1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2023 Intel Corporation
*/
#include "xe_pat.h"
#include <uapi/drm/xe_drm.h>
#include <generated/xe_wa_oob.h>
#include "regs/xe_reg_defs.h"
#include "xe_assert.h"
#include "xe_device.h"
#include "xe_force_wake.h"
#include "xe_gt.h"
#include "xe_gt_mcr.h"
#include "xe_mmio.h"
#include "xe_sriov.h"
#include "xe_wa.h"
#define _PAT_ATS 0x47fc
#define _PAT_INDEX(index) _PICK_EVEN_2RANGES(index, 8, \
0x4800, 0x4804, \
0x4848, 0x484c)
#define _PAT_PTA 0x4820
#define XE2_NO_PROMOTE REG_BIT(10)
#define XE2_COMP_EN REG_BIT(9)
#define XE2_L3_CLOS REG_GENMASK(7, 6)
#define XE2_L3_POLICY REG_GENMASK(5, 4)
#define XE2_L4_POLICY REG_GENMASK(3, 2)
#define XE2_COH_MODE REG_GENMASK(1, 0)
#define XELPG_L4_POLICY_MASK REG_GENMASK(3, 2)
#define XELPG_PAT_3_UC REG_FIELD_PREP(XELPG_L4_POLICY_MASK, 3)
#define XELPG_PAT_1_WT REG_FIELD_PREP(XELPG_L4_POLICY_MASK, 1)
#define XELPG_PAT_0_WB REG_FIELD_PREP(XELPG_L4_POLICY_MASK, 0)
#define XELPG_INDEX_COH_MODE_MASK REG_GENMASK(1, 0)
#define XELPG_3_COH_2W REG_FIELD_PREP(XELPG_INDEX_COH_MODE_MASK, 3)
#define XELPG_2_COH_1W REG_FIELD_PREP(XELPG_INDEX_COH_MODE_MASK, 2)
#define XELPG_0_COH_NON REG_FIELD_PREP(XELPG_INDEX_COH_MODE_MASK, 0)
#define XEHPC_CLOS_LEVEL_MASK REG_GENMASK(3, 2)
#define XEHPC_PAT_CLOS(x) REG_FIELD_PREP(XEHPC_CLOS_LEVEL_MASK, x)
#define XELP_MEM_TYPE_MASK REG_GENMASK(1, 0)
#define XELP_PAT_WB REG_FIELD_PREP(XELP_MEM_TYPE_MASK, 3)
#define XELP_PAT_WT REG_FIELD_PREP(XELP_MEM_TYPE_MASK, 2)
#define XELP_PAT_WC REG_FIELD_PREP(XELP_MEM_TYPE_MASK, 1)
#define XELP_PAT_UC REG_FIELD_PREP(XELP_MEM_TYPE_MASK, 0)
static const char *XELP_MEM_TYPE_STR_MAP[] = { "UC", "WC", "WT", "WB" };
struct xe_pat_ops {
void (*program_graphics)(struct xe_gt *gt, const struct xe_pat_table_entry table[],
int n_entries);
void (*program_media)(struct xe_gt *gt, const struct xe_pat_table_entry table[],
int n_entries);
void (*dump)(struct xe_gt *gt, struct drm_printer *p);
};
static const struct xe_pat_table_entry xelp_pat_table[] = {
[0] = { XELP_PAT_WB, XE_COH_AT_LEAST_1WAY },
[1] = { XELP_PAT_WC, XE_COH_NONE },
[2] = { XELP_PAT_WT, XE_COH_NONE },
[3] = { XELP_PAT_UC, XE_COH_NONE },
};
static const struct xe_pat_table_entry xehpc_pat_table[] = {
[0] = { XELP_PAT_UC, XE_COH_NONE },
[1] = { XELP_PAT_WC, XE_COH_NONE },
[2] = { XELP_PAT_WT, XE_COH_NONE },
[3] = { XELP_PAT_WB, XE_COH_AT_LEAST_1WAY },
[4] = { XEHPC_PAT_CLOS(1) | XELP_PAT_WT, XE_COH_NONE },
[5] = { XEHPC_PAT_CLOS(1) | XELP_PAT_WB, XE_COH_AT_LEAST_1WAY },
[6] = { XEHPC_PAT_CLOS(2) | XELP_PAT_WT, XE_COH_NONE },
[7] = { XEHPC_PAT_CLOS(2) | XELP_PAT_WB, XE_COH_AT_LEAST_1WAY },
};
static const struct xe_pat_table_entry xelpg_pat_table[] = {
[0] = { XELPG_PAT_0_WB, XE_COH_NONE },
[1] = { XELPG_PAT_1_WT, XE_COH_NONE },
[2] = { XELPG_PAT_3_UC, XE_COH_NONE },
[3] = { XELPG_PAT_0_WB | XELPG_2_COH_1W, XE_COH_AT_LEAST_1WAY },
[4] = { XELPG_PAT_0_WB | XELPG_3_COH_2W, XE_COH_AT_LEAST_1WAY },
};
/*
* The Xe2 table is getting large/complicated so it's easier to review if
* provided in a form that exactly matches the bspec's formatting. The meaning
* of the fields here are:
* - no_promote: 0=promotable, 1=no promote
* - comp_en: 0=disable, 1=enable
* - l3clos: L3 class of service (0-3)
* - l3_policy: 0=WB, 1=XD ("WB - Transient Display"), 3=UC
* - l4_policy: 0=WB, 1=WT, 3=UC
* - coh_mode: 0=no snoop, 2=1-way coherent, 3=2-way coherent
*
* Reserved entries should be programmed with the maximum caching, minimum
* coherency (which matches an all-0's encoding), so we can just omit them
* in the table.
*
* Note: There is an implicit assumption in the driver that compression and
* coh_1way+ are mutually exclusive. If this is ever not true then userptr
* and imported dma-buf from external device will have uncleared ccs state. See
* also xe_bo_needs_ccs_pages().
*/
#define XE2_PAT(no_promote, comp_en, l3clos, l3_policy, l4_policy, __coh_mode) \
{ \
.value = (no_promote ? XE2_NO_PROMOTE : 0) | \
(comp_en ? XE2_COMP_EN : 0) | \
REG_FIELD_PREP(XE2_L3_CLOS, l3clos) | \
REG_FIELD_PREP(XE2_L3_POLICY, l3_policy) | \
REG_FIELD_PREP(XE2_L4_POLICY, l4_policy) | \
REG_FIELD_PREP(XE2_COH_MODE, __coh_mode), \
.coh_mode = (BUILD_BUG_ON_ZERO(__coh_mode && comp_en) || __coh_mode) ? \
XE_COH_AT_LEAST_1WAY : XE_COH_NONE \
}
static const struct xe_pat_table_entry xe2_pat_table[] = {
[ 0] = XE2_PAT( 0, 0, 0, 0, 3, 0 ),
[ 1] = XE2_PAT( 0, 0, 0, 0, 3, 2 ),
[ 2] = XE2_PAT( 0, 0, 0, 0, 3, 3 ),
[ 3] = XE2_PAT( 0, 0, 0, 3, 3, 0 ),
[ 4] = XE2_PAT( 0, 0, 0, 3, 0, 2 ),
[ 5] = XE2_PAT( 0, 0, 0, 3, 3, 2 ),
[ 6] = XE2_PAT( 1, 0, 0, 1, 3, 0 ),
[ 7] = XE2_PAT( 0, 0, 0, 3, 0, 3 ),
[ 8] = XE2_PAT( 0, 0, 0, 3, 0, 0 ),
[ 9] = XE2_PAT( 0, 1, 0, 0, 3, 0 ),
[10] = XE2_PAT( 0, 1, 0, 3, 0, 0 ),
[11] = XE2_PAT( 1, 1, 0, 1, 3, 0 ),
[12] = XE2_PAT( 0, 1, 0, 3, 3, 0 ),
[13] = XE2_PAT( 0, 0, 0, 0, 0, 0 ),
[14] = XE2_PAT( 0, 1, 0, 0, 0, 0 ),
[15] = XE2_PAT( 1, 1, 0, 1, 1, 0 ),
/* 16..19 are reserved; leave set to all 0's */
[20] = XE2_PAT( 0, 0, 1, 0, 3, 0 ),
[21] = XE2_PAT( 0, 1, 1, 0, 3, 0 ),
[22] = XE2_PAT( 0, 0, 1, 0, 3, 2 ),
[23] = XE2_PAT( 0, 0, 1, 0, 3, 3 ),
[24] = XE2_PAT( 0, 0, 2, 0, 3, 0 ),
[25] = XE2_PAT( 0, 1, 2, 0, 3, 0 ),
[26] = XE2_PAT( 0, 0, 2, 0, 3, 2 ),
[27] = XE2_PAT( 0, 0, 2, 0, 3, 3 ),
[28] = XE2_PAT( 0, 0, 3, 0, 3, 0 ),
[29] = XE2_PAT( 0, 1, 3, 0, 3, 0 ),
[30] = XE2_PAT( 0, 0, 3, 0, 3, 2 ),
[31] = XE2_PAT( 0, 0, 3, 0, 3, 3 ),
};
/* Special PAT values programmed outside the main table */
static const struct xe_pat_table_entry xe2_pat_ats = XE2_PAT( 0, 0, 0, 0, 3, 3 );
static const struct xe_pat_table_entry xe2_pat_pta = XE2_PAT( 0, 0, 0, 0, 3, 0 );
u16 xe_pat_index_get_coh_mode(struct xe_device *xe, u16 pat_index)
{
WARN_ON(pat_index >= xe->pat.n_entries);
return xe->pat.table[pat_index].coh_mode;
}
static void program_pat(struct xe_gt *gt, const struct xe_pat_table_entry table[],
int n_entries)
{
struct xe_device *xe = gt_to_xe(gt);
for (int i = 0; i < n_entries; i++) {
struct xe_reg reg = XE_REG(_PAT_INDEX(i));
xe_mmio_write32(>->mmio, reg, table[i].value);
}
if (xe->pat.pat_ats)
xe_mmio_write32(>->mmio, XE_REG(_PAT_ATS), xe->pat.pat_ats->value);
if (xe->pat.pat_pta)
xe_mmio_write32(>->mmio, XE_REG(_PAT_PTA), xe->pat.pat_pta->value);
}
static void program_pat_mcr(struct xe_gt *gt, const struct xe_pat_table_entry table[],
int n_entries)
{
struct xe_device *xe = gt_to_xe(gt);
for (int i = 0; i < n_entries; i++) {
struct xe_reg_mcr reg_mcr = XE_REG_MCR(_PAT_INDEX(i));
xe_gt_mcr_multicast_write(gt, reg_mcr, table[i].value);
}
if (xe->pat.pat_ats)
xe_gt_mcr_multicast_write(gt, XE_REG_MCR(_PAT_ATS), xe->pat.pat_ats->value);
if (xe->pat.pat_pta)
xe_gt_mcr_multicast_write(gt, XE_REG_MCR(_PAT_PTA), xe->pat.pat_pta->value);
}
static void xelp_dump(struct xe_gt *gt, struct drm_printer *p)
{
struct xe_device *xe = gt_to_xe(gt);
unsigned int fw_ref;
int i;
fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (!fw_ref)
return;
drm_printf(p, "PAT table:\n");
for (i = 0; i < xe->pat.n_entries; i++) {
u32 pat = xe_mmio_read32(>->mmio, XE_REG(_PAT_INDEX(i)));
u8 mem_type = REG_FIELD_GET(XELP_MEM_TYPE_MASK, pat);
drm_printf(p, "PAT[%2d] = %s (%#8x)\n", i,
XELP_MEM_TYPE_STR_MAP[mem_type], pat);
}
xe_force_wake_put(gt_to_fw(gt), fw_ref);
}
static const struct xe_pat_ops xelp_pat_ops = {
.program_graphics = program_pat,
.dump = xelp_dump,
};
static void xehp_dump(struct xe_gt *gt, struct drm_printer *p)
{
struct xe_device *xe = gt_to_xe(gt);
unsigned int fw_ref;
int i;
fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (!fw_ref)
return;
drm_printf(p, "PAT table:\n");
for (i = 0; i < xe->pat.n_entries; i++) {
u32 pat = xe_gt_mcr_unicast_read_any(gt, XE_REG_MCR(_PAT_INDEX(i)));
u8 mem_type;
mem_type = REG_FIELD_GET(XELP_MEM_TYPE_MASK, pat);
drm_printf(p, "PAT[%2d] = %s (%#8x)\n", i,
XELP_MEM_TYPE_STR_MAP[mem_type], pat);
}
xe_force_wake_put(gt_to_fw(gt), fw_ref);
}
static const struct xe_pat_ops xehp_pat_ops = {
.program_graphics = program_pat_mcr,
.dump = xehp_dump,
};
static void xehpc_dump(struct xe_gt *gt, struct drm_printer *p)
{
struct xe_device *xe = gt_to_xe(gt);
unsigned int fw_ref;
int i;
fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (!fw_ref)
return;
drm_printf(p, "PAT table:\n");
for (i = 0; i < xe->pat.n_entries; i++) {
u32 pat = xe_gt_mcr_unicast_read_any(gt, XE_REG_MCR(_PAT_INDEX(i)));
drm_printf(p, "PAT[%2d] = [ %u, %u ] (%#8x)\n", i,
REG_FIELD_GET(XELP_MEM_TYPE_MASK, pat),
REG_FIELD_GET(XEHPC_CLOS_LEVEL_MASK, pat), pat);
}
xe_force_wake_put(gt_to_fw(gt), fw_ref);
}
static const struct xe_pat_ops xehpc_pat_ops = {
.program_graphics = program_pat_mcr,
.dump = xehpc_dump,
};
static void xelpg_dump(struct xe_gt *gt, struct drm_printer *p)
{
struct xe_device *xe = gt_to_xe(gt);
unsigned int fw_ref;
int i;
fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (!fw_ref)
return;
drm_printf(p, "PAT table:\n");
for (i = 0; i < xe->pat.n_entries; i++) {
u32 pat;
if (xe_gt_is_media_type(gt))
pat = xe_mmio_read32(>->mmio, XE_REG(_PAT_INDEX(i)));
else
pat = xe_gt_mcr_unicast_read_any(gt, XE_REG_MCR(_PAT_INDEX(i)));
drm_printf(p, "PAT[%2d] = [ %u, %u ] (%#8x)\n", i,
REG_FIELD_GET(XELPG_L4_POLICY_MASK, pat),
REG_FIELD_GET(XELPG_INDEX_COH_MODE_MASK, pat), pat);
}
xe_force_wake_put(gt_to_fw(gt), fw_ref);
}
/*
* SAMedia register offsets are adjusted by the write methods and they target
* registers that are not MCR, while for normal GT they are MCR
*/
static const struct xe_pat_ops xelpg_pat_ops = {
.program_graphics = program_pat,
.program_media = program_pat_mcr,
.dump = xelpg_dump,
};
static void xe2_dump(struct xe_gt *gt, struct drm_printer *p)
{
struct xe_device *xe = gt_to_xe(gt);
unsigned int fw_ref;
u32 pat;
int i;
fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (!fw_ref)
return;
drm_printf(p, "PAT table:\n");
for (i = 0; i < xe->pat.n_entries; i++) {
if (xe_gt_is_media_type(gt))
pat = xe_mmio_read32(>->mmio, XE_REG(_PAT_INDEX(i)));
else
pat = xe_gt_mcr_unicast_read_any(gt, XE_REG_MCR(_PAT_INDEX(i)));
drm_printf(p, "PAT[%2d] = [ %u, %u, %u, %u, %u, %u ] (%#8x)\n", i,
!!(pat & XE2_NO_PROMOTE),
!!(pat & XE2_COMP_EN),
REG_FIELD_GET(XE2_L3_CLOS, pat),
REG_FIELD_GET(XE2_L3_POLICY, pat),
REG_FIELD_GET(XE2_L4_POLICY, pat),
REG_FIELD_GET(XE2_COH_MODE, pat),
pat);
}
/*
* Also print PTA_MODE, which describes how the hardware accesses
* PPGTT entries.
*/
if (xe_gt_is_media_type(gt))
pat = xe_mmio_read32(>->mmio, XE_REG(_PAT_PTA));
else
pat = xe_gt_mcr_unicast_read_any(gt, XE_REG_MCR(_PAT_PTA));
drm_printf(p, "Page Table Access:\n");
drm_printf(p, "PTA_MODE= [ %u, %u, %u, %u, %u, %u ] (%#8x)\n",
!!(pat & XE2_NO_PROMOTE),
!!(pat & XE2_COMP_EN),
REG_FIELD_GET(XE2_L3_CLOS, pat),
REG_FIELD_GET(XE2_L3_POLICY, pat),
REG_FIELD_GET(XE2_L4_POLICY, pat),
REG_FIELD_GET(XE2_COH_MODE, pat),
pat);
xe_force_wake_put(gt_to_fw(gt), fw_ref);
}
static const struct xe_pat_ops xe2_pat_ops = {
.program_graphics = program_pat_mcr,
.program_media = program_pat,
.dump = xe2_dump,
};
void xe_pat_init_early(struct xe_device *xe)
{
if (GRAPHICS_VER(xe) == 30 || GRAPHICS_VER(xe) == 20) {
xe->pat.ops = &xe2_pat_ops;
xe->pat.table = xe2_pat_table;
xe->pat.pat_ats = &xe2_pat_ats;
if (IS_DGFX(xe))
xe->pat.pat_pta = &xe2_pat_pta;
/* Wa_16023588340. XXX: Should use XE_WA */
if (GRAPHICS_VERx100(xe) == 2001)
xe->pat.n_entries = 28; /* Disable CLOS3 */
else
xe->pat.n_entries = ARRAY_SIZE(xe2_pat_table);
xe->pat.idx[XE_CACHE_NONE] = 3;
xe->pat.idx[XE_CACHE_WT] = 15;
xe->pat.idx[XE_CACHE_WB] = 2;
xe->pat.idx[XE_CACHE_NONE_COMPRESSION] = 12; /*Applicable on xe2 and beyond */
} else if (xe->info.platform == XE_METEORLAKE) {
xe->pat.ops = &xelpg_pat_ops;
xe->pat.table = xelpg_pat_table;
xe->pat.n_entries = ARRAY_SIZE(xelpg_pat_table);
xe->pat.idx[XE_CACHE_NONE] = 2;
xe->pat.idx[XE_CACHE_WT] = 1;
xe->pat.idx[XE_CACHE_WB] = 3;
} else if (xe->info.platform == XE_PVC) {
xe->pat.ops = &xehpc_pat_ops;
xe->pat.table = xehpc_pat_table;
xe->pat.n_entries = ARRAY_SIZE(xehpc_pat_table);
xe->pat.idx[XE_CACHE_NONE] = 0;
xe->pat.idx[XE_CACHE_WT] = 2;
xe->pat.idx[XE_CACHE_WB] = 3;
} else if (xe->info.platform == XE_DG2) {
/*
* Table is the same as previous platforms, but programming
* method has changed.
*/
xe->pat.ops = &xehp_pat_ops;
xe->pat.table = xelp_pat_table;
xe->pat.n_entries = ARRAY_SIZE(xelp_pat_table);
xe->pat.idx[XE_CACHE_NONE] = 3;
xe->pat.idx[XE_CACHE_WT] = 2;
xe->pat.idx[XE_CACHE_WB] = 0;
} else if (GRAPHICS_VERx100(xe) <= 1210) {
WARN_ON_ONCE(!IS_DGFX(xe) && !xe->info.has_llc);
xe->pat.ops = &xelp_pat_ops;
xe->pat.table = xelp_pat_table;
xe->pat.n_entries = ARRAY_SIZE(xelp_pat_table);
xe->pat.idx[XE_CACHE_NONE] = 3;
xe->pat.idx[XE_CACHE_WT] = 2;
xe->pat.idx[XE_CACHE_WB] = 0;
} else {
/*
* Going forward we expect to need new PAT settings for most
* new platforms; failure to provide a new table can easily
* lead to subtle, hard-to-debug problems. If none of the
* conditions above match the platform we're running on we'll
* raise an error rather than trying to silently inherit the
* most recent platform's behavior.
*/
drm_err(&xe->drm, "Missing PAT table for platform with graphics version %d.%02d!\n",
GRAPHICS_VER(xe), GRAPHICS_VERx100(xe) % 100);
}
/* VFs can't program nor dump PAT settings */
if (IS_SRIOV_VF(xe))
xe->pat.ops = NULL;
xe_assert(xe, !xe->pat.ops || xe->pat.ops->dump);
xe_assert(xe, !xe->pat.ops || xe->pat.ops->program_graphics);
xe_assert(xe, !xe->pat.ops || MEDIA_VER(xe) < 13 || xe->pat.ops->program_media);
}
void xe_pat_init(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
if (!xe->pat.ops)
return;
if (xe_gt_is_media_type(gt))
xe->pat.ops->program_media(gt, xe->pat.table, xe->pat.n_entries);
else
xe->pat.ops->program_graphics(gt, xe->pat.table, xe->pat.n_entries);
}
void xe_pat_dump(struct xe_gt *gt, struct drm_printer *p)
{
struct xe_device *xe = gt_to_xe(gt);
if (!xe->pat.ops)
return;
xe->pat.ops->dump(gt, p);
}
|