1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
|
// SPDX-License-Identifier: GPL-2.0
/*
* Memory bandwidth monitoring and allocation library
*
* Copyright (C) 2018 Intel Corporation
*
* Authors:
* Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>,
* Fenghua Yu <fenghua.yu@intel.com>
*/
#include "resctrl.h"
#define UNCORE_IMC "uncore_imc"
#define READ_FILE_NAME "events/cas_count_read"
#define DYN_PMU_PATH "/sys/bus/event_source/devices"
#define SCALE 0.00006103515625
#define MAX_IMCS 20
#define MAX_TOKENS 5
#define CON_MBM_LOCAL_BYTES_PATH \
"%s/%s/mon_data/mon_L3_%02d/mbm_local_bytes"
struct membw_read_format {
__u64 value; /* The value of the event */
__u64 time_enabled; /* if PERF_FORMAT_TOTAL_TIME_ENABLED */
__u64 time_running; /* if PERF_FORMAT_TOTAL_TIME_RUNNING */
__u64 id; /* if PERF_FORMAT_ID */
};
struct imc_counter_config {
__u32 type;
__u64 event;
__u64 umask;
struct perf_event_attr pe;
struct membw_read_format return_value;
int fd;
};
static char mbm_total_path[1024];
static int imcs;
static struct imc_counter_config imc_counters_config[MAX_IMCS];
static const struct resctrl_test *current_test;
static void read_mem_bw_initialize_perf_event_attr(int i)
{
memset(&imc_counters_config[i].pe, 0,
sizeof(struct perf_event_attr));
imc_counters_config[i].pe.type = imc_counters_config[i].type;
imc_counters_config[i].pe.size = sizeof(struct perf_event_attr);
imc_counters_config[i].pe.disabled = 1;
imc_counters_config[i].pe.inherit = 1;
imc_counters_config[i].pe.exclude_guest = 0;
imc_counters_config[i].pe.config =
imc_counters_config[i].umask << 8 |
imc_counters_config[i].event;
imc_counters_config[i].pe.sample_type = PERF_SAMPLE_IDENTIFIER;
imc_counters_config[i].pe.read_format =
PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING;
}
static void read_mem_bw_ioctl_perf_event_ioc_reset_enable(int i)
{
ioctl(imc_counters_config[i].fd, PERF_EVENT_IOC_RESET, 0);
ioctl(imc_counters_config[i].fd, PERF_EVENT_IOC_ENABLE, 0);
}
static void read_mem_bw_ioctl_perf_event_ioc_disable(int i)
{
ioctl(imc_counters_config[i].fd, PERF_EVENT_IOC_DISABLE, 0);
}
/*
* get_read_event_and_umask: Parse config into event and umask
* @cas_count_cfg: Config
* @count: iMC number
*/
static void get_read_event_and_umask(char *cas_count_cfg, int count)
{
char *token[MAX_TOKENS];
int i = 0;
token[0] = strtok(cas_count_cfg, "=,");
for (i = 1; i < MAX_TOKENS; i++)
token[i] = strtok(NULL, "=,");
for (i = 0; i < MAX_TOKENS - 1; i++) {
if (!token[i])
break;
if (strcmp(token[i], "event") == 0)
imc_counters_config[count].event = strtol(token[i + 1], NULL, 16);
if (strcmp(token[i], "umask") == 0)
imc_counters_config[count].umask = strtol(token[i + 1], NULL, 16);
}
}
static int open_perf_read_event(int i, int cpu_no)
{
imc_counters_config[i].fd =
perf_event_open(&imc_counters_config[i].pe, -1, cpu_no, -1,
PERF_FLAG_FD_CLOEXEC);
if (imc_counters_config[i].fd == -1) {
fprintf(stderr, "Error opening leader %llx\n",
imc_counters_config[i].pe.config);
return -1;
}
return 0;
}
/* Get type and config of an iMC counter's read event. */
static int read_from_imc_dir(char *imc_dir, int count)
{
char cas_count_cfg[1024], imc_counter_cfg[1024], imc_counter_type[1024];
FILE *fp;
/* Get type of iMC counter */
sprintf(imc_counter_type, "%s%s", imc_dir, "type");
fp = fopen(imc_counter_type, "r");
if (!fp) {
ksft_perror("Failed to open iMC counter type file");
return -1;
}
if (fscanf(fp, "%u", &imc_counters_config[count].type) <= 0) {
ksft_perror("Could not get iMC type");
fclose(fp);
return -1;
}
fclose(fp);
/* Get read config */
sprintf(imc_counter_cfg, "%s%s", imc_dir, READ_FILE_NAME);
fp = fopen(imc_counter_cfg, "r");
if (!fp) {
ksft_perror("Failed to open iMC config file");
return -1;
}
if (fscanf(fp, "%1023s", cas_count_cfg) <= 0) {
ksft_perror("Could not get iMC cas count read");
fclose(fp);
return -1;
}
fclose(fp);
get_read_event_and_umask(cas_count_cfg, count);
return 0;
}
/*
* A system can have 'n' number of iMC (Integrated Memory Controller)
* counters, get that 'n'. Discover the properties of the available
* counters in support of needed performance measurement via perf.
* For each iMC counter get it's type and config. Also obtain each
* counter's event and umask for the memory read events that will be
* measured.
*
* Enumerate all these details into an array of structures.
*
* Return: >= 0 on success. < 0 on failure.
*/
static int num_of_imcs(void)
{
char imc_dir[512], *temp;
unsigned int count = 0;
struct dirent *ep;
int ret;
DIR *dp;
dp = opendir(DYN_PMU_PATH);
if (dp) {
while ((ep = readdir(dp))) {
temp = strstr(ep->d_name, UNCORE_IMC);
if (!temp)
continue;
/*
* imc counters are named as "uncore_imc_<n>", hence
* increment the pointer to point to <n>. Note that
* sizeof(UNCORE_IMC) would count for null character as
* well and hence the last underscore character in
* uncore_imc'_' need not be counted.
*/
temp = temp + sizeof(UNCORE_IMC);
/*
* Some directories under "DYN_PMU_PATH" could have
* names like "uncore_imc_free_running", hence, check if
* first character is a numerical digit or not.
*/
if (temp[0] >= '0' && temp[0] <= '9') {
sprintf(imc_dir, "%s/%s/", DYN_PMU_PATH,
ep->d_name);
ret = read_from_imc_dir(imc_dir, count);
if (ret) {
closedir(dp);
return ret;
}
count++;
}
}
closedir(dp);
if (count == 0) {
ksft_print_msg("Unable to find iMC counters\n");
return -1;
}
} else {
ksft_perror("Unable to open PMU directory");
return -1;
}
return count;
}
int initialize_read_mem_bw_imc(void)
{
int imc;
imcs = num_of_imcs();
if (imcs <= 0)
return imcs;
/* Initialize perf_event_attr structures for all iMC's */
for (imc = 0; imc < imcs; imc++)
read_mem_bw_initialize_perf_event_attr(imc);
return 0;
}
static void perf_close_imc_read_mem_bw(void)
{
int mc;
for (mc = 0; mc < imcs; mc++) {
if (imc_counters_config[mc].fd != -1)
close(imc_counters_config[mc].fd);
}
}
/*
* perf_open_imc_read_mem_bw - Open perf fds for IMCs
* @cpu_no: CPU number that the benchmark PID is bound to
*
* Return: = 0 on success. < 0 on failure.
*/
static int perf_open_imc_read_mem_bw(int cpu_no)
{
int imc, ret;
for (imc = 0; imc < imcs; imc++)
imc_counters_config[imc].fd = -1;
for (imc = 0; imc < imcs; imc++) {
ret = open_perf_read_event(imc, cpu_no);
if (ret)
goto close_fds;
}
return 0;
close_fds:
perf_close_imc_read_mem_bw();
return -1;
}
/*
* do_imc_read_mem_bw_test - Perform memory bandwidth test
*
* Runs memory bandwidth test over one second period. Also, handles starting
* and stopping of the IMC perf counters around the test.
*/
static void do_imc_read_mem_bw_test(void)
{
int imc;
for (imc = 0; imc < imcs; imc++)
read_mem_bw_ioctl_perf_event_ioc_reset_enable(imc);
sleep(1);
/* Stop counters after a second to get results. */
for (imc = 0; imc < imcs; imc++)
read_mem_bw_ioctl_perf_event_ioc_disable(imc);
}
/*
* get_read_mem_bw_imc - Memory read bandwidth as reported by iMC counters
*
* Memory read bandwidth utilized by a process on a socket can be calculated
* using iMC counters' read events. Perf events are used to read these
* counters.
*
* Return: = 0 on success. < 0 on failure.
*/
static int get_read_mem_bw_imc(float *bw_imc)
{
float reads = 0, of_mul_read = 1;
int imc;
/*
* Log read event values from all iMC counters into
* struct imc_counter_config.
* Take overflow into consideration before calculating total bandwidth.
*/
for (imc = 0; imc < imcs; imc++) {
struct imc_counter_config *r =
&imc_counters_config[imc];
if (read(r->fd, &r->return_value,
sizeof(struct membw_read_format)) == -1) {
ksft_perror("Couldn't get read bandwidth through iMC");
return -1;
}
__u64 r_time_enabled = r->return_value.time_enabled;
__u64 r_time_running = r->return_value.time_running;
if (r_time_enabled != r_time_running)
of_mul_read = (float)r_time_enabled /
(float)r_time_running;
reads += r->return_value.value * of_mul_read * SCALE;
}
*bw_imc = reads;
return 0;
}
/*
* initialize_mem_bw_resctrl: Appropriately populate "mbm_total_path"
* @param: Parameters passed to resctrl_val()
* @domain_id: Domain ID (cache ID; for MB, L3 cache ID)
*/
void initialize_mem_bw_resctrl(const struct resctrl_val_param *param,
int domain_id)
{
sprintf(mbm_total_path, CON_MBM_LOCAL_BYTES_PATH, RESCTRL_PATH,
param->ctrlgrp, domain_id);
}
/*
* Open file to read MBM local bytes from resctrl FS
*/
static FILE *open_mem_bw_resctrl(const char *mbm_bw_file)
{
FILE *fp;
fp = fopen(mbm_bw_file, "r");
if (!fp)
ksft_perror("Failed to open total memory bandwidth file");
return fp;
}
/*
* Get MBM Local bytes as reported by resctrl FS
*/
static int get_mem_bw_resctrl(FILE *fp, unsigned long *mbm_total)
{
if (fscanf(fp, "%lu\n", mbm_total) <= 0) {
ksft_perror("Could not get MBM local bytes");
return -1;
}
return 0;
}
static pid_t bm_pid;
void ctrlc_handler(int signum, siginfo_t *info, void *ptr)
{
/* Only kill child after bm_pid is set after fork() */
if (bm_pid)
kill(bm_pid, SIGKILL);
umount_resctrlfs();
if (current_test && current_test->cleanup)
current_test->cleanup();
ksft_print_msg("Ending\n\n");
exit(EXIT_SUCCESS);
}
/*
* Register CTRL-C handler for parent, as it has to kill
* child process before exiting.
*/
int signal_handler_register(const struct resctrl_test *test)
{
struct sigaction sigact = {};
int ret = 0;
bm_pid = 0;
current_test = test;
sigact.sa_sigaction = ctrlc_handler;
sigemptyset(&sigact.sa_mask);
sigact.sa_flags = SA_SIGINFO;
if (sigaction(SIGINT, &sigact, NULL) ||
sigaction(SIGTERM, &sigact, NULL) ||
sigaction(SIGHUP, &sigact, NULL)) {
ksft_perror("sigaction");
ret = -1;
}
return ret;
}
/*
* Reset signal handler to SIG_DFL.
* Non-Value return because the caller should keep
* the error code of other path even if sigaction fails.
*/
void signal_handler_unregister(void)
{
struct sigaction sigact = {};
current_test = NULL;
sigact.sa_handler = SIG_DFL;
sigemptyset(&sigact.sa_mask);
if (sigaction(SIGINT, &sigact, NULL) ||
sigaction(SIGTERM, &sigact, NULL) ||
sigaction(SIGHUP, &sigact, NULL)) {
ksft_perror("sigaction");
}
}
/*
* print_results_bw: the memory bandwidth results are stored in a file
* @filename: file that stores the results
* @bm_pid: child pid that runs benchmark
* @bw_imc: perf imc counter value
* @bw_resc: memory bandwidth value
*
* Return: 0 on success, < 0 on error.
*/
static int print_results_bw(char *filename, pid_t bm_pid, float bw_imc,
unsigned long bw_resc)
{
unsigned long diff = fabs(bw_imc - bw_resc);
FILE *fp;
if (strcmp(filename, "stdio") == 0 || strcmp(filename, "stderr") == 0) {
printf("Pid: %d \t Mem_BW_iMC: %f \t ", (int)bm_pid, bw_imc);
printf("Mem_BW_resc: %lu \t Difference: %lu\n", bw_resc, diff);
} else {
fp = fopen(filename, "a");
if (!fp) {
ksft_perror("Cannot open results file");
return -1;
}
if (fprintf(fp, "Pid: %d \t Mem_BW_iMC: %f \t Mem_BW_resc: %lu \t Difference: %lu\n",
(int)bm_pid, bw_imc, bw_resc, diff) <= 0) {
ksft_print_msg("Could not log results\n");
fclose(fp);
return -1;
}
fclose(fp);
}
return 0;
}
/*
* measure_read_mem_bw - Measures read memory bandwidth numbers while benchmark runs
* @uparams: User supplied parameters
* @param: Parameters passed to resctrl_val()
* @bm_pid: PID that runs the benchmark
*
* Measure memory bandwidth from resctrl and from another source which is
* perf imc value or could be something else if perf imc event is not
* available. Compare the two values to validate resctrl value. It takes
* 1 sec to measure the data.
* resctrl does not distinguish between read and write operations so
* its data includes all memory operations.
*/
int measure_read_mem_bw(const struct user_params *uparams,
struct resctrl_val_param *param, pid_t bm_pid)
{
unsigned long bw_resc, bw_resc_start, bw_resc_end;
FILE *mem_bw_fp;
float bw_imc;
int ret;
mem_bw_fp = open_mem_bw_resctrl(mbm_total_path);
if (!mem_bw_fp)
return -1;
ret = perf_open_imc_read_mem_bw(uparams->cpu);
if (ret < 0)
goto close_fp;
ret = get_mem_bw_resctrl(mem_bw_fp, &bw_resc_start);
if (ret < 0)
goto close_imc;
rewind(mem_bw_fp);
do_imc_read_mem_bw_test();
ret = get_mem_bw_resctrl(mem_bw_fp, &bw_resc_end);
if (ret < 0)
goto close_imc;
ret = get_read_mem_bw_imc(&bw_imc);
if (ret < 0)
goto close_imc;
perf_close_imc_read_mem_bw();
fclose(mem_bw_fp);
bw_resc = (bw_resc_end - bw_resc_start) / MB;
return print_results_bw(param->filename, bm_pid, bw_imc, bw_resc);
close_imc:
perf_close_imc_read_mem_bw();
close_fp:
fclose(mem_bw_fp);
return ret;
}
/*
* resctrl_val: execute benchmark and measure memory bandwidth on
* the benchmark
* @test: test information structure
* @uparams: user supplied parameters
* @param: parameters passed to resctrl_val()
*
* Return: 0 when the test was run, < 0 on error.
*/
int resctrl_val(const struct resctrl_test *test,
const struct user_params *uparams,
struct resctrl_val_param *param)
{
unsigned char *buf = NULL;
cpu_set_t old_affinity;
int domain_id;
int ret = 0;
pid_t ppid;
if (strcmp(param->filename, "") == 0)
sprintf(param->filename, "stdio");
ret = get_domain_id(test->resource, uparams->cpu, &domain_id);
if (ret < 0) {
ksft_print_msg("Could not get domain ID\n");
return ret;
}
ppid = getpid();
/* Taskset test to specified CPU. */
ret = taskset_benchmark(ppid, uparams->cpu, &old_affinity);
if (ret)
return ret;
/* Write test to specified control & monitoring group in resctrl FS. */
ret = write_bm_pid_to_resctrl(ppid, param->ctrlgrp, param->mongrp);
if (ret)
goto reset_affinity;
if (param->init) {
ret = param->init(param, domain_id);
if (ret)
goto reset_affinity;
}
/*
* If not running user provided benchmark, run the default
* "fill_buf". First phase of "fill_buf" is to prepare the
* buffer that the benchmark will operate on. No measurements
* are needed during this phase and prepared memory will be
* passed to next part of benchmark via copy-on-write thus
* no impact on the benchmark that relies on reading from
* memory only.
*/
if (param->fill_buf) {
buf = alloc_buffer(param->fill_buf->buf_size,
param->fill_buf->memflush);
if (!buf) {
ret = -ENOMEM;
goto reset_affinity;
}
}
fflush(stdout);
bm_pid = fork();
if (bm_pid == -1) {
ret = -errno;
ksft_perror("Unable to fork");
goto free_buf;
}
/*
* What needs to be measured runs in separate process until
* terminated.
*/
if (bm_pid == 0) {
if (param->fill_buf)
fill_cache_read(buf, param->fill_buf->buf_size, false);
else if (uparams->benchmark_cmd[0])
execvp(uparams->benchmark_cmd[0], (char **)uparams->benchmark_cmd);
exit(EXIT_SUCCESS);
}
ksft_print_msg("Benchmark PID: %d\n", (int)bm_pid);
/* Give benchmark enough time to fully run. */
sleep(1);
/* Test runs until the callback setup() tells the test to stop. */
while (1) {
ret = param->setup(test, uparams, param);
if (ret == END_OF_TESTS) {
ret = 0;
break;
}
if (ret < 0)
break;
ret = param->measure(uparams, param, bm_pid);
if (ret)
break;
}
kill(bm_pid, SIGKILL);
free_buf:
free(buf);
reset_affinity:
taskset_restore(ppid, &old_affinity);
return ret;
}
|