1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2024 Intel Corporation
*/
#include <drm/drm_drv.h>
#include "xe_bo.h"
#include "xe_gt_stats.h"
#include "xe_gt_tlb_invalidation.h"
#include "xe_migrate.h"
#include "xe_module.h"
#include "xe_pm.h"
#include "xe_pt.h"
#include "xe_svm.h"
#include "xe_tile.h"
#include "xe_ttm_vram_mgr.h"
#include "xe_vm.h"
#include "xe_vm_types.h"
#include "xe_vram_types.h"
static bool xe_svm_range_in_vram(struct xe_svm_range *range)
{
/*
* Advisory only check whether the range is currently backed by VRAM
* memory.
*/
struct drm_gpusvm_range_flags flags = {
/* Pairs with WRITE_ONCE in drm_gpusvm.c */
.__flags = READ_ONCE(range->base.flags.__flags),
};
return flags.has_devmem_pages;
}
static bool xe_svm_range_has_vram_binding(struct xe_svm_range *range)
{
/* Not reliable without notifier lock */
return xe_svm_range_in_vram(range) && range->tile_present;
}
static struct xe_vm *gpusvm_to_vm(struct drm_gpusvm *gpusvm)
{
return container_of(gpusvm, struct xe_vm, svm.gpusvm);
}
static struct xe_vm *range_to_vm(struct drm_gpusvm_range *r)
{
return gpusvm_to_vm(r->gpusvm);
}
#define range_debug(r__, operaton__) \
vm_dbg(&range_to_vm(&(r__)->base)->xe->drm, \
"%s: asid=%u, gpusvm=%p, vram=%d,%d, seqno=%lu, " \
"start=0x%014lx, end=0x%014lx, size=%lu", \
(operaton__), range_to_vm(&(r__)->base)->usm.asid, \
(r__)->base.gpusvm, \
xe_svm_range_in_vram((r__)) ? 1 : 0, \
xe_svm_range_has_vram_binding((r__)) ? 1 : 0, \
(r__)->base.notifier_seq, \
xe_svm_range_start((r__)), xe_svm_range_end((r__)), \
xe_svm_range_size((r__)))
void xe_svm_range_debug(struct xe_svm_range *range, const char *operation)
{
range_debug(range, operation);
}
static void *xe_svm_devm_owner(struct xe_device *xe)
{
return xe;
}
static struct drm_gpusvm_range *
xe_svm_range_alloc(struct drm_gpusvm *gpusvm)
{
struct xe_svm_range *range;
range = kzalloc(sizeof(*range), GFP_KERNEL);
if (!range)
return NULL;
INIT_LIST_HEAD(&range->garbage_collector_link);
xe_vm_get(gpusvm_to_vm(gpusvm));
return &range->base;
}
static void xe_svm_range_free(struct drm_gpusvm_range *range)
{
xe_vm_put(range_to_vm(range));
kfree(range);
}
static void
xe_svm_garbage_collector_add_range(struct xe_vm *vm, struct xe_svm_range *range,
const struct mmu_notifier_range *mmu_range)
{
struct xe_device *xe = vm->xe;
range_debug(range, "GARBAGE COLLECTOR ADD");
drm_gpusvm_range_set_unmapped(&range->base, mmu_range);
spin_lock(&vm->svm.garbage_collector.lock);
if (list_empty(&range->garbage_collector_link))
list_add_tail(&range->garbage_collector_link,
&vm->svm.garbage_collector.range_list);
spin_unlock(&vm->svm.garbage_collector.lock);
queue_work(xe_device_get_root_tile(xe)->primary_gt->usm.pf_wq,
&vm->svm.garbage_collector.work);
}
static u8
xe_svm_range_notifier_event_begin(struct xe_vm *vm, struct drm_gpusvm_range *r,
const struct mmu_notifier_range *mmu_range,
u64 *adj_start, u64 *adj_end)
{
struct xe_svm_range *range = to_xe_range(r);
struct xe_device *xe = vm->xe;
struct xe_tile *tile;
u8 tile_mask = 0;
u8 id;
xe_svm_assert_in_notifier(vm);
range_debug(range, "NOTIFIER");
/* Skip if already unmapped or if no binding exist */
if (range->base.flags.unmapped || !range->tile_present)
return 0;
range_debug(range, "NOTIFIER - EXECUTE");
/* Adjust invalidation to range boundaries */
*adj_start = min(xe_svm_range_start(range), mmu_range->start);
*adj_end = max(xe_svm_range_end(range), mmu_range->end);
/*
* XXX: Ideally would zap PTEs in one shot in xe_svm_invalidate but the
* invalidation code can't correctly cope with sparse ranges or
* invalidations spanning multiple ranges.
*/
for_each_tile(tile, xe, id)
if (xe_pt_zap_ptes_range(tile, vm, range)) {
tile_mask |= BIT(id);
/*
* WRITE_ONCE pairs with READ_ONCE in
* xe_vm_has_valid_gpu_mapping()
*/
WRITE_ONCE(range->tile_invalidated,
range->tile_invalidated | BIT(id));
}
return tile_mask;
}
static void
xe_svm_range_notifier_event_end(struct xe_vm *vm, struct drm_gpusvm_range *r,
const struct mmu_notifier_range *mmu_range)
{
struct drm_gpusvm_ctx ctx = { .in_notifier = true, };
xe_svm_assert_in_notifier(vm);
drm_gpusvm_range_unmap_pages(&vm->svm.gpusvm, r, &ctx);
if (!xe_vm_is_closed(vm) && mmu_range->event == MMU_NOTIFY_UNMAP)
xe_svm_garbage_collector_add_range(vm, to_xe_range(r),
mmu_range);
}
static void xe_svm_invalidate(struct drm_gpusvm *gpusvm,
struct drm_gpusvm_notifier *notifier,
const struct mmu_notifier_range *mmu_range)
{
struct xe_vm *vm = gpusvm_to_vm(gpusvm);
struct xe_device *xe = vm->xe;
struct drm_gpusvm_range *r, *first;
u64 adj_start = mmu_range->start, adj_end = mmu_range->end;
u8 tile_mask = 0;
long err;
xe_svm_assert_in_notifier(vm);
vm_dbg(&gpusvm_to_vm(gpusvm)->xe->drm,
"INVALIDATE: asid=%u, gpusvm=%p, seqno=%lu, start=0x%016lx, end=0x%016lx, event=%d",
vm->usm.asid, gpusvm, notifier->notifier.invalidate_seq,
mmu_range->start, mmu_range->end, mmu_range->event);
/* Adjust invalidation to notifier boundaries */
adj_start = max(drm_gpusvm_notifier_start(notifier), adj_start);
adj_end = min(drm_gpusvm_notifier_end(notifier), adj_end);
first = drm_gpusvm_range_find(notifier, adj_start, adj_end);
if (!first)
return;
/*
* PTs may be getting destroyed so not safe to touch these but PT should
* be invalidated at this point in time. Regardless we still need to
* ensure any dma mappings are unmapped in the here.
*/
if (xe_vm_is_closed(vm))
goto range_notifier_event_end;
/*
* XXX: Less than ideal to always wait on VM's resv slots if an
* invalidation is not required. Could walk range list twice to figure
* out if an invalidations is need, but also not ideal.
*/
err = dma_resv_wait_timeout(xe_vm_resv(vm),
DMA_RESV_USAGE_BOOKKEEP,
false, MAX_SCHEDULE_TIMEOUT);
XE_WARN_ON(err <= 0);
r = first;
drm_gpusvm_for_each_range(r, notifier, adj_start, adj_end)
tile_mask |= xe_svm_range_notifier_event_begin(vm, r, mmu_range,
&adj_start,
&adj_end);
if (!tile_mask)
goto range_notifier_event_end;
xe_device_wmb(xe);
err = xe_vm_range_tilemask_tlb_invalidation(vm, adj_start, adj_end, tile_mask);
WARN_ON_ONCE(err);
range_notifier_event_end:
r = first;
drm_gpusvm_for_each_range(r, notifier, adj_start, adj_end)
xe_svm_range_notifier_event_end(vm, r, mmu_range);
}
static int __xe_svm_garbage_collector(struct xe_vm *vm,
struct xe_svm_range *range)
{
struct dma_fence *fence;
range_debug(range, "GARBAGE COLLECTOR");
xe_vm_lock(vm, false);
fence = xe_vm_range_unbind(vm, range);
xe_vm_unlock(vm);
if (IS_ERR(fence))
return PTR_ERR(fence);
dma_fence_put(fence);
drm_gpusvm_range_remove(&vm->svm.gpusvm, &range->base);
return 0;
}
static int xe_svm_garbage_collector(struct xe_vm *vm)
{
struct xe_svm_range *range;
int err;
lockdep_assert_held_write(&vm->lock);
if (xe_vm_is_closed_or_banned(vm))
return -ENOENT;
spin_lock(&vm->svm.garbage_collector.lock);
for (;;) {
range = list_first_entry_or_null(&vm->svm.garbage_collector.range_list,
typeof(*range),
garbage_collector_link);
if (!range)
break;
list_del(&range->garbage_collector_link);
spin_unlock(&vm->svm.garbage_collector.lock);
err = __xe_svm_garbage_collector(vm, range);
if (err) {
drm_warn(&vm->xe->drm,
"Garbage collection failed: %pe\n",
ERR_PTR(err));
xe_vm_kill(vm, true);
return err;
}
spin_lock(&vm->svm.garbage_collector.lock);
}
spin_unlock(&vm->svm.garbage_collector.lock);
return 0;
}
static void xe_svm_garbage_collector_work_func(struct work_struct *w)
{
struct xe_vm *vm = container_of(w, struct xe_vm,
svm.garbage_collector.work);
down_write(&vm->lock);
xe_svm_garbage_collector(vm);
up_write(&vm->lock);
}
#if IS_ENABLED(CONFIG_DRM_XE_PAGEMAP)
static struct xe_vram_region *page_to_vr(struct page *page)
{
return container_of(page_pgmap(page), struct xe_vram_region, pagemap);
}
static u64 xe_vram_region_page_to_dpa(struct xe_vram_region *vr,
struct page *page)
{
u64 dpa;
u64 pfn = page_to_pfn(page);
u64 offset;
xe_assert(vr->xe, is_device_private_page(page));
xe_assert(vr->xe, (pfn << PAGE_SHIFT) >= vr->hpa_base);
offset = (pfn << PAGE_SHIFT) - vr->hpa_base;
dpa = vr->dpa_base + offset;
return dpa;
}
enum xe_svm_copy_dir {
XE_SVM_COPY_TO_VRAM,
XE_SVM_COPY_TO_SRAM,
};
static int xe_svm_copy(struct page **pages, dma_addr_t *dma_addr,
unsigned long npages, const enum xe_svm_copy_dir dir)
{
struct xe_vram_region *vr = NULL;
struct xe_device *xe;
struct dma_fence *fence = NULL;
unsigned long i;
#define XE_VRAM_ADDR_INVALID ~0x0ull
u64 vram_addr = XE_VRAM_ADDR_INVALID;
int err = 0, pos = 0;
bool sram = dir == XE_SVM_COPY_TO_SRAM;
/*
* This flow is complex: it locates physically contiguous device pages,
* derives the starting physical address, and performs a single GPU copy
* to for every 8M chunk in a DMA address array. Both device pages and
* DMA addresses may be sparsely populated. If either is NULL, a copy is
* triggered based on the current search state. The last GPU copy is
* waited on to ensure all copies are complete.
*/
for (i = 0; i < npages; ++i) {
struct page *spage = pages[i];
struct dma_fence *__fence;
u64 __vram_addr;
bool match = false, chunk, last;
#define XE_MIGRATE_CHUNK_SIZE SZ_8M
chunk = (i - pos) == (XE_MIGRATE_CHUNK_SIZE / PAGE_SIZE);
last = (i + 1) == npages;
/* No CPU page and no device pages queue'd to copy */
if (!dma_addr[i] && vram_addr == XE_VRAM_ADDR_INVALID)
continue;
if (!vr && spage) {
vr = page_to_vr(spage);
xe = vr->xe;
}
XE_WARN_ON(spage && page_to_vr(spage) != vr);
/*
* CPU page and device page valid, capture physical address on
* first device page, check if physical contiguous on subsequent
* device pages.
*/
if (dma_addr[i] && spage) {
__vram_addr = xe_vram_region_page_to_dpa(vr, spage);
if (vram_addr == XE_VRAM_ADDR_INVALID) {
vram_addr = __vram_addr;
pos = i;
}
match = vram_addr + PAGE_SIZE * (i - pos) == __vram_addr;
}
/*
* Mismatched physical address, 8M copy chunk, or last page -
* trigger a copy.
*/
if (!match || chunk || last) {
/*
* Extra page for first copy if last page and matching
* physical address.
*/
int incr = (match && last) ? 1 : 0;
if (vram_addr != XE_VRAM_ADDR_INVALID) {
if (sram) {
vm_dbg(&xe->drm,
"COPY TO SRAM - 0x%016llx -> 0x%016llx, NPAGES=%ld",
vram_addr, (u64)dma_addr[pos], i - pos + incr);
__fence = xe_migrate_from_vram(vr->migrate,
i - pos + incr,
vram_addr,
dma_addr + pos);
} else {
vm_dbg(&xe->drm,
"COPY TO VRAM - 0x%016llx -> 0x%016llx, NPAGES=%ld",
(u64)dma_addr[pos], vram_addr, i - pos + incr);
__fence = xe_migrate_to_vram(vr->migrate,
i - pos + incr,
dma_addr + pos,
vram_addr);
}
if (IS_ERR(__fence)) {
err = PTR_ERR(__fence);
goto err_out;
}
dma_fence_put(fence);
fence = __fence;
}
/* Setup physical address of next device page */
if (dma_addr[i] && spage) {
vram_addr = __vram_addr;
pos = i;
} else {
vram_addr = XE_VRAM_ADDR_INVALID;
}
/* Extra mismatched device page, copy it */
if (!match && last && vram_addr != XE_VRAM_ADDR_INVALID) {
if (sram) {
vm_dbg(&xe->drm,
"COPY TO SRAM - 0x%016llx -> 0x%016llx, NPAGES=%d",
vram_addr, (u64)dma_addr[pos], 1);
__fence = xe_migrate_from_vram(vr->migrate, 1,
vram_addr,
dma_addr + pos);
} else {
vm_dbg(&xe->drm,
"COPY TO VRAM - 0x%016llx -> 0x%016llx, NPAGES=%d",
(u64)dma_addr[pos], vram_addr, 1);
__fence = xe_migrate_to_vram(vr->migrate, 1,
dma_addr + pos,
vram_addr);
}
if (IS_ERR(__fence)) {
err = PTR_ERR(__fence);
goto err_out;
}
dma_fence_put(fence);
fence = __fence;
}
}
}
err_out:
/* Wait for all copies to complete */
if (fence) {
dma_fence_wait(fence, false);
dma_fence_put(fence);
}
return err;
#undef XE_MIGRATE_CHUNK_SIZE
#undef XE_VRAM_ADDR_INVALID
}
static int xe_svm_copy_to_devmem(struct page **pages, dma_addr_t *dma_addr,
unsigned long npages)
{
return xe_svm_copy(pages, dma_addr, npages, XE_SVM_COPY_TO_VRAM);
}
static int xe_svm_copy_to_ram(struct page **pages, dma_addr_t *dma_addr,
unsigned long npages)
{
return xe_svm_copy(pages, dma_addr, npages, XE_SVM_COPY_TO_SRAM);
}
static struct xe_bo *to_xe_bo(struct drm_pagemap_devmem *devmem_allocation)
{
return container_of(devmem_allocation, struct xe_bo, devmem_allocation);
}
static void xe_svm_devmem_release(struct drm_pagemap_devmem *devmem_allocation)
{
struct xe_bo *bo = to_xe_bo(devmem_allocation);
struct xe_device *xe = xe_bo_device(bo);
xe_bo_put_async(bo);
xe_pm_runtime_put(xe);
}
static u64 block_offset_to_pfn(struct xe_vram_region *vr, u64 offset)
{
return PHYS_PFN(offset + vr->hpa_base);
}
static struct drm_buddy *vram_to_buddy(struct xe_vram_region *vram)
{
return &vram->ttm.mm;
}
static int xe_svm_populate_devmem_pfn(struct drm_pagemap_devmem *devmem_allocation,
unsigned long npages, unsigned long *pfn)
{
struct xe_bo *bo = to_xe_bo(devmem_allocation);
struct ttm_resource *res = bo->ttm.resource;
struct list_head *blocks = &to_xe_ttm_vram_mgr_resource(res)->blocks;
struct drm_buddy_block *block;
int j = 0;
list_for_each_entry(block, blocks, link) {
struct xe_vram_region *vr = block->private;
struct drm_buddy *buddy = vram_to_buddy(vr);
u64 block_pfn = block_offset_to_pfn(vr, drm_buddy_block_offset(block));
int i;
for (i = 0; i < drm_buddy_block_size(buddy, block) >> PAGE_SHIFT; ++i)
pfn[j++] = block_pfn + i;
}
return 0;
}
static const struct drm_pagemap_devmem_ops dpagemap_devmem_ops = {
.devmem_release = xe_svm_devmem_release,
.populate_devmem_pfn = xe_svm_populate_devmem_pfn,
.copy_to_devmem = xe_svm_copy_to_devmem,
.copy_to_ram = xe_svm_copy_to_ram,
};
#endif
static const struct drm_gpusvm_ops gpusvm_ops = {
.range_alloc = xe_svm_range_alloc,
.range_free = xe_svm_range_free,
.invalidate = xe_svm_invalidate,
};
static const unsigned long fault_chunk_sizes[] = {
SZ_2M,
SZ_64K,
SZ_4K,
};
/**
* xe_svm_init() - SVM initialize
* @vm: The VM.
*
* Initialize SVM state which is embedded within the VM.
*
* Return: 0 on success, negative error code on error.
*/
int xe_svm_init(struct xe_vm *vm)
{
int err;
spin_lock_init(&vm->svm.garbage_collector.lock);
INIT_LIST_HEAD(&vm->svm.garbage_collector.range_list);
INIT_WORK(&vm->svm.garbage_collector.work,
xe_svm_garbage_collector_work_func);
err = drm_gpusvm_init(&vm->svm.gpusvm, "Xe SVM", &vm->xe->drm,
current->mm, xe_svm_devm_owner(vm->xe), 0,
vm->size, xe_modparam.svm_notifier_size * SZ_1M,
&gpusvm_ops, fault_chunk_sizes,
ARRAY_SIZE(fault_chunk_sizes));
if (err)
return err;
drm_gpusvm_driver_set_lock(&vm->svm.gpusvm, &vm->lock);
return 0;
}
/**
* xe_svm_close() - SVM close
* @vm: The VM.
*
* Close SVM state (i.e., stop and flush all SVM actions).
*/
void xe_svm_close(struct xe_vm *vm)
{
xe_assert(vm->xe, xe_vm_is_closed(vm));
flush_work(&vm->svm.garbage_collector.work);
}
/**
* xe_svm_fini() - SVM finalize
* @vm: The VM.
*
* Finalize SVM state which is embedded within the VM.
*/
void xe_svm_fini(struct xe_vm *vm)
{
xe_assert(vm->xe, xe_vm_is_closed(vm));
drm_gpusvm_fini(&vm->svm.gpusvm);
}
static bool xe_svm_range_is_valid(struct xe_svm_range *range,
struct xe_tile *tile,
bool devmem_only)
{
return (xe_vm_has_valid_gpu_mapping(tile, range->tile_present,
range->tile_invalidated) &&
(!devmem_only || xe_svm_range_in_vram(range)));
}
/** xe_svm_range_migrate_to_smem() - Move range pages from VRAM to SMEM
* @vm: xe_vm pointer
* @range: Pointer to the SVM range structure
*
* The xe_svm_range_migrate_to_smem() checks range has pages in VRAM
* and migrates them to SMEM
*/
void xe_svm_range_migrate_to_smem(struct xe_vm *vm, struct xe_svm_range *range)
{
if (xe_svm_range_in_vram(range))
drm_gpusvm_range_evict(&vm->svm.gpusvm, &range->base);
}
/**
* xe_svm_range_validate() - Check if the SVM range is valid
* @vm: xe_vm pointer
* @range: Pointer to the SVM range structure
* @tile_mask: Mask representing the tiles to be checked
* @devmem_preferred : if true range needs to be in devmem
*
* The xe_svm_range_validate() function checks if a range is
* valid and located in the desired memory region.
*
* Return: true if the range is valid, false otherwise
*/
bool xe_svm_range_validate(struct xe_vm *vm,
struct xe_svm_range *range,
u8 tile_mask, bool devmem_preferred)
{
bool ret;
xe_svm_notifier_lock(vm);
ret = (range->tile_present & ~range->tile_invalidated & tile_mask) == tile_mask &&
(devmem_preferred == range->base.flags.has_devmem_pages);
xe_svm_notifier_unlock(vm);
return ret;
}
/**
* xe_svm_find_vma_start - Find start of CPU VMA
* @vm: xe_vm pointer
* @start: start address
* @end: end address
* @vma: Pointer to struct xe_vma
*
*
* This function searches for a cpu vma, within the specified
* range [start, end] in the given VM. It adjusts the range based on the
* xe_vma start and end addresses. If no cpu VMA is found, it returns ULONG_MAX.
*
* Return: The starting address of the VMA within the range,
* or ULONG_MAX if no VMA is found
*/
u64 xe_svm_find_vma_start(struct xe_vm *vm, u64 start, u64 end, struct xe_vma *vma)
{
return drm_gpusvm_find_vma_start(&vm->svm.gpusvm,
max(start, xe_vma_start(vma)),
min(end, xe_vma_end(vma)));
}
#if IS_ENABLED(CONFIG_DRM_XE_PAGEMAP)
static int xe_drm_pagemap_populate_mm(struct drm_pagemap *dpagemap,
unsigned long start, unsigned long end,
struct mm_struct *mm,
unsigned long timeslice_ms)
{
struct xe_vram_region *vr = container_of(dpagemap, typeof(*vr), dpagemap);
struct xe_device *xe = vr->xe;
struct device *dev = xe->drm.dev;
struct drm_buddy_block *block;
struct list_head *blocks;
struct xe_bo *bo;
ktime_t time_end = 0;
int err, idx;
if (!drm_dev_enter(&xe->drm, &idx))
return -ENODEV;
xe_pm_runtime_get(xe);
retry:
bo = xe_bo_create_locked(vr->xe, NULL, NULL, end - start,
ttm_bo_type_device,
(IS_DGFX(xe) ? XE_BO_FLAG_VRAM(vr) : XE_BO_FLAG_SYSTEM) |
XE_BO_FLAG_CPU_ADDR_MIRROR);
if (IS_ERR(bo)) {
err = PTR_ERR(bo);
if (xe_vm_validate_should_retry(NULL, err, &time_end))
goto retry;
goto out_pm_put;
}
drm_pagemap_devmem_init(&bo->devmem_allocation, dev, mm,
&dpagemap_devmem_ops, dpagemap, end - start);
blocks = &to_xe_ttm_vram_mgr_resource(bo->ttm.resource)->blocks;
list_for_each_entry(block, blocks, link)
block->private = vr;
xe_bo_get(bo);
/* Ensure the device has a pm ref while there are device pages active. */
xe_pm_runtime_get_noresume(xe);
err = drm_pagemap_migrate_to_devmem(&bo->devmem_allocation, mm,
start, end, timeslice_ms,
xe_svm_devm_owner(xe));
if (err)
xe_svm_devmem_release(&bo->devmem_allocation);
xe_bo_unlock(bo);
xe_bo_put(bo);
out_pm_put:
xe_pm_runtime_put(xe);
drm_dev_exit(idx);
return err;
}
#endif
static bool supports_4K_migration(struct xe_device *xe)
{
if (xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K)
return false;
return true;
}
/**
* xe_svm_range_needs_migrate_to_vram() - SVM range needs migrate to VRAM or not
* @range: SVM range for which migration needs to be decided
* @vma: vma which has range
* @preferred_region_is_vram: preferred region for range is vram
*
* Return: True for range needing migration and migration is supported else false
*/
bool xe_svm_range_needs_migrate_to_vram(struct xe_svm_range *range, struct xe_vma *vma,
bool preferred_region_is_vram)
{
struct xe_vm *vm = range_to_vm(&range->base);
u64 range_size = xe_svm_range_size(range);
if (!range->base.flags.migrate_devmem || !preferred_region_is_vram)
return false;
xe_assert(vm->xe, IS_DGFX(vm->xe));
if (preferred_region_is_vram && xe_svm_range_in_vram(range)) {
drm_info(&vm->xe->drm, "Range is already in VRAM\n");
return false;
}
if (preferred_region_is_vram && range_size < SZ_64K && !supports_4K_migration(vm->xe)) {
drm_dbg(&vm->xe->drm, "Platform doesn't support SZ_4K range migration\n");
return false;
}
return true;
}
/**
* xe_svm_handle_pagefault() - SVM handle page fault
* @vm: The VM.
* @vma: The CPU address mirror VMA.
* @gt: The gt upon the fault occurred.
* @fault_addr: The GPU fault address.
* @atomic: The fault atomic access bit.
*
* Create GPU bindings for a SVM page fault. Optionally migrate to device
* memory.
*
* Return: 0 on success, negative error code on error.
*/
int xe_svm_handle_pagefault(struct xe_vm *vm, struct xe_vma *vma,
struct xe_gt *gt, u64 fault_addr,
bool atomic)
{
struct drm_gpusvm_ctx ctx = {
.read_only = xe_vma_read_only(vma),
.devmem_possible = IS_DGFX(vm->xe) &&
IS_ENABLED(CONFIG_DRM_XE_PAGEMAP),
.check_pages_threshold = IS_DGFX(vm->xe) &&
IS_ENABLED(CONFIG_DRM_XE_PAGEMAP) ? SZ_64K : 0,
.devmem_only = atomic && IS_DGFX(vm->xe) &&
IS_ENABLED(CONFIG_DRM_XE_PAGEMAP),
.timeslice_ms = atomic && IS_DGFX(vm->xe) &&
IS_ENABLED(CONFIG_DRM_XE_PAGEMAP) ?
vm->xe->atomic_svm_timeslice_ms : 0,
};
struct xe_svm_range *range;
struct dma_fence *fence;
struct xe_tile *tile = gt_to_tile(gt);
int migrate_try_count = ctx.devmem_only ? 3 : 1;
ktime_t end = 0;
int err;
lockdep_assert_held_write(&vm->lock);
xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(vma));
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_PAGEFAULT_COUNT, 1);
retry:
/* Always process UNMAPs first so view SVM ranges is current */
err = xe_svm_garbage_collector(vm);
if (err)
return err;
range = xe_svm_range_find_or_insert(vm, fault_addr, vma, &ctx);
if (IS_ERR(range))
return PTR_ERR(range);
if (ctx.devmem_only && !range->base.flags.migrate_devmem)
return -EACCES;
if (xe_svm_range_is_valid(range, tile, ctx.devmem_only))
return 0;
range_debug(range, "PAGE FAULT");
if (--migrate_try_count >= 0 &&
xe_svm_range_needs_migrate_to_vram(range, vma, IS_DGFX(vm->xe))) {
err = xe_svm_alloc_vram(tile, range, &ctx);
ctx.timeslice_ms <<= 1; /* Double timeslice if we have to retry */
if (err) {
if (migrate_try_count || !ctx.devmem_only) {
drm_dbg(&vm->xe->drm,
"VRAM allocation failed, falling back to retrying fault, asid=%u, errno=%pe\n",
vm->usm.asid, ERR_PTR(err));
goto retry;
} else {
drm_err(&vm->xe->drm,
"VRAM allocation failed, retry count exceeded, asid=%u, errno=%pe\n",
vm->usm.asid, ERR_PTR(err));
return err;
}
}
}
range_debug(range, "GET PAGES");
err = xe_svm_range_get_pages(vm, range, &ctx);
/* Corner where CPU mappings have changed */
if (err == -EOPNOTSUPP || err == -EFAULT || err == -EPERM) {
ctx.timeslice_ms <<= 1; /* Double timeslice if we have to retry */
if (migrate_try_count > 0 || !ctx.devmem_only) {
drm_dbg(&vm->xe->drm,
"Get pages failed, falling back to retrying, asid=%u, gpusvm=%p, errno=%pe\n",
vm->usm.asid, &vm->svm.gpusvm, ERR_PTR(err));
range_debug(range, "PAGE FAULT - RETRY PAGES");
goto retry;
} else {
drm_err(&vm->xe->drm,
"Get pages failed, retry count exceeded, asid=%u, gpusvm=%p, errno=%pe\n",
vm->usm.asid, &vm->svm.gpusvm, ERR_PTR(err));
}
}
if (err) {
range_debug(range, "PAGE FAULT - FAIL PAGE COLLECT");
goto err_out;
}
range_debug(range, "PAGE FAULT - BIND");
retry_bind:
xe_vm_lock(vm, false);
fence = xe_vm_range_rebind(vm, vma, range, BIT(tile->id));
if (IS_ERR(fence)) {
xe_vm_unlock(vm);
err = PTR_ERR(fence);
if (err == -EAGAIN) {
ctx.timeslice_ms <<= 1; /* Double timeslice if we have to retry */
range_debug(range, "PAGE FAULT - RETRY BIND");
goto retry;
}
if (xe_vm_validate_should_retry(NULL, err, &end))
goto retry_bind;
goto err_out;
}
xe_vm_unlock(vm);
dma_fence_wait(fence, false);
dma_fence_put(fence);
err_out:
return err;
}
/**
* xe_svm_has_mapping() - SVM has mappings
* @vm: The VM.
* @start: Start address.
* @end: End address.
*
* Check if an address range has SVM mappings.
*
* Return: True if address range has a SVM mapping, False otherwise
*/
bool xe_svm_has_mapping(struct xe_vm *vm, u64 start, u64 end)
{
return drm_gpusvm_has_mapping(&vm->svm.gpusvm, start, end);
}
/**
* xe_svm_bo_evict() - SVM evict BO to system memory
* @bo: BO to evict
*
* SVM evict BO to system memory. GPU SVM layer ensures all device pages
* are evicted before returning.
*
* Return: 0 on success standard error code otherwise
*/
int xe_svm_bo_evict(struct xe_bo *bo)
{
return drm_pagemap_evict_to_ram(&bo->devmem_allocation);
}
/**
* xe_svm_range_find_or_insert- Find or insert GPU SVM range
* @vm: xe_vm pointer
* @addr: address for which range needs to be found/inserted
* @vma: Pointer to struct xe_vma which mirrors CPU
* @ctx: GPU SVM context
*
* This function finds or inserts a newly allocated a SVM range based on the
* address.
*
* Return: Pointer to the SVM range on success, ERR_PTR() on failure.
*/
struct xe_svm_range *xe_svm_range_find_or_insert(struct xe_vm *vm, u64 addr,
struct xe_vma *vma, struct drm_gpusvm_ctx *ctx)
{
struct drm_gpusvm_range *r;
r = drm_gpusvm_range_find_or_insert(&vm->svm.gpusvm, max(addr, xe_vma_start(vma)),
xe_vma_start(vma), xe_vma_end(vma), ctx);
if (IS_ERR(r))
return ERR_PTR(PTR_ERR(r));
return to_xe_range(r);
}
/**
* xe_svm_range_get_pages() - Get pages for a SVM range
* @vm: Pointer to the struct xe_vm
* @range: Pointer to the xe SVM range structure
* @ctx: GPU SVM context
*
* This function gets pages for a SVM range and ensures they are mapped for
* DMA access. In case of failure with -EOPNOTSUPP, it evicts the range.
*
* Return: 0 on success, negative error code on failure.
*/
int xe_svm_range_get_pages(struct xe_vm *vm, struct xe_svm_range *range,
struct drm_gpusvm_ctx *ctx)
{
int err = 0;
err = drm_gpusvm_range_get_pages(&vm->svm.gpusvm, &range->base, ctx);
if (err == -EOPNOTSUPP) {
range_debug(range, "PAGE FAULT - EVICT PAGES");
drm_gpusvm_range_evict(&vm->svm.gpusvm, &range->base);
}
return err;
}
#if IS_ENABLED(CONFIG_DRM_XE_PAGEMAP)
static struct drm_pagemap *tile_local_pagemap(struct xe_tile *tile)
{
return &tile->mem.vram->dpagemap;
}
/**
* xe_svm_alloc_vram()- Allocate device memory pages for range,
* migrating existing data.
* @tile: tile to allocate vram from
* @range: SVM range
* @ctx: DRM GPU SVM context
*
* Return: 0 on success, error code on failure.
*/
int xe_svm_alloc_vram(struct xe_tile *tile, struct xe_svm_range *range,
const struct drm_gpusvm_ctx *ctx)
{
struct drm_pagemap *dpagemap;
xe_assert(tile_to_xe(tile), range->base.flags.migrate_devmem);
range_debug(range, "ALLOCATE VRAM");
dpagemap = tile_local_pagemap(tile);
return drm_pagemap_populate_mm(dpagemap, xe_svm_range_start(range),
xe_svm_range_end(range),
range->base.gpusvm->mm,
ctx->timeslice_ms);
}
static struct drm_pagemap_device_addr
xe_drm_pagemap_device_map(struct drm_pagemap *dpagemap,
struct device *dev,
struct page *page,
unsigned int order,
enum dma_data_direction dir)
{
struct device *pgmap_dev = dpagemap->dev;
enum drm_interconnect_protocol prot;
dma_addr_t addr;
if (pgmap_dev == dev) {
addr = xe_vram_region_page_to_dpa(page_to_vr(page), page);
prot = XE_INTERCONNECT_VRAM;
} else {
addr = DMA_MAPPING_ERROR;
prot = 0;
}
return drm_pagemap_device_addr_encode(addr, prot, order, dir);
}
static const struct drm_pagemap_ops xe_drm_pagemap_ops = {
.device_map = xe_drm_pagemap_device_map,
.populate_mm = xe_drm_pagemap_populate_mm,
};
/**
* xe_devm_add: Remap and provide memmap backing for device memory
* @tile: tile that the memory region belongs to
* @vr: vram memory region to remap
*
* This remap device memory to host physical address space and create
* struct page to back device memory
*
* Return: 0 on success standard error code otherwise
*/
int xe_devm_add(struct xe_tile *tile, struct xe_vram_region *vr)
{
struct xe_device *xe = tile_to_xe(tile);
struct device *dev = &to_pci_dev(xe->drm.dev)->dev;
struct resource *res;
void *addr;
int ret;
res = devm_request_free_mem_region(dev, &iomem_resource,
vr->usable_size);
if (IS_ERR(res)) {
ret = PTR_ERR(res);
return ret;
}
vr->pagemap.type = MEMORY_DEVICE_PRIVATE;
vr->pagemap.range.start = res->start;
vr->pagemap.range.end = res->end;
vr->pagemap.nr_range = 1;
vr->pagemap.ops = drm_pagemap_pagemap_ops_get();
vr->pagemap.owner = xe_svm_devm_owner(xe);
addr = devm_memremap_pages(dev, &vr->pagemap);
vr->dpagemap.dev = dev;
vr->dpagemap.ops = &xe_drm_pagemap_ops;
if (IS_ERR(addr)) {
devm_release_mem_region(dev, res->start, resource_size(res));
ret = PTR_ERR(addr);
drm_err(&xe->drm, "Failed to remap tile %d memory, errno %pe\n",
tile->id, ERR_PTR(ret));
return ret;
}
vr->hpa_base = res->start;
drm_dbg(&xe->drm, "Added tile %d memory [%llx-%llx] to devm, remapped to %pr\n",
tile->id, vr->io_start, vr->io_start + vr->usable_size, res);
return 0;
}
#else
int xe_svm_alloc_vram(struct xe_tile *tile,
struct xe_svm_range *range,
const struct drm_gpusvm_ctx *ctx)
{
return -EOPNOTSUPP;
}
int xe_devm_add(struct xe_tile *tile, struct xe_vram_region *vr)
{
return 0;
}
#endif
/**
* xe_svm_flush() - SVM flush
* @vm: The VM.
*
* Flush all SVM actions.
*/
void xe_svm_flush(struct xe_vm *vm)
{
if (xe_vm_in_fault_mode(vm))
flush_work(&vm->svm.garbage_collector.work);
}
|