1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2024 NXP
*/
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/irqdomain.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#define USERINTERRUPTMASK(n) (0x8 + 4 * (n))
#define INTERRUPTENABLE(n) (0x10 + 4 * (n))
#define INTERRUPTPRESET(n) (0x18 + 4 * (n))
#define INTERRUPTCLEAR(n) (0x20 + 4 * (n))
#define INTERRUPTSTATUS(n) (0x28 + 4 * (n))
#define USERINTERRUPTENABLE(n) (0x40 + 4 * (n))
#define USERINTERRUPTPRESET(n) (0x48 + 4 * (n))
#define USERINTERRUPTCLEAR(n) (0x50 + 4 * (n))
#define USERINTERRUPTSTATUS(n) (0x58 + 4 * (n))
#define IRQ_COUNT 49
#define IRQ_RESERVED 35
#define REG_NUM 2
struct dc_ic_data {
struct regmap *regs;
struct clk *clk_axi;
int irq[IRQ_COUNT];
struct irq_domain *domain;
};
struct dc_ic_entry {
struct dc_ic_data *data;
int irq;
};
static const struct regmap_range dc_ic_regmap_write_ranges[] = {
regmap_reg_range(USERINTERRUPTMASK(0), INTERRUPTCLEAR(1)),
regmap_reg_range(USERINTERRUPTENABLE(0), USERINTERRUPTCLEAR(1)),
};
static const struct regmap_access_table dc_ic_regmap_write_table = {
.yes_ranges = dc_ic_regmap_write_ranges,
.n_yes_ranges = ARRAY_SIZE(dc_ic_regmap_write_ranges),
};
static const struct regmap_range dc_ic_regmap_read_ranges[] = {
regmap_reg_range(USERINTERRUPTMASK(0), INTERRUPTENABLE(1)),
regmap_reg_range(INTERRUPTSTATUS(0), INTERRUPTSTATUS(1)),
regmap_reg_range(USERINTERRUPTENABLE(0), USERINTERRUPTENABLE(1)),
regmap_reg_range(USERINTERRUPTSTATUS(0), USERINTERRUPTSTATUS(1)),
};
static const struct regmap_access_table dc_ic_regmap_read_table = {
.yes_ranges = dc_ic_regmap_read_ranges,
.n_yes_ranges = ARRAY_SIZE(dc_ic_regmap_read_ranges),
};
static const struct regmap_range dc_ic_regmap_volatile_ranges[] = {
regmap_reg_range(INTERRUPTPRESET(0), INTERRUPTCLEAR(1)),
regmap_reg_range(USERINTERRUPTPRESET(0), USERINTERRUPTCLEAR(1)),
};
static const struct regmap_access_table dc_ic_regmap_volatile_table = {
.yes_ranges = dc_ic_regmap_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(dc_ic_regmap_volatile_ranges),
};
static const struct regmap_config dc_ic_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.fast_io = true,
.wr_table = &dc_ic_regmap_write_table,
.rd_table = &dc_ic_regmap_read_table,
.volatile_table = &dc_ic_regmap_volatile_table,
.max_register = USERINTERRUPTSTATUS(1),
};
static void dc_ic_irq_handler(struct irq_desc *desc)
{
struct dc_ic_entry *entry = irq_desc_get_handler_data(desc);
struct dc_ic_data *data = entry->data;
unsigned int status, enable;
unsigned int virq;
chained_irq_enter(irq_desc_get_chip(desc), desc);
regmap_read(data->regs, USERINTERRUPTSTATUS(entry->irq / 32), &status);
regmap_read(data->regs, USERINTERRUPTENABLE(entry->irq / 32), &enable);
status &= enable;
if (status & BIT(entry->irq % 32)) {
virq = irq_find_mapping(data->domain, entry->irq);
if (virq)
generic_handle_irq(virq);
}
chained_irq_exit(irq_desc_get_chip(desc), desc);
}
static const unsigned long unused_irq[REG_NUM] = {0x00000000, 0xfffe0008};
static int dc_ic_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct irq_chip_generic *gc;
struct dc_ic_entry *entry;
struct irq_chip_type *ct;
struct dc_ic_data *data;
void __iomem *base;
int i, ret;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
entry = devm_kcalloc(dev, IRQ_COUNT, sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base)) {
dev_err(dev, "failed to initialize reg\n");
return PTR_ERR(base);
}
data->regs = devm_regmap_init_mmio(dev, base, &dc_ic_regmap_config);
if (IS_ERR(data->regs))
return PTR_ERR(data->regs);
data->clk_axi = devm_clk_get(dev, NULL);
if (IS_ERR(data->clk_axi))
return dev_err_probe(dev, PTR_ERR(data->clk_axi),
"failed to get AXI clock\n");
for (i = 0; i < IRQ_COUNT; i++) {
/* skip the reserved IRQ */
if (i == IRQ_RESERVED)
continue;
ret = platform_get_irq(pdev, i);
if (ret < 0)
return ret;
}
dev_set_drvdata(dev, data);
ret = devm_pm_runtime_enable(dev);
if (ret)
return ret;
ret = pm_runtime_resume_and_get(dev);
if (ret < 0) {
dev_err(dev, "failed to get runtime PM sync: %d\n", ret);
return ret;
}
for (i = 0; i < REG_NUM; i++) {
/* mask and clear all interrupts */
regmap_write(data->regs, USERINTERRUPTENABLE(i), 0x0);
regmap_write(data->regs, INTERRUPTENABLE(i), 0x0);
regmap_write(data->regs, USERINTERRUPTCLEAR(i), 0xffffffff);
regmap_write(data->regs, INTERRUPTCLEAR(i), 0xffffffff);
/* set all interrupts to user mode */
regmap_write(data->regs, USERINTERRUPTMASK(i), 0xffffffff);
}
data->domain = irq_domain_add_linear(dev->of_node, IRQ_COUNT,
&irq_generic_chip_ops, data);
if (!data->domain) {
dev_err(dev, "failed to create IRQ domain\n");
pm_runtime_put(dev);
return -ENOMEM;
}
irq_domain_set_pm_device(data->domain, dev);
ret = irq_alloc_domain_generic_chips(data->domain, 32, 1, "DC",
handle_level_irq, 0, 0, 0);
if (ret) {
dev_err(dev, "failed to alloc generic IRQ chips: %d\n", ret);
irq_domain_remove(data->domain);
pm_runtime_put(dev);
return ret;
}
for (i = 0; i < IRQ_COUNT; i += 32) {
gc = irq_get_domain_generic_chip(data->domain, i);
gc->reg_base = base;
gc->unused = unused_irq[i / 32];
ct = gc->chip_types;
ct->chip.irq_ack = irq_gc_ack_set_bit;
ct->chip.irq_mask = irq_gc_mask_clr_bit;
ct->chip.irq_unmask = irq_gc_mask_set_bit;
ct->regs.ack = USERINTERRUPTCLEAR(i / 32);
ct->regs.mask = USERINTERRUPTENABLE(i / 32);
}
for (i = 0; i < IRQ_COUNT; i++) {
/* skip the reserved IRQ */
if (i == IRQ_RESERVED)
continue;
data->irq[i] = irq_of_parse_and_map(dev->of_node, i);
entry[i].data = data;
entry[i].irq = i;
irq_set_chained_handler_and_data(data->irq[i],
dc_ic_irq_handler, &entry[i]);
}
return 0;
}
static void dc_ic_remove(struct platform_device *pdev)
{
struct dc_ic_data *data = dev_get_drvdata(&pdev->dev);
int i;
for (i = 0; i < IRQ_COUNT; i++) {
if (i == IRQ_RESERVED)
continue;
irq_set_chained_handler_and_data(data->irq[i], NULL, NULL);
}
irq_domain_remove(data->domain);
pm_runtime_put_sync(&pdev->dev);
}
static int dc_ic_runtime_suspend(struct device *dev)
{
struct dc_ic_data *data = dev_get_drvdata(dev);
clk_disable_unprepare(data->clk_axi);
return 0;
}
static int dc_ic_runtime_resume(struct device *dev)
{
struct dc_ic_data *data = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(data->clk_axi);
if (ret)
dev_err(dev, "failed to enable AXI clock: %d\n", ret);
return ret;
}
static const struct dev_pm_ops dc_ic_pm_ops = {
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
RUNTIME_PM_OPS(dc_ic_runtime_suspend, dc_ic_runtime_resume, NULL)
};
static const struct of_device_id dc_ic_dt_ids[] = {
{ .compatible = "fsl,imx8qxp-dc-intc", },
{ /* sentinel */ }
};
struct platform_driver dc_ic_driver = {
.probe = dc_ic_probe,
.remove = dc_ic_remove,
.driver = {
.name = "imx8-dc-intc",
.suppress_bind_attrs = true,
.of_match_table = dc_ic_dt_ids,
.pm = pm_sleep_ptr(&dc_ic_pm_ops),
},
};
|