rtc_dev: RTC device
* @rstc: reset control
* @set_alarm_completion: alarm setup completion
* @alrm_sstep: alarm setup step (see enum rtca3_alrm_set_step)
* @lock: device lock
* @ppb: ppb per cycle for each the available adjustment modes
* @wakeup_irq: wakeup IRQ
*/
struct rtca3_priv {
void __iomem *base;
struct rtc_device *rtc_dev;
struct reset_control *rstc;
struct completion set_alarm_completion;
atomic_t alrm_sstep;
spinlock_t lock;
struct rtca3_ppb_per_cycle ppb;
int wakeup_irq;
};
static void rtca3_byte_update_bits(struct rtca3_priv *priv, u8 off, u8 mask, u8 val)
{
u8 tmp;
tmp = readb(priv->base + off);
tmp &= ~mask;
tmp |= (val & mask);
writeb(tmp, priv->base + off);
}
static u8 rtca3_alarm_handler_helper(struct rtca3_priv *priv)
{
u8 val, pending;
val = readb(priv->base + RTCA3_RSR);
pending = val & RTCA3_RSR_AF;
writeb(val & ~pending, priv->base + RTCA3_RSR);
if (pending)
rtc_update_irq(priv->rtc_dev, 1, RTC_AF | RTC_IRQF);
return pending;
}
static irqreturn_t rtca3_alarm_handler(int irq, void *dev_id)
{
struct rtca3_priv *priv = dev_id;
u8 pending;
guard(spinlock)(&priv->lock);
pending = rtca3_alarm_handler_helper(priv);
return IRQ_RETVAL(pending);
}
static irqreturn_t rtca3_periodic_handler(int irq, void *dev_id)
{
struct rtca3_priv *priv = dev_id;
u8 val, pending;
guard(spinlock)(&priv->lock);
val = readb(priv->base + RTCA3_RSR);
pending = val & RTCA3_RSR_PF;
if (pending) {
writeb(val & ~pending, priv->base + RTCA3_RSR);
if (atomic_read(&priv->alrm_sstep) > RTCA3_ALRM_SSTEP_IRQ) {
/* Alarm setup in progress. */
atomic_dec(&priv->alrm_sstep);
if (atomic_read(&priv->alrm_sstep) == RTCA3_ALRM_SSTEP_IRQ) {
/*
* We got 2 * 1/64 periodic interrupts. Disable
* interrupt and let alarm setup continue.
*/
rtca3_byte_update_bits(priv, RTCA3_RCR1,
RTCA3_RCR1_PIE, 0);
readb_poll_timeout_atomic(priv->base + RTCA3_RCR1, val,
!(val & RTCA3_RCR1_PIE),
10, RTCA3_DEFAULT_TIMEOUT_US);
complete(&priv->set_alarm_completion);
}
}
}
return IRQ_RETVAL(pending);
}
static void rtca3_prepare_cntalrm_regs_for_read(struct rtca3_priv *priv, bool cnt)
{
/* Offset b/w time and alarm registers. */
u8 offset = cnt ? 0 : 0xe;
/*
* According to HW manual (section 22.6.4. Notes on writing to and
* reading from registers) after writing to count registers, alarm
* registers, year alarm enable register, bits RCR2.AADJE, AADJP,
* and HR24 register, we need to do 3 empty reads before being
* able to fetch the registers content.
*/
for (u8 i = 0; i < 3; i++) {
readb(priv->base + RTCA3_RSECCNT + offset);
readb(priv->base + RTCA3_RMINCNT + offset);
readb(priv->base + RTCA3_RHRCNT + offset);
readb(priv->base + RTCA3_RWKCNT + offset);
readb(priv->base + RTCA3_RDAYCNT + offset);
readw(priv->base + RTCA3_RYRCNT + offset);
if (!cnt)
readb(priv->base + RTCA3_RYRAREN);
}
}
static int rtca3_read_time(struct device *dev, struct rtc_time *tm)
{
struct rtca3_priv *priv = dev_get_drvdata(dev);
u8 sec, min, hour, wday, mday, month, tmp;
u8 trials = 0;
u32 year100;
u16 year;
guard(spinlock_irqsave)(&priv->lock);
tmp = readb(priv->base + RTCA3_RCR2);
if (!(tmp & RTCA3_RCR2_START))
return -EINVAL;
do {
/* Clear carry interrupt. */
rtca3_byte_update_bits(priv, RTCA3_RSR, RTCA3_RSR_CF, 0);
/* Read counters. */
sec = readb(priv->base + RTCA3_RSECCNT);
min = readb(priv->base + RTCA3_RMINCNT);
hour = readb(priv->base + RTCA3_RHRCNT);
wday = readb(priv->base + RTCA3_RWKCNT);
mday = readb(priv->base + RTCA3_RDAYCNT);
month = readb(priv->base + RTCA3_RMONCNT);
year = readw(priv->base + RTCA3_RYRCNT);
tmp = readb(priv->base + RTCA3_RSR);
/*
* We cannot generate carries due to reading 64Hz counter as
* the driver doesn't implement carry, thus, carries will be
* generated once per seconds. Add a timeout of 5 trials here
* to avoid infinite loop, if any.
*/
} while ((tmp & RTCA3_RSR_CF) && ++trials < 5);
if (trials >= 5)
return -ETIMEDOUT;
tm->tm_sec = bcd2bin(FIELD_GET(RTCA3_RSECCNT_SEC, sec));
tm->tm_min = bcd2bin(FIELD_GET(RTCA3_RMINCNT_MIN, min));
tm->tm_hour = bcd2bin(FIELD_GET(RTCA3_RHRCNT_HR, hour));
tm->tm_wday = bcd2bin(FIELD_GET(RTCA3_RWKCNT_WK, wday));
tm->tm_mday = bcd2bin(FIELD_GET(RTCA3_RDAYCNT_DAY, mday));
tm->tm_mon = bcd2bin(FIELD_GET(RTCA3_RMONCNT_MONTH, month)) - 1;
year = FIELD_GET(RTCA3_RYRCNT_YEAR, year);
year100 = bcd2bin((year == 0x99) ? 0x19 : 0x20);
tm->tm_year = (year100 * 100 + bcd2bin(year)) - 1900;
return 0;
}
static int rtca3_set_time(struct device *dev, struct rtc_time *tm)
{
struct rtca3_priv *priv = dev_get_drvdata(dev);
u8 rcr2, tmp;
int ret;
guard(spinlock_irqsave)(&priv->lock);
/* Stop the RTC. */
rcr2 = readb(priv->base + RTCA3_RCR2);
writeb(rcr2 & ~RTCA3_RCR2_START, priv->base + RTCA3_RCR2);
ret = readb_poll_timeout_atomic(priv->base + RTCA3_RCR2, tmp,
!(tmp & RTCA3_RCR2_START),
10, RTCA3_DEFAULT_TIMEOUT_US);
if (ret)
return ret;
/* Update time. */
writeb(bin2bcd(tm->tm_sec), priv->base + RTCA3_RSECCNT);
writeb(bin2bcd(tm->tm_min), priv->base + RTCA3_RMINCNT);
writeb(bin2bcd(tm->tm_hour), priv->base + RTCA3_RHRCNT);
writeb(bin2bcd(tm->tm_wday), priv->base + RTCA3_RWKCNT);
writeb(bin2bcd(tm->tm_mday), priv->base + RTCA3_RDAYCNT);
writeb(bin2bcd(tm->tm_mon + 1), priv->base + RTCA3_RMONCNT);
writew(bin2bcd(tm->tm_year % 100), priv->base + RTCA3_RYRCNT);
/* Make sure we can read back the counters. */
rtca3_prepare_cntalrm_regs_for_read(priv, true);
/* Start RTC. */
writeb(rcr2 | RTCA3_RCR2_START, priv->base + RTCA3_RCR2);
return readb_poll_timeout_atomic(priv->base + RTCA3_RCR2, tmp,
(tmp & RTCA3_RCR2_START),
10, RTCA3_DEFAULT_TIMEOUT_US);
}
static int rtca3_alarm_irq_set_helper(struct rtca3_priv *priv,
u8 interrupts,
unsigned int enabled)
{
u8 tmp, val;
if (enabled) {
/*
* AIE, CIE, PIE bit indexes in RSR corresponds with
* those on RCR1. Same interrupts mask can be used.
*/
rtca3_byte_update_bits(priv, RTCA3_RSR, interrupts, 0);
val = interrupts;
} else {
val = 0;
}
rtca3_byte_update_bits(priv, RTCA3_RCR1, interrupts, val);
return readb_poll_timeout_atomic(priv->base + RTCA3_RCR1, tmp,
((tmp & interrupts) == val),
10, RTCA3_IRQSET_TIMEOUT_US);
}
static int rtca3_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
struct rtca3_priv *priv = dev_get_drvdata(dev);
guard(spinlock_irqsave)(&priv->lock);
return rtca3_alarm_irq_set_helper(priv, RTCA3_RCR1_AIE, enabled);
}
static int rtca3_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
{
struct rtca3_priv *priv = dev_get_drvdata(dev);
u8 sec, min, hour, wday, mday, month;
struct rtc_time *tm = &wkalrm->time;
u32 year100;
u16 year;
guard(spinlock_irqsave)(&priv->lock);
sec = readb(priv->base + RTCA3_RSECAR);
min = readb(priv->base + RTCA3_RMINAR);
hour = readb(priv->base + RTCA3_RHRAR);
wday = readb(priv->base + RTCA3_RWKAR);
mday = readb(priv->base + RTCA3_RDAYAR);
month = readb(priv->base + RTCA3_RMONAR);
year = readw(priv->base + RTCA3_RYRAR);
tm->tm_sec = bcd2bin(FIELD_GET(RTCA3_RSECAR_SEC, sec));
tm->tm_min = bcd2bin(FIELD_GET(RTCA3_RMINAR_MIN, min));
tm->tm_hour = bcd2bin(FIELD_GET(RTCA3_RHRAR_HR, hour));
tm->tm_wday = bcd2bin(FIELD_GET(RTCA3_RWKAR_DAYW, wday));
tm->tm_mday = bcd2bin(FIELD_GET(RTCA3_RDAYAR_DATE, mday));
tm->tm_mon = bcd2bin(FIELD_GET(RTCA3_RMONAR_MON, month)) - 1;
year = FIELD_GET(RTCA3_RYRAR_YR, year);
year100 = bcd2bin((year == 0x99) ? 0x19 : 0x20);
tm->tm_year = (year100 * 100 + bcd2bin(year)) - 1900;
wkalrm->enabled = !!(readb(priv->base + RTCA3_RCR1) & RTCA3_RCR1_AIE);
return 0;
}
static int rtca3_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
{
struct rtca3_priv *priv = dev_get_drvdata(dev);
struct rtc_time *tm = &wkalrm->time;
u8 rcr1, tmp;
int ret;
scoped_guard(spinlock_irqsave, &priv->lock) {
tmp = readb(priv->base + RTCA3_RCR2);
if (!(tmp & RTCA3_RCR2_START))
return -EPERM;
/* Disable AIE to prevent false interrupts. */
rcr1 = readb(priv->base + RTCA3_RCR1);
rcr1 &= ~RTCA3_RCR1_AIE;
writeb(rcr1, priv->base + RTCA3_RCR1);
ret = readb_poll_timeout_atomic(priv->base + RTCA3_RCR1, tmp,
!(tmp & RTCA3_RCR1_AIE),
10, RTCA3_DEFAULT_TIMEOUT_US);
if (ret)
return ret;
/* Set the time and enable the alarm. */
writeb(RTCA3_AR_ENB | bin2bcd(tm->tm_sec), priv->base + RTCA3_RSECAR);
writeb(RTCA3_AR_ENB | bin2bcd(tm->tm_min), priv->base + RTCA3_RMINAR);
writeb(RTCA3_AR_ENB | bin2bcd(tm->tm_hour), priv->base + RTCA3_RHRAR);
writeb(RTCA3_AR_ENB | bin2bcd(tm->tm_wday), priv->base + RTCA3_RWKAR);
writeb(RTCA3_AR_ENB | bin2bcd(tm->tm_mday), priv->base + RTCA3_RDAYAR);
writeb(RTCA3_AR_ENB | bin2bcd(tm->tm_mon + 1), priv->base + RTCA3_RMONAR);
writew(bin2bcd(tm->tm_year % 100), priv->base + RTCA3_RYRAR);
writeb(RTCA3_AR_ENB, priv->base + RTCA3_RYRAREN);
/* Make sure we can read back the counters. */
rtca3_prepare_cntalrm_regs_for_read(priv, false);
/* Need to wait for 2 * 1/64 periodic interrupts to be generated. */
atomic_set(&priv->alrm_sstep, RTCA3_ALRM_SSTEP_INIT);
reinit_completion(&priv->set_alarm_completion);
/* Enable periodic interrupt. */
rcr1 |= RTCA3_RCR1_PIE;
writeb(rcr1, priv->base + RTCA3_RCR1);
ret = readb_poll_timeout_atomic(priv->base + RTCA3_RCR1, tmp,
(tmp & RTCA3_RCR1_PIE),
10, RTCA3_IRQSET_TIMEOUT_US);
}
if (ret)
goto setup_failed;
/* Wait for the 2 * 1/64 periodic interrupts. */
ret = wait_for_completion_interruptible_timeout(&priv->set_alarm_completion,
msecs_to_jiffies(500));
if (ret <= 0) {
ret = -ETIMEDOUT;
goto setup_failed;
}
scoped_guard(spinlock_irqsave, &priv->lock) {
ret = rtca3_alarm_irq_set_helper(priv, RTCA3_RCR1_AIE, wkalrm->enabled);
atomic_set(&priv->alrm_sstep, RTCA3_ALRM_SSTEP_DONE);
}
return ret;
setup_failed:
scoped_guard(spinlock_irqsave, &priv->lock) {
/*
* Disable PIE to avoid interrupt storm in case HW needed more than
* specified timeout for setup.
*/
writeb(rcr1 & ~RTCA3_RCR1_PIE, priv->base + RTCA3_RCR1);
readb_poll_timeout_atomic(priv->base + RTCA3_RCR1, tmp, !(tmp & ~RTCA3_RCR1_PIE),
10, RTCA3_DEFAULT_TIMEOUT_US);
atomic_set(&priv->alrm_sstep, RTCA3_ALRM_SSTEP_DONE);
}
return ret;
}
static int rtca3_read_offset(struct device *dev, long *offset)
{
struct rtca3_priv *priv = dev_get_drvdata(dev);
u8 val, radj, cycles;
u32 ppb_per_cycle;
scoped_guard(spinlock_irqsave, &priv->lock) {
radj = readb(priv->base + RTCA3_RADJ);
val = readb(priv->base + RTCA3_RCR2);
}
cycles = FIELD_GET(RTCA3_RADJ_ADJ, radj);
if (!cycles) {
*offset = 0;
return 0;
}
if (val & RTCA3_RCR2_ADJP)
ppb_per_cycle = priv->ppb.ten_sec;
else
ppb_per_cycle = priv->ppb.sixty_sec;
*offset = cycles * ppb_per_cycle;
val = FIELD_GET(RTCA3_RADJ_PMADJ, radj);
if (val == RTCA3_RADJ_PMADJ_SUB)
*offset = -(*offset);
return 0;
}
static int rtca3_set_offset(struct device *dev, long offset)
{
struct rtca3_priv *priv = dev_get_drvdata(dev);
int cycles, cycles10, cycles60;
u8 radj, adjp, tmp;
int ret;
/*
* Automatic time error adjustment could be set at intervals of 10
* or 60 seconds.
*/
cycles10 = DIV_ROUND_CLOSEST(offset, priv->ppb.ten_sec);
cycles60 = DIV_ROUND_CLOSEST(offset, priv->ppb.sixty_sec);
/* We can set b/w 1 and 63 clock cycles. */
if (cycles60 >= -RTCA3_RADJ_ADJ_MAX &&
cycles60 <= RTCA3_RADJ_ADJ_MAX) {
cycles = cycles60;
adjp = 0;
} else if (cycles10 >= -RTCA3_RADJ_ADJ_MAX &&
cycles10 <= RTCA3_RADJ_ADJ_MAX) {
cycles = cycles10;
adjp = RTCA3_RCR2_ADJP;
} else {
return -ERANGE;
}
radj = FIELD_PREP(RTCA3_RADJ_ADJ, abs(cycles));
if (!cycles)
radj |= FIELD_PREP(RTCA3_RADJ_PMADJ, RTCA3_RADJ_PMADJ_NONE);
else if (cycles > 0)
radj |= FIELD_PREP(RTCA3_RADJ_PMADJ, RTCA3_RADJ_PMADJ_ADD);
else
radj |= FIELD_PREP(RTCA3_RADJ_PMADJ, RTCA3_RADJ_PMADJ_SUB);
guard(spinlock_irqsave)(&priv->lock);
tmp = readb(priv->base + RTCA3_RCR2);
if ((tmp & RTCA3_RCR2_ADJP) != adjp) {
/* RADJ.PMADJ need to be set to zero before setting RCR2.ADJP. */
writeb(0, priv->base + RTCA3_RADJ);
ret = readb_poll_timeout_atomic(priv->base + RTCA3_RADJ, tmp, !tmp,
10, RTCA3_DEFAULT_TIMEOUT_US);
if (ret)
return ret;
rtca3_byte_update_bits(priv, RTCA3_RCR2, RTCA3_RCR2_ADJP, adjp);
ret = readb_poll_timeout_atomic(priv->base + RTCA3_RCR2, tmp,
((tmp & RTCA3_RCR2_ADJP) == adjp),
10, RTCA3_DEFAULT_TIMEOUT_US);
if (ret)
return ret;
}
writeb(radj, priv->base + RTCA3_RADJ);
return readb_poll_timeout_atomic(priv->base + RTCA3_RADJ, tmp, (tmp == radj),
10, RTCA3_DEFAULT_TIMEOUT_US);
}
static const struct rtc_class_ops rtca3_ops = {
.read_time = rtca3_read_time,
.set_time = rtca3_set_time,
.read_alarm = rtca3_read_alarm,
.set_alarm = rtca3_set_alarm,
.alarm_irq_enable = rtca3_alarm_irq_enable,
.set_offset = rtca3_set_offset,
.read_offset = rtca3_read_offset,
};
static int rtca3_initial_setup(struct clk *clk, struct rtca3_priv *priv)
{
unsigned long osc32k_rate;
u8 val, tmp, mask;
u32 sleep_us;
int ret;
osc32k_rate = clk_get_rate(clk);
if (!osc32k_rate)
return -EINVAL;
sleep_us = DIV_ROUND_UP_ULL(1000000ULL, osc32k_rate) * 6;
priv->ppb.ten_sec = DIV_ROUND_CLOSEST_ULL(1000000000ULL, (osc32k_rate * 10));
priv->ppb.sixty_sec = DIV_ROUND_CLOSEST_ULL(1000000000ULL, (osc32k_rate * 60));
/*
* According to HW manual (section 22.4.2. Clock and count mode setting procedure)
* we need to wait at least 6 cycles of the 32KHz clock after clock was enabled.
*/
usleep_range(sleep_us, sleep_us + 10);
mask = RTCA3_RCR2_START | RTCA3_RCR2_HR24;
val = readb(priv->base + RTCA3_RCR2);
/* Only disable the interrupts if already started in 24 hours and calendar count mode. */
if ((val & mask) == mask) {
/* Disable all interrupts. */
mask = RTCA3_RCR1_AIE | RTCA3_RCR1_CIE | RTCA3_RCR1_PIE;
return rtca3_alarm_irq_set_helper(priv, mask, 0);
}
/* Reconfigure the RTC in 24 hours and calendar count mode. */
mask = RTCA3_RCR2_START | RTCA3_RCR2_CNTMD;
writeb(0, priv->base + RTCA3_RCR2);
ret = readb_poll_timeout(priv->base + RTCA3_RCR2, tmp, !(tmp & mask),
10, RTCA3_DEFAULT_TIMEOUT_US);
if (ret)
return ret;
/*
* Set 24 hours mode. According to HW manual (section 22.3.19. RTC Control
* Register 2) this needs to be done separate from stop operation.
*/
mask = RTCA3_RCR2_HR24;
val = RTCA3_RCR2_HR24;
writeb(val, priv->base + RTCA3_RCR2);
ret = readb_poll_timeout(priv->base + RTCA3_RCR2, tmp, (tmp & mask),
10, RTCA3_DEFAULT_TIMEOUT_US);
if (ret)
return ret;
/* Execute reset. */
mask = RTCA3_RCR2_RESET;
writeb(val | RTCA3_RCR2_RESET, priv->base + RTCA3_RCR2);
ret = readb_poll_timeout(priv->base + RTCA3_RCR2, tmp, !(tmp & mask),
10, RTCA3_RESET_TIMEOUT_US);
if (ret)
return ret;
/*
* According to HW manual (section 22.6.3. Notes on writing to and reading
* from registers) after reset we need to wait 6 clock cycles before
* writing to RTC registers.
*/
usleep_range(sleep_us, sleep_us + 10);
/* Set no adjustment. */
writeb(0, priv->base + RTCA3_RADJ);
ret = readb_poll_timeout(priv->base + RTCA3_RADJ, tmp, !tmp, 10,
RTCA3_DEFAULT_TIMEOUT_US);
/* Start the RTC and enable automatic time error adjustment. */
mask = RTCA3_RCR2_START | RTCA3_RCR2_AADJE;
val |= RTCA3_RCR2_START | RTCA3_RCR2_AADJE;
writeb(val, priv->base + RTCA3_RCR2);
ret = readb_poll_timeout(priv->base + RTCA3_RCR2, tmp, ((tmp & mask) == mask),
10, RTCA3_START_TIMEOUT_US);
if (ret)
return ret;
/*
* According to HW manual (section 22.6.4. Notes on writing to and reading
* from registers) we need to wait 1/128 seconds while the clock is operating
* (RCR2.START bit = 1) to be able to read the counters after a return from
* reset.
*/
usleep_range(8000, 9000);
/* Set period interrupt to 1/64 seconds. It is necessary for alarm setup. */
val = FIELD_PREP(RTCA3_RCR1_PES, RTCA3_RCR1_PES_1_64_SEC);
rtca3_byte_update_bits(priv, RTCA3_RCR1, RTCA3_RCR1_PES, val);
return readb_poll_timeout(priv->base + RTCA3_RCR1, tmp, ((tmp & RTCA3_RCR1_PES) == val),
10, RTCA3_DEFAULT_TIMEOUT_US);
}
static int rtca3_request_irqs(struct platform_device *pdev, struct rtca3_priv *priv)
{
struct device *dev = &pdev->dev;
int ret, irq;
irq = platform_get_irq_byname(pdev, "alarm");
if (irq < 0)
return dev_err_probe(dev, irq, "Failed to get alarm IRQ!\n");
ret = devm_request_irq(dev, irq, rtca3_alarm_handler, 0, "rtca3-alarm", priv);
if (ret)
return dev_err_probe(dev, ret, "Failed to request alarm IRQ!\n");
priv->wakeup_irq = irq;
irq = platform_get_irq_byname(pdev, "period");
if (irq < 0)
return dev_err_probe(dev, irq, "Failed to get period IRQ!\n");
ret = devm_request_irq(dev, irq, rtca3_periodic_handler, 0, "rtca3-period", priv);
if (ret)
return dev_err_probe(dev, ret, "Failed to request period IRQ!\n");
/*
* Driver doesn't implement carry handler. Just get the IRQ here
* for backward compatibility, in case carry support will be added later.
*/
irq = platform_get_irq_byname(pdev, "carry");
if (irq < 0)
return dev_err_probe(dev, irq, "Failed to get carry IRQ!\n");
return 0;
}
static void rtca3_action(void *data)
{
struct device *dev = data;
struct rtca3_priv *priv = dev_get_drvdata(dev);
int ret;
ret = reset_control_assert(priv->rstc);
if (ret)
dev_err(dev, "Failed to de-assert reset!");
ret = pm_runtime_put_sync(dev);
if (ret < 0)
dev_err(dev, "Failed to runtime suspend!");
}
static int rtca3_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rtca3_priv *priv;
struct clk *clk;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
ret = devm_pm_runtime_enable(dev);
if (ret)
return ret;
priv->rstc = devm_reset_control_get_shared(dev, NULL);
if (IS_ERR(priv->rstc))
return PTR_ERR(priv->rstc);
ret = pm_runtime_resume_and_get(dev);
if (ret)
return ret;
ret = reset_control_deassert(priv->rstc);
if (ret) {
pm_runtime_put_sync(dev);
return ret;
}
dev_set_drvdata(dev, priv);
ret = devm_add_action_or_reset(dev, rtca3_action, dev);
if (ret)
return ret;
/*
* This must be an always-on clock to keep the RTC running even after
* driver is unbinded.
*/
clk = devm_clk_get_enabled(dev, "counter");
if (IS_ERR(clk))
return PTR_ERR(clk);
spin_lock_init(&priv->lock);
atomic_set(&priv->alrm_sstep, RTCA3_ALRM_SSTEP_DONE);
init_completion(&priv->set_alarm_completion);
ret = rtca3_initial_setup(clk, priv);
if (ret)
return dev_err_probe(dev, ret, "Failed to setup the RTC!\n");
ret = rtca3_request_irqs(pdev, priv);
if (ret)
return ret;
device_init_wakeup(&pdev->dev, true);
priv->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
if (IS_ERR(priv->rtc_dev))
return PTR_ERR(priv->rtc_dev);
priv->rtc_dev->ops = &rtca3_ops;
priv->rtc_dev->max_user_freq = 256;
priv->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_2000;
priv->rtc_dev->range_max = RTC_TIMESTAMP_END_2099;
return devm_rtc_register_device(priv->rtc_dev);
}
static void rtca3_remove(struct platform_device *pdev)
{
struct rtca3_priv *priv = platform_get_drvdata(pdev);
guard(spinlock_irqsave)(&priv->lock);
/*
* Disable alarm, periodic interrupts. The RTC device cannot
* power up the system.
*/
rtca3_alarm_irq_set_helper(priv, RTCA3_RCR1_AIE | RTCA3_RCR1_PIE, 0);
}
static int rtca3_suspend(struct device *dev)
{
struct rtca3_priv *priv = dev_get_drvdata(dev);
if (!device_may_wakeup(dev))
return 0;
/* Alarm setup in progress. */
if (atomic_read(&priv->alrm_sstep) != RTCA3_ALRM_SSTEP_DONE)
return -EBUSY;
enable_irq_wake(priv->wakeup_irq);
return 0;
}
static int rtca3_clean_alarm(struct rtca3_priv *priv)
{
struct rtc_device *rtc_dev = priv->rtc_dev;
time64_t alarm_time, now;
struct rtc_wkalrm alarm;
struct rtc_time tm;
u8 pending;
int ret;
ret = rtc_read_alarm(rtc_dev, &alarm);
if (ret)
return ret;
if (!alarm.enabled)
return 0;
ret = rtc_read_time(rtc_dev, &tm);
if (ret)
return ret;
alarm_time = rtc_tm_to_time64(&alarm.time);
now = rtc_tm_to_time64(&tm);
if (alarm_time >= now)
return 0;
/*
* Heuristically, it has been determined that when returning from deep
* sleep state the RTCA3_RSR.AF is zero even though the alarm expired.
* Call again the rtc_update_irq() if alarm helper detects this.
*/
guard(spinlock_irqsave)(&priv->lock);
pending = rtca3_alarm_handler_helper(priv);
if (!pending)
rtc_update_irq(priv->rtc_dev, 1, RTC_AF | RTC_IRQF);
return 0;
}
static int rtca3_resume(struct device *dev)
{
struct rtca3_priv *priv = dev_get_drvdata(dev);
if (!device_may_wakeup(dev))
return 0;
disable_irq_wake(priv->wakeup_irq);
/*
* According to the HW manual (section 22.6.4 Notes on writing to
* and reading from registers) we need to wait 1/128 seconds while
* RCR2.START = 1 to be able to read the counters after a return from low
* power consumption state.
*/
mdelay(8);
/*
* The alarm cannot wake the system from deep sleep states. In case
* we return from deep sleep states and the alarm expired we need
* to disable it to avoid failures when setting another alarm.
*/
return rtca3_clean_alarm(priv);
}
static DEFINE_SIMPLE_DEV_PM_OPS(rtca3_pm_ops, rtca3_suspend, rtca3_resume);
static const struct of_device_id rtca3_of_match[] = {
{ .compatible = "renesas,rz-rtca3", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rtca3_of_match);
static struct platform_driver rtca3_platform_driver = {
.driver = {
.name = "rtc-rtca3",
.pm = pm_ptr(&rtca3_pm_ops),
.of_match_table = rtca3_of_match,
},
.probe = rtca3_probe,
.remove = rtca3_remove,
};
module_platform_driver(rtca3_platform_driver);
MODULE_DESCRIPTION("Renesas RTCA-3 RTC driver");
MODULE_AUTHOR("Claudiu Beznea <claudiu.beznea.uj@bp.renesas.com>");
MODULE_LICENSE("GPL");
|