1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
|
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "amdgpu.h"
#include "soc15.h"
#include "soc15_common.h"
#include "amdgpu_reg_state.h"
#include "amdgpu_xcp.h"
#include "gfx_v9_4_3.h"
#include "gfxhub_v1_2.h"
#include "sdma_v4_4_2.h"
#include "amdgpu_ip.h"
#define XCP_INST_MASK(num_inst, xcp_id) \
(num_inst ? GENMASK(num_inst - 1, 0) << (xcp_id * num_inst) : 0)
void aqua_vanjaram_doorbell_index_init(struct amdgpu_device *adev)
{
int i;
adev->doorbell_index.kiq = AMDGPU_DOORBELL_LAYOUT1_KIQ_START;
adev->doorbell_index.mec_ring0 = AMDGPU_DOORBELL_LAYOUT1_MEC_RING_START;
adev->doorbell_index.userqueue_start = AMDGPU_DOORBELL_LAYOUT1_USERQUEUE_START;
adev->doorbell_index.userqueue_end = AMDGPU_DOORBELL_LAYOUT1_USERQUEUE_END;
adev->doorbell_index.xcc_doorbell_range = AMDGPU_DOORBELL_LAYOUT1_XCC_RANGE;
adev->doorbell_index.sdma_doorbell_range = 20;
for (i = 0; i < adev->sdma.num_instances; i++)
adev->doorbell_index.sdma_engine[i] =
AMDGPU_DOORBELL_LAYOUT1_sDMA_ENGINE_START +
i * (adev->doorbell_index.sdma_doorbell_range >> 1);
adev->doorbell_index.ih = AMDGPU_DOORBELL_LAYOUT1_IH;
adev->doorbell_index.vcn.vcn_ring0_1 = AMDGPU_DOORBELL_LAYOUT1_VCN_START;
adev->doorbell_index.first_non_cp = AMDGPU_DOORBELL_LAYOUT1_FIRST_NON_CP;
adev->doorbell_index.last_non_cp = AMDGPU_DOORBELL_LAYOUT1_LAST_NON_CP;
adev->doorbell_index.max_assignment = AMDGPU_DOORBELL_LAYOUT1_MAX_ASSIGNMENT << 1;
}
/* Fixed pattern for smn addressing on different AIDs:
* bit[34]: indicate cross AID access
* bit[33:32]: indicate target AID id
* AID id range is 0 ~ 3 as maximum AID number is 4.
*/
u64 aqua_vanjaram_encode_ext_smn_addressing(int ext_id)
{
u64 ext_offset;
/* local routing and bit[34:32] will be zeros */
if (ext_id == 0)
return 0;
/* Initiated from host, accessing to all non-zero aids are cross traffic */
ext_offset = ((u64)(ext_id & 0x3) << 32) | (1ULL << 34);
return ext_offset;
}
static enum amdgpu_gfx_partition
__aqua_vanjaram_calc_xcp_mode(struct amdgpu_xcp_mgr *xcp_mgr)
{
struct amdgpu_device *adev = xcp_mgr->adev;
int num_xcc, num_xcc_per_xcp = 0, mode = 0;
num_xcc = NUM_XCC(xcp_mgr->adev->gfx.xcc_mask);
if (adev->gfx.funcs->get_xccs_per_xcp)
num_xcc_per_xcp = adev->gfx.funcs->get_xccs_per_xcp(adev);
if ((num_xcc_per_xcp) && (num_xcc % num_xcc_per_xcp == 0))
mode = num_xcc / num_xcc_per_xcp;
if (num_xcc_per_xcp == 1)
return AMDGPU_CPX_PARTITION_MODE;
switch (mode) {
case 1:
return AMDGPU_SPX_PARTITION_MODE;
case 2:
return AMDGPU_DPX_PARTITION_MODE;
case 3:
return AMDGPU_TPX_PARTITION_MODE;
case 4:
return AMDGPU_QPX_PARTITION_MODE;
default:
return AMDGPU_UNKNOWN_COMPUTE_PARTITION_MODE;
}
return AMDGPU_UNKNOWN_COMPUTE_PARTITION_MODE;
}
static int aqua_vanjaram_query_partition_mode(struct amdgpu_xcp_mgr *xcp_mgr)
{
enum amdgpu_gfx_partition derv_mode,
mode = AMDGPU_UNKNOWN_COMPUTE_PARTITION_MODE;
struct amdgpu_device *adev = xcp_mgr->adev;
derv_mode = __aqua_vanjaram_calc_xcp_mode(xcp_mgr);
if (amdgpu_sriov_vf(adev))
return derv_mode;
if (adev->nbio.funcs->get_compute_partition_mode) {
mode = adev->nbio.funcs->get_compute_partition_mode(adev);
if (mode != derv_mode) {
dev_warn(
adev->dev,
"Mismatch in compute partition mode - reported : %d derived : %d",
mode, derv_mode);
if (derv_mode == AMDGPU_UNKNOWN_COMPUTE_PARTITION_MODE)
amdgpu_device_bus_status_check(adev);
}
}
return mode;
}
static int __aqua_vanjaram_get_xcc_per_xcp(struct amdgpu_xcp_mgr *xcp_mgr, int mode)
{
int num_xcc, num_xcc_per_xcp = 0;
num_xcc = NUM_XCC(xcp_mgr->adev->gfx.xcc_mask);
switch (mode) {
case AMDGPU_SPX_PARTITION_MODE:
num_xcc_per_xcp = num_xcc;
break;
case AMDGPU_DPX_PARTITION_MODE:
num_xcc_per_xcp = num_xcc / 2;
break;
case AMDGPU_TPX_PARTITION_MODE:
num_xcc_per_xcp = num_xcc / 3;
break;
case AMDGPU_QPX_PARTITION_MODE:
num_xcc_per_xcp = num_xcc / 4;
break;
case AMDGPU_CPX_PARTITION_MODE:
num_xcc_per_xcp = 1;
break;
}
return num_xcc_per_xcp;
}
static int __aqua_vanjaram_get_xcp_ip_info(struct amdgpu_xcp_mgr *xcp_mgr, int xcp_id,
enum AMDGPU_XCP_IP_BLOCK ip_id,
struct amdgpu_xcp_ip *ip)
{
struct amdgpu_device *adev = xcp_mgr->adev;
int num_sdma, num_vcn, num_shared_vcn, num_xcp;
int num_xcc_xcp, num_sdma_xcp, num_vcn_xcp;
num_sdma = adev->sdma.num_instances;
num_vcn = adev->vcn.num_vcn_inst;
num_shared_vcn = 1;
num_xcc_xcp = adev->gfx.num_xcc_per_xcp;
num_xcp = NUM_XCC(adev->gfx.xcc_mask) / num_xcc_xcp;
switch (xcp_mgr->mode) {
case AMDGPU_SPX_PARTITION_MODE:
case AMDGPU_DPX_PARTITION_MODE:
case AMDGPU_TPX_PARTITION_MODE:
case AMDGPU_QPX_PARTITION_MODE:
case AMDGPU_CPX_PARTITION_MODE:
num_sdma_xcp = DIV_ROUND_UP(num_sdma, num_xcp);
num_vcn_xcp = DIV_ROUND_UP(num_vcn, num_xcp);
break;
default:
return -EINVAL;
}
if (num_vcn && num_xcp > num_vcn)
num_shared_vcn = num_xcp / num_vcn;
switch (ip_id) {
case AMDGPU_XCP_GFXHUB:
ip->inst_mask = XCP_INST_MASK(num_xcc_xcp, xcp_id);
ip->ip_funcs = &gfxhub_v1_2_xcp_funcs;
break;
case AMDGPU_XCP_GFX:
ip->inst_mask = XCP_INST_MASK(num_xcc_xcp, xcp_id);
ip->ip_funcs = &gfx_v9_4_3_xcp_funcs;
break;
case AMDGPU_XCP_SDMA:
ip->inst_mask = XCP_INST_MASK(num_sdma_xcp, xcp_id);
ip->ip_funcs = &sdma_v4_4_2_xcp_funcs;
break;
case AMDGPU_XCP_VCN:
ip->inst_mask =
XCP_INST_MASK(num_vcn_xcp, xcp_id / num_shared_vcn);
/* TODO : Assign IP funcs */
break;
default:
return -EINVAL;
}
ip->ip_id = ip_id;
return 0;
}
static int __aqua_vanjaram_get_px_mode_info(struct amdgpu_xcp_mgr *xcp_mgr,
int px_mode, int *num_xcp,
uint16_t *nps_modes)
{
struct amdgpu_device *adev = xcp_mgr->adev;
uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
if (!num_xcp || !nps_modes || !(xcp_mgr->supp_xcp_modes & BIT(px_mode)))
return -EINVAL;
switch (px_mode) {
case AMDGPU_SPX_PARTITION_MODE:
*num_xcp = 1;
*nps_modes = BIT(AMDGPU_NPS1_PARTITION_MODE);
break;
case AMDGPU_DPX_PARTITION_MODE:
*num_xcp = 2;
*nps_modes = BIT(AMDGPU_NPS1_PARTITION_MODE) |
BIT(AMDGPU_NPS2_PARTITION_MODE);
break;
case AMDGPU_TPX_PARTITION_MODE:
*num_xcp = 3;
*nps_modes = BIT(AMDGPU_NPS1_PARTITION_MODE) |
BIT(AMDGPU_NPS4_PARTITION_MODE);
break;
case AMDGPU_QPX_PARTITION_MODE:
*num_xcp = 4;
*nps_modes = BIT(AMDGPU_NPS1_PARTITION_MODE) |
BIT(AMDGPU_NPS4_PARTITION_MODE);
if (gc_ver == IP_VERSION(9, 5, 0))
*nps_modes |= BIT(AMDGPU_NPS2_PARTITION_MODE);
break;
case AMDGPU_CPX_PARTITION_MODE:
*num_xcp = NUM_XCC(adev->gfx.xcc_mask);
*nps_modes = BIT(AMDGPU_NPS1_PARTITION_MODE) |
BIT(AMDGPU_NPS4_PARTITION_MODE);
if (gc_ver == IP_VERSION(9, 5, 0))
*nps_modes |= BIT(AMDGPU_NPS2_PARTITION_MODE);
break;
default:
return -EINVAL;
}
return 0;
}
static int aqua_vanjaram_get_xcp_res_info(struct amdgpu_xcp_mgr *xcp_mgr,
int mode,
struct amdgpu_xcp_cfg *xcp_cfg)
{
struct amdgpu_device *adev = xcp_mgr->adev;
int max_res[AMDGPU_XCP_RES_MAX] = {};
bool res_lt_xcp;
int num_xcp, i, r;
u16 nps_modes;
if (!(xcp_mgr->supp_xcp_modes & BIT(mode)))
return -EINVAL;
max_res[AMDGPU_XCP_RES_XCC] = NUM_XCC(adev->gfx.xcc_mask);
max_res[AMDGPU_XCP_RES_DMA] = adev->sdma.num_instances;
max_res[AMDGPU_XCP_RES_DEC] = adev->vcn.num_vcn_inst;
max_res[AMDGPU_XCP_RES_JPEG] = adev->jpeg.num_jpeg_inst;
r = __aqua_vanjaram_get_px_mode_info(xcp_mgr, mode, &num_xcp, &nps_modes);
if (r)
return r;
xcp_cfg->compatible_nps_modes =
(adev->gmc.supported_nps_modes & nps_modes);
xcp_cfg->num_res = ARRAY_SIZE(max_res);
for (i = 0; i < xcp_cfg->num_res; i++) {
res_lt_xcp = max_res[i] < num_xcp;
xcp_cfg->xcp_res[i].id = i;
xcp_cfg->xcp_res[i].num_inst =
res_lt_xcp ? 1 : max_res[i] / num_xcp;
xcp_cfg->xcp_res[i].num_inst =
i == AMDGPU_XCP_RES_JPEG ?
xcp_cfg->xcp_res[i].num_inst *
adev->jpeg.num_jpeg_rings : xcp_cfg->xcp_res[i].num_inst;
xcp_cfg->xcp_res[i].num_shared =
res_lt_xcp ? num_xcp / max_res[i] : 1;
}
return 0;
}
static enum amdgpu_gfx_partition
__aqua_vanjaram_get_auto_mode(struct amdgpu_xcp_mgr *xcp_mgr)
{
struct amdgpu_device *adev = xcp_mgr->adev;
int num_xcc;
num_xcc = NUM_XCC(xcp_mgr->adev->gfx.xcc_mask);
if (adev->gmc.num_mem_partitions == 1)
return AMDGPU_SPX_PARTITION_MODE;
if (adev->gmc.num_mem_partitions == num_xcc)
return AMDGPU_CPX_PARTITION_MODE;
if (adev->gmc.num_mem_partitions == num_xcc / 2)
return (adev->flags & AMD_IS_APU) ? AMDGPU_TPX_PARTITION_MODE :
AMDGPU_CPX_PARTITION_MODE;
if (adev->gmc.num_mem_partitions == 2 && !(adev->flags & AMD_IS_APU))
return AMDGPU_DPX_PARTITION_MODE;
return AMDGPU_UNKNOWN_COMPUTE_PARTITION_MODE;
}
static bool __aqua_vanjaram_is_valid_mode(struct amdgpu_xcp_mgr *xcp_mgr,
enum amdgpu_gfx_partition mode)
{
struct amdgpu_device *adev = xcp_mgr->adev;
int num_xcc, num_xccs_per_xcp, r;
int num_xcp, nps_mode;
u16 supp_nps_modes;
bool comp_mode;
nps_mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
r = __aqua_vanjaram_get_px_mode_info(xcp_mgr, mode, &num_xcp,
&supp_nps_modes);
if (r)
return false;
comp_mode = !!(BIT(nps_mode) & supp_nps_modes);
num_xcc = NUM_XCC(adev->gfx.xcc_mask);
switch (mode) {
case AMDGPU_SPX_PARTITION_MODE:
return comp_mode && num_xcc > 0;
case AMDGPU_DPX_PARTITION_MODE:
return comp_mode && (num_xcc % 4) == 0;
case AMDGPU_TPX_PARTITION_MODE:
return comp_mode && ((num_xcc % 3) == 0);
case AMDGPU_QPX_PARTITION_MODE:
num_xccs_per_xcp = num_xcc / 4;
return comp_mode && (num_xccs_per_xcp >= 2);
case AMDGPU_CPX_PARTITION_MODE:
return comp_mode && (num_xcc > 1);
default:
return false;
}
return false;
}
static void __aqua_vanjaram_update_available_partition_mode(struct amdgpu_xcp_mgr *xcp_mgr)
{
int mode;
xcp_mgr->avail_xcp_modes = 0;
for_each_inst(mode, xcp_mgr->supp_xcp_modes) {
if (__aqua_vanjaram_is_valid_mode(xcp_mgr, mode))
xcp_mgr->avail_xcp_modes |= BIT(mode);
}
}
static int aqua_vanjaram_switch_partition_mode(struct amdgpu_xcp_mgr *xcp_mgr,
int mode, int *num_xcps)
{
int num_xcc_per_xcp, num_xcc, ret;
struct amdgpu_device *adev;
u32 flags = 0;
adev = xcp_mgr->adev;
num_xcc = NUM_XCC(adev->gfx.xcc_mask);
if (mode == AMDGPU_AUTO_COMPUTE_PARTITION_MODE) {
mode = __aqua_vanjaram_get_auto_mode(xcp_mgr);
if (mode == AMDGPU_UNKNOWN_COMPUTE_PARTITION_MODE) {
dev_err(adev->dev,
"Invalid config, no compatible compute partition mode found, available memory partitions: %d",
adev->gmc.num_mem_partitions);
return -EINVAL;
}
} else if (!__aqua_vanjaram_is_valid_mode(xcp_mgr, mode)) {
dev_err(adev->dev,
"Invalid compute partition mode requested, requested: %s, available memory partitions: %d",
amdgpu_gfx_compute_mode_desc(mode), adev->gmc.num_mem_partitions);
return -EINVAL;
}
if (adev->kfd.init_complete && !amdgpu_in_reset(adev))
flags |= AMDGPU_XCP_OPS_KFD;
if (flags & AMDGPU_XCP_OPS_KFD) {
ret = amdgpu_amdkfd_check_and_lock_kfd(adev);
if (ret)
goto out;
}
ret = amdgpu_xcp_pre_partition_switch(xcp_mgr, flags);
if (ret)
goto unlock;
num_xcc_per_xcp = __aqua_vanjaram_get_xcc_per_xcp(xcp_mgr, mode);
if (adev->gfx.funcs->switch_partition_mode)
adev->gfx.funcs->switch_partition_mode(xcp_mgr->adev,
num_xcc_per_xcp);
/* Init info about new xcps */
*num_xcps = num_xcc / num_xcc_per_xcp;
amdgpu_xcp_init(xcp_mgr, *num_xcps, mode);
ret = amdgpu_xcp_post_partition_switch(xcp_mgr, flags);
if (!ret)
__aqua_vanjaram_update_available_partition_mode(xcp_mgr);
unlock:
if (flags & AMDGPU_XCP_OPS_KFD)
amdgpu_amdkfd_unlock_kfd(adev);
out:
return ret;
}
static int __aqua_vanjaram_get_xcp_mem_id(struct amdgpu_device *adev,
int xcc_id, uint8_t *mem_id)
{
/* memory/spatial modes validation check is already done */
*mem_id = xcc_id / adev->gfx.num_xcc_per_xcp;
*mem_id /= adev->xcp_mgr->num_xcp_per_mem_partition;
return 0;
}
static int aqua_vanjaram_get_xcp_mem_id(struct amdgpu_xcp_mgr *xcp_mgr,
struct amdgpu_xcp *xcp, uint8_t *mem_id)
{
struct amdgpu_numa_info numa_info;
struct amdgpu_device *adev;
uint32_t xcc_mask;
int r, i, xcc_id;
adev = xcp_mgr->adev;
/* TODO: BIOS is not returning the right info now
* Check on this later
*/
/*
if (adev->gmc.gmc_funcs->query_mem_partition_mode)
mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
*/
if (adev->gmc.num_mem_partitions == 1) {
/* Only one range */
*mem_id = 0;
return 0;
}
r = amdgpu_xcp_get_inst_details(xcp, AMDGPU_XCP_GFX, &xcc_mask);
if (r || !xcc_mask)
return -EINVAL;
xcc_id = ffs(xcc_mask) - 1;
if (!adev->gmc.is_app_apu)
return __aqua_vanjaram_get_xcp_mem_id(adev, xcc_id, mem_id);
r = amdgpu_acpi_get_mem_info(adev, xcc_id, &numa_info);
if (r)
return r;
r = -EINVAL;
for (i = 0; i < adev->gmc.num_mem_partitions; ++i) {
if (adev->gmc.mem_partitions[i].numa.node == numa_info.nid) {
*mem_id = i;
r = 0;
break;
}
}
return r;
}
static int aqua_vanjaram_get_xcp_ip_details(struct amdgpu_xcp_mgr *xcp_mgr, int xcp_id,
enum AMDGPU_XCP_IP_BLOCK ip_id,
struct amdgpu_xcp_ip *ip)
{
if (!ip)
return -EINVAL;
return __aqua_vanjaram_get_xcp_ip_info(xcp_mgr, xcp_id, ip_id, ip);
}
struct amdgpu_xcp_mgr_funcs aqua_vanjaram_xcp_funcs = {
.switch_partition_mode = &aqua_vanjaram_switch_partition_mode,
.query_partition_mode = &aqua_vanjaram_query_partition_mode,
.get_ip_details = &aqua_vanjaram_get_xcp_ip_details,
.get_xcp_res_info = &aqua_vanjaram_get_xcp_res_info,
.get_xcp_mem_id = &aqua_vanjaram_get_xcp_mem_id,
};
static int aqua_vanjaram_xcp_mgr_init(struct amdgpu_device *adev)
{
int ret;
if (amdgpu_sriov_vf(adev))
aqua_vanjaram_xcp_funcs.switch_partition_mode = NULL;
ret = amdgpu_xcp_mgr_init(adev, AMDGPU_UNKNOWN_COMPUTE_PARTITION_MODE, 1,
&aqua_vanjaram_xcp_funcs);
if (ret)
return ret;
amdgpu_xcp_update_supported_modes(adev->xcp_mgr);
/* TODO: Default memory node affinity init */
return ret;
}
int aqua_vanjaram_init_soc_config(struct amdgpu_device *adev)
{
u32 mask, avail_inst, inst_mask = adev->sdma.sdma_mask;
int ret, i;
/* generally 1 AID supports 4 instances */
adev->sdma.num_inst_per_aid = 4;
adev->sdma.num_instances = NUM_SDMA(adev->sdma.sdma_mask);
adev->aid_mask = i = 1;
inst_mask >>= adev->sdma.num_inst_per_aid;
for (mask = (1 << adev->sdma.num_inst_per_aid) - 1; inst_mask;
inst_mask >>= adev->sdma.num_inst_per_aid, ++i) {
avail_inst = inst_mask & mask;
if (avail_inst == mask || avail_inst == 0x3 ||
avail_inst == 0xc)
adev->aid_mask |= (1 << i);
}
/* Harvest config is not used for aqua vanjaram. VCN and JPEGs will be
* addressed based on logical instance ids.
*/
adev->vcn.harvest_config = 0;
adev->vcn.num_inst_per_aid = 1;
adev->vcn.num_vcn_inst = hweight32(adev->vcn.inst_mask);
adev->jpeg.harvest_config = 0;
adev->jpeg.num_inst_per_aid = 1;
adev->jpeg.num_jpeg_inst = hweight32(adev->jpeg.inst_mask);
ret = aqua_vanjaram_xcp_mgr_init(adev);
if (ret)
return ret;
amdgpu_ip_map_init(adev);
return 0;
}
static void aqua_read_smn(struct amdgpu_device *adev,
struct amdgpu_smn_reg_data *regdata,
uint64_t smn_addr)
{
regdata->addr = smn_addr;
regdata->value = RREG32_PCIE(smn_addr);
}
struct aqua_reg_list {
uint64_t start_addr;
uint32_t num_regs;
uint32_t incrx;
};
#define DW_ADDR_INCR 4
static void aqua_read_smn_ext(struct amdgpu_device *adev,
struct amdgpu_smn_reg_data *regdata,
uint64_t smn_addr, int i)
{
regdata->addr =
smn_addr + adev->asic_funcs->encode_ext_smn_addressing(i);
regdata->value = RREG32_PCIE_EXT(regdata->addr);
}
#define smnreg_0x1A340218 0x1A340218
#define smnreg_0x1A3402E4 0x1A3402E4
#define smnreg_0x1A340294 0x1A340294
#define smreg_0x1A380088 0x1A380088
#define NUM_PCIE_SMN_REGS 14
static struct aqua_reg_list pcie_reg_addrs[] = {
{ smnreg_0x1A340218, 1, 0 },
{ smnreg_0x1A3402E4, 1, 0 },
{ smnreg_0x1A340294, 6, DW_ADDR_INCR },
{ smreg_0x1A380088, 6, DW_ADDR_INCR },
};
static ssize_t aqua_vanjaram_read_pcie_state(struct amdgpu_device *adev,
void *buf, size_t max_size)
{
struct amdgpu_reg_state_pcie_v1_0 *pcie_reg_state;
uint32_t start_addr, incrx, num_regs, szbuf;
struct amdgpu_regs_pcie_v1_0 *pcie_regs;
struct amdgpu_smn_reg_data *reg_data;
struct pci_dev *us_pdev, *ds_pdev;
int aer_cap, r, n;
if (!buf || !max_size)
return -EINVAL;
pcie_reg_state = (struct amdgpu_reg_state_pcie_v1_0 *)buf;
szbuf = sizeof(*pcie_reg_state) +
amdgpu_reginst_size(1, sizeof(*pcie_regs), NUM_PCIE_SMN_REGS);
/* Only one instance of pcie regs */
if (max_size < szbuf)
return -EOVERFLOW;
pcie_regs = (struct amdgpu_regs_pcie_v1_0 *)((uint8_t *)buf +
sizeof(*pcie_reg_state));
pcie_regs->inst_header.instance = 0;
pcie_regs->inst_header.state = AMDGPU_INST_S_OK;
pcie_regs->inst_header.num_smn_regs = NUM_PCIE_SMN_REGS;
reg_data = pcie_regs->smn_reg_values;
for (r = 0; r < ARRAY_SIZE(pcie_reg_addrs); r++) {
start_addr = pcie_reg_addrs[r].start_addr;
incrx = pcie_reg_addrs[r].incrx;
num_regs = pcie_reg_addrs[r].num_regs;
for (n = 0; n < num_regs; n++) {
aqua_read_smn(adev, reg_data, start_addr + n * incrx);
++reg_data;
}
}
ds_pdev = pci_upstream_bridge(adev->pdev);
us_pdev = pci_upstream_bridge(ds_pdev);
pcie_capability_read_word(us_pdev, PCI_EXP_DEVSTA,
&pcie_regs->device_status);
pcie_capability_read_word(us_pdev, PCI_EXP_LNKSTA,
&pcie_regs->link_status);
aer_cap = pci_find_ext_capability(us_pdev, PCI_EXT_CAP_ID_ERR);
if (aer_cap) {
pci_read_config_dword(us_pdev, aer_cap + PCI_ERR_COR_STATUS,
&pcie_regs->pcie_corr_err_status);
pci_read_config_dword(us_pdev, aer_cap + PCI_ERR_UNCOR_STATUS,
&pcie_regs->pcie_uncorr_err_status);
}
pci_read_config_dword(us_pdev, PCI_PRIMARY_BUS,
&pcie_regs->sub_bus_number_latency);
pcie_reg_state->common_header.structure_size = szbuf;
pcie_reg_state->common_header.format_revision = 1;
pcie_reg_state->common_header.content_revision = 0;
pcie_reg_state->common_header.state_type = AMDGPU_REG_STATE_TYPE_PCIE;
pcie_reg_state->common_header.num_instances = 1;
return pcie_reg_state->common_header.structure_size;
}
#define smnreg_0x11A00050 0x11A00050
#define smnreg_0x11A00180 0x11A00180
#define smnreg_0x11A00070 0x11A00070
#define smnreg_0x11A00200 0x11A00200
#define smnreg_0x11A0020C 0x11A0020C
#define smnreg_0x11A00210 0x11A00210
#define smnreg_0x11A00108 0x11A00108
#define XGMI_LINK_REG(smnreg, l) ((smnreg) | (l << 20))
#define NUM_XGMI_SMN_REGS 25
static struct aqua_reg_list xgmi_reg_addrs[] = {
{ smnreg_0x11A00050, 1, 0 },
{ smnreg_0x11A00180, 16, DW_ADDR_INCR },
{ smnreg_0x11A00070, 4, DW_ADDR_INCR },
{ smnreg_0x11A00200, 1, 0 },
{ smnreg_0x11A0020C, 1, 0 },
{ smnreg_0x11A00210, 1, 0 },
{ smnreg_0x11A00108, 1, 0 },
};
static ssize_t aqua_vanjaram_read_xgmi_state(struct amdgpu_device *adev,
void *buf, size_t max_size)
{
struct amdgpu_reg_state_xgmi_v1_0 *xgmi_reg_state;
uint32_t start_addr, incrx, num_regs, szbuf;
struct amdgpu_regs_xgmi_v1_0 *xgmi_regs;
struct amdgpu_smn_reg_data *reg_data;
const int max_xgmi_instances = 8;
int inst = 0, i, j, r, n;
const int xgmi_inst = 2;
void *p;
if (!buf || !max_size)
return -EINVAL;
xgmi_reg_state = (struct amdgpu_reg_state_xgmi_v1_0 *)buf;
szbuf = sizeof(*xgmi_reg_state) +
amdgpu_reginst_size(max_xgmi_instances, sizeof(*xgmi_regs),
NUM_XGMI_SMN_REGS);
/* Only one instance of pcie regs */
if (max_size < szbuf)
return -EOVERFLOW;
p = &xgmi_reg_state->xgmi_state_regs[0];
for_each_inst(i, adev->aid_mask) {
for (j = 0; j < xgmi_inst; ++j) {
xgmi_regs = (struct amdgpu_regs_xgmi_v1_0 *)p;
xgmi_regs->inst_header.instance = inst++;
xgmi_regs->inst_header.state = AMDGPU_INST_S_OK;
xgmi_regs->inst_header.num_smn_regs = NUM_XGMI_SMN_REGS;
reg_data = xgmi_regs->smn_reg_values;
for (r = 0; r < ARRAY_SIZE(xgmi_reg_addrs); r++) {
start_addr = xgmi_reg_addrs[r].start_addr;
incrx = xgmi_reg_addrs[r].incrx;
num_regs = xgmi_reg_addrs[r].num_regs;
for (n = 0; n < num_regs; n++) {
aqua_read_smn_ext(
adev, reg_data,
XGMI_LINK_REG(start_addr, j) +
n * incrx,
i);
++reg_data;
}
}
p = reg_data;
}
}
xgmi_reg_state->common_header.structure_size = szbuf;
xgmi_reg_state->common_header.format_revision = 1;
xgmi_reg_state->common_header.content_revision = 0;
xgmi_reg_state->common_header.state_type = AMDGPU_REG_STATE_TYPE_XGMI;
xgmi_reg_state->common_header.num_instances = max_xgmi_instances;
return xgmi_reg_state->common_header.structure_size;
}
#define smnreg_0x11C00070 0x11C00070
#define smnreg_0x11C00210 0x11C00210
static struct aqua_reg_list wafl_reg_addrs[] = {
{ smnreg_0x11C00070, 4, DW_ADDR_INCR },
{ smnreg_0x11C00210, 1, 0 },
};
#define WAFL_LINK_REG(smnreg, l) ((smnreg) | (l << 20))
#define NUM_WAFL_SMN_REGS 5
static ssize_t aqua_vanjaram_read_wafl_state(struct amdgpu_device *adev,
void *buf, size_t max_size)
{
struct amdgpu_reg_state_wafl_v1_0 *wafl_reg_state;
uint32_t start_addr, incrx, num_regs, szbuf;
struct amdgpu_regs_wafl_v1_0 *wafl_regs;
struct amdgpu_smn_reg_data *reg_data;
const int max_wafl_instances = 8;
int inst = 0, i, j, r, n;
const int wafl_inst = 2;
void *p;
if (!buf || !max_size)
return -EINVAL;
wafl_reg_state = (struct amdgpu_reg_state_wafl_v1_0 *)buf;
szbuf = sizeof(*wafl_reg_state) +
amdgpu_reginst_size(max_wafl_instances, sizeof(*wafl_regs),
NUM_WAFL_SMN_REGS);
if (max_size < szbuf)
return -EOVERFLOW;
p = &wafl_reg_state->wafl_state_regs[0];
for_each_inst(i, adev->aid_mask) {
for (j = 0; j < wafl_inst; ++j) {
wafl_regs = (struct amdgpu_regs_wafl_v1_0 *)p;
wafl_regs->inst_header.instance = inst++;
wafl_regs->inst_header.state = AMDGPU_INST_S_OK;
wafl_regs->inst_header.num_smn_regs = NUM_WAFL_SMN_REGS;
reg_data = wafl_regs->smn_reg_values;
for (r = 0; r < ARRAY_SIZE(wafl_reg_addrs); r++) {
start_addr = wafl_reg_addrs[r].start_addr;
incrx = wafl_reg_addrs[r].incrx;
num_regs = wafl_reg_addrs[r].num_regs;
for (n = 0; n < num_regs; n++) {
aqua_read_smn_ext(
adev, reg_data,
WAFL_LINK_REG(start_addr, j) +
n * incrx,
i);
++reg_data;
}
}
p = reg_data;
}
}
wafl_reg_state->common_header.structure_size = szbuf;
wafl_reg_state->common_header.format_revision = 1;
wafl_reg_state->common_header.content_revision = 0;
wafl_reg_state->common_header.state_type = AMDGPU_REG_STATE_TYPE_WAFL;
wafl_reg_state->common_header.num_instances = max_wafl_instances;
return wafl_reg_state->common_header.structure_size;
}
#define smnreg_0x1B311060 0x1B311060
#define smnreg_0x1B411060 0x1B411060
#define smnreg_0x1B511060 0x1B511060
#define smnreg_0x1B611060 0x1B611060
#define smnreg_0x1C307120 0x1C307120
#define smnreg_0x1C317120 0x1C317120
#define smnreg_0x1C320830 0x1C320830
#define smnreg_0x1C380830 0x1C380830
#define smnreg_0x1C3D0830 0x1C3D0830
#define smnreg_0x1C420830 0x1C420830
#define smnreg_0x1C320100 0x1C320100
#define smnreg_0x1C380100 0x1C380100
#define smnreg_0x1C3D0100 0x1C3D0100
#define smnreg_0x1C420100 0x1C420100
#define smnreg_0x1B310500 0x1B310500
#define smnreg_0x1C300400 0x1C300400
#define USR_CAKE_INCR 0x11000
#define USR_LINK_INCR 0x100000
#define USR_CP_INCR 0x10000
#define NUM_USR_SMN_REGS 20
struct aqua_reg_list usr_reg_addrs[] = {
{ smnreg_0x1B311060, 4, DW_ADDR_INCR },
{ smnreg_0x1B411060, 4, DW_ADDR_INCR },
{ smnreg_0x1B511060, 4, DW_ADDR_INCR },
{ smnreg_0x1B611060, 4, DW_ADDR_INCR },
{ smnreg_0x1C307120, 2, DW_ADDR_INCR },
{ smnreg_0x1C317120, 2, DW_ADDR_INCR },
};
#define NUM_USR1_SMN_REGS 46
struct aqua_reg_list usr1_reg_addrs[] = {
{ smnreg_0x1C320830, 6, USR_CAKE_INCR },
{ smnreg_0x1C380830, 5, USR_CAKE_INCR },
{ smnreg_0x1C3D0830, 5, USR_CAKE_INCR },
{ smnreg_0x1C420830, 4, USR_CAKE_INCR },
{ smnreg_0x1C320100, 6, USR_CAKE_INCR },
{ smnreg_0x1C380100, 5, USR_CAKE_INCR },
{ smnreg_0x1C3D0100, 5, USR_CAKE_INCR },
{ smnreg_0x1C420100, 4, USR_CAKE_INCR },
{ smnreg_0x1B310500, 4, USR_LINK_INCR },
{ smnreg_0x1C300400, 2, USR_CP_INCR },
};
static ssize_t aqua_vanjaram_read_usr_state(struct amdgpu_device *adev,
void *buf, size_t max_size,
int reg_state)
{
uint32_t start_addr, incrx, num_regs, szbuf, num_smn;
struct amdgpu_reg_state_usr_v1_0 *usr_reg_state;
struct amdgpu_regs_usr_v1_0 *usr_regs;
struct amdgpu_smn_reg_data *reg_data;
const int max_usr_instances = 4;
struct aqua_reg_list *reg_addrs;
int inst = 0, i, n, r, arr_size;
void *p;
if (!buf || !max_size)
return -EINVAL;
switch (reg_state) {
case AMDGPU_REG_STATE_TYPE_USR:
arr_size = ARRAY_SIZE(usr_reg_addrs);
reg_addrs = usr_reg_addrs;
num_smn = NUM_USR_SMN_REGS;
break;
case AMDGPU_REG_STATE_TYPE_USR_1:
arr_size = ARRAY_SIZE(usr1_reg_addrs);
reg_addrs = usr1_reg_addrs;
num_smn = NUM_USR1_SMN_REGS;
break;
default:
return -EINVAL;
}
usr_reg_state = (struct amdgpu_reg_state_usr_v1_0 *)buf;
szbuf = sizeof(*usr_reg_state) + amdgpu_reginst_size(max_usr_instances,
sizeof(*usr_regs),
num_smn);
if (max_size < szbuf)
return -EOVERFLOW;
p = &usr_reg_state->usr_state_regs[0];
for_each_inst(i, adev->aid_mask) {
usr_regs = (struct amdgpu_regs_usr_v1_0 *)p;
usr_regs->inst_header.instance = inst++;
usr_regs->inst_header.state = AMDGPU_INST_S_OK;
usr_regs->inst_header.num_smn_regs = num_smn;
reg_data = usr_regs->smn_reg_values;
for (r = 0; r < arr_size; r++) {
start_addr = reg_addrs[r].start_addr;
incrx = reg_addrs[r].incrx;
num_regs = reg_addrs[r].num_regs;
for (n = 0; n < num_regs; n++) {
aqua_read_smn_ext(adev, reg_data,
start_addr + n * incrx, i);
reg_data++;
}
}
p = reg_data;
}
usr_reg_state->common_header.structure_size = szbuf;
usr_reg_state->common_header.format_revision = 1;
usr_reg_state->common_header.content_revision = 0;
usr_reg_state->common_header.state_type = AMDGPU_REG_STATE_TYPE_USR;
usr_reg_state->common_header.num_instances = max_usr_instances;
return usr_reg_state->common_header.structure_size;
}
ssize_t aqua_vanjaram_get_reg_state(struct amdgpu_device *adev,
enum amdgpu_reg_state reg_state, void *buf,
size_t max_size)
{
ssize_t size;
switch (reg_state) {
case AMDGPU_REG_STATE_TYPE_PCIE:
size = aqua_vanjaram_read_pcie_state(adev, buf, max_size);
break;
case AMDGPU_REG_STATE_TYPE_XGMI:
size = aqua_vanjaram_read_xgmi_state(adev, buf, max_size);
break;
case AMDGPU_REG_STATE_TYPE_WAFL:
size = aqua_vanjaram_read_wafl_state(adev, buf, max_size);
break;
case AMDGPU_REG_STATE_TYPE_USR:
size = aqua_vanjaram_read_usr_state(adev, buf, max_size,
AMDGPU_REG_STATE_TYPE_USR);
break;
case AMDGPU_REG_STATE_TYPE_USR_1:
size = aqua_vanjaram_read_usr_state(
adev, buf, max_size, AMDGPU_REG_STATE_TYPE_USR_1);
break;
default:
return -EINVAL;
}
return size;
}
|