1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
|
// SPDX-License-Identifier: GPL-2.0
//! Falcon microprocessor base support
use core::ops::Deref;
use hal::FalconHal;
use kernel::bindings;
use kernel::device;
use kernel::prelude::*;
use kernel::time::Delta;
use kernel::types::ARef;
use crate::dma::DmaObject;
use crate::driver::Bar0;
use crate::gpu::Chipset;
use crate::regs;
use crate::util;
pub(crate) mod gsp;
mod hal;
pub(crate) mod sec2;
// TODO[FPRI]: Replace with `ToPrimitive`.
macro_rules! impl_from_enum_to_u32 {
($enum_type:ty) => {
impl From<$enum_type> for u32 {
fn from(value: $enum_type) -> Self {
value as u32
}
}
};
}
/// Revision number of a falcon core, used in the [`crate::regs::NV_PFALCON_FALCON_HWCFG1`]
/// register.
#[repr(u8)]
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub(crate) enum FalconCoreRev {
#[default]
Rev1 = 1,
Rev2 = 2,
Rev3 = 3,
Rev4 = 4,
Rev5 = 5,
Rev6 = 6,
Rev7 = 7,
}
impl_from_enum_to_u32!(FalconCoreRev);
// TODO[FPRI]: replace with `FromPrimitive`.
impl TryFrom<u8> for FalconCoreRev {
type Error = Error;
fn try_from(value: u8) -> Result<Self> {
use FalconCoreRev::*;
let rev = match value {
1 => Rev1,
2 => Rev2,
3 => Rev3,
4 => Rev4,
5 => Rev5,
6 => Rev6,
7 => Rev7,
_ => return Err(EINVAL),
};
Ok(rev)
}
}
/// Revision subversion number of a falcon core, used in the
/// [`crate::regs::NV_PFALCON_FALCON_HWCFG1`] register.
#[repr(u8)]
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub(crate) enum FalconCoreRevSubversion {
#[default]
Subversion0 = 0,
Subversion1 = 1,
Subversion2 = 2,
Subversion3 = 3,
}
impl_from_enum_to_u32!(FalconCoreRevSubversion);
// TODO[FPRI]: replace with `FromPrimitive`.
impl TryFrom<u8> for FalconCoreRevSubversion {
type Error = Error;
fn try_from(value: u8) -> Result<Self> {
use FalconCoreRevSubversion::*;
let sub_version = match value & 0b11 {
0 => Subversion0,
1 => Subversion1,
2 => Subversion2,
3 => Subversion3,
_ => return Err(EINVAL),
};
Ok(sub_version)
}
}
/// Security model of a falcon core, used in the [`crate::regs::NV_PFALCON_FALCON_HWCFG1`]
/// register.
#[repr(u8)]
#[derive(Debug, Default, Copy, Clone)]
/// Security mode of the Falcon microprocessor.
///
/// See `falcon.rst` for more details.
pub(crate) enum FalconSecurityModel {
/// Non-Secure: runs unsigned code without privileges.
#[default]
None = 0,
/// Light-Secured (LS): Runs signed code with some privileges.
/// Entry into this mode is only possible from 'Heavy-secure' mode, which verifies the code's
/// signature.
///
/// Also known as Low-Secure, Privilege Level 2 or PL2.
Light = 2,
/// Heavy-Secured (HS): Runs signed code with full privileges.
/// The code's signature is verified by the Falcon Boot ROM (BROM).
///
/// Also known as High-Secure, Privilege Level 3 or PL3.
Heavy = 3,
}
impl_from_enum_to_u32!(FalconSecurityModel);
// TODO[FPRI]: replace with `FromPrimitive`.
impl TryFrom<u8> for FalconSecurityModel {
type Error = Error;
fn try_from(value: u8) -> Result<Self> {
use FalconSecurityModel::*;
let sec_model = match value {
0 => None,
2 => Light,
3 => Heavy,
_ => return Err(EINVAL),
};
Ok(sec_model)
}
}
/// Signing algorithm for a given firmware, used in the [`crate::regs::NV_PFALCON2_FALCON_MOD_SEL`]
/// register. It is passed to the Falcon Boot ROM (BROM) as a parameter.
#[repr(u8)]
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq)]
pub(crate) enum FalconModSelAlgo {
/// AES.
#[expect(dead_code)]
Aes = 0,
/// RSA3K.
#[default]
Rsa3k = 1,
}
impl_from_enum_to_u32!(FalconModSelAlgo);
// TODO[FPRI]: replace with `FromPrimitive`.
impl TryFrom<u8> for FalconModSelAlgo {
type Error = Error;
fn try_from(value: u8) -> Result<Self> {
match value {
1 => Ok(FalconModSelAlgo::Rsa3k),
_ => Err(EINVAL),
}
}
}
/// Valid values for the `size` field of the [`crate::regs::NV_PFALCON_FALCON_DMATRFCMD`] register.
#[repr(u8)]
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq)]
pub(crate) enum DmaTrfCmdSize {
/// 256 bytes transfer.
#[default]
Size256B = 0x6,
}
impl_from_enum_to_u32!(DmaTrfCmdSize);
// TODO[FPRI]: replace with `FromPrimitive`.
impl TryFrom<u8> for DmaTrfCmdSize {
type Error = Error;
fn try_from(value: u8) -> Result<Self> {
match value {
0x6 => Ok(Self::Size256B),
_ => Err(EINVAL),
}
}
}
/// Currently active core on a dual falcon/riscv (Peregrine) controller.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
pub(crate) enum PeregrineCoreSelect {
/// Falcon core is active.
#[default]
Falcon = 0,
/// RISC-V core is active.
Riscv = 1,
}
impl_from_enum_to_u32!(PeregrineCoreSelect);
impl From<bool> for PeregrineCoreSelect {
fn from(value: bool) -> Self {
match value {
false => PeregrineCoreSelect::Falcon,
true => PeregrineCoreSelect::Riscv,
}
}
}
/// Different types of memory present in a falcon core.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub(crate) enum FalconMem {
/// Instruction Memory.
Imem,
/// Data Memory.
Dmem,
}
/// Defines the Framebuffer Interface (FBIF) aperture type.
/// This determines the memory type for external memory access during a DMA transfer, which is
/// performed by the Falcon's Framebuffer DMA (FBDMA) engine. See falcon.rst for more details.
#[derive(Debug, Clone, Default)]
pub(crate) enum FalconFbifTarget {
/// VRAM.
#[default]
/// Local Framebuffer (GPU's VRAM memory).
LocalFb = 0,
/// Coherent system memory (System DRAM).
CoherentSysmem = 1,
/// Non-coherent system memory (System DRAM).
NoncoherentSysmem = 2,
}
impl_from_enum_to_u32!(FalconFbifTarget);
// TODO[FPRI]: replace with `FromPrimitive`.
impl TryFrom<u8> for FalconFbifTarget {
type Error = Error;
fn try_from(value: u8) -> Result<Self> {
let res = match value {
0 => Self::LocalFb,
1 => Self::CoherentSysmem,
2 => Self::NoncoherentSysmem,
_ => return Err(EINVAL),
};
Ok(res)
}
}
/// Type of memory addresses to use.
#[derive(Debug, Clone, Default)]
pub(crate) enum FalconFbifMemType {
/// Virtual memory addresses.
#[default]
Virtual = 0,
/// Physical memory addresses.
Physical = 1,
}
impl_from_enum_to_u32!(FalconFbifMemType);
/// Conversion from a single-bit register field.
impl From<bool> for FalconFbifMemType {
fn from(value: bool) -> Self {
match value {
false => Self::Virtual,
true => Self::Physical,
}
}
}
/// Trait defining the parameters of a given Falcon instance.
pub(crate) trait FalconEngine: Sync {
/// Base I/O address for the falcon, relative from which its registers are accessed.
const BASE: usize;
}
/// Represents a portion of the firmware to be loaded into a particular memory (e.g. IMEM or DMEM).
#[derive(Debug)]
pub(crate) struct FalconLoadTarget {
/// Offset from the start of the source object to copy from.
pub(crate) src_start: u32,
/// Offset from the start of the destination memory to copy into.
pub(crate) dst_start: u32,
/// Number of bytes to copy.
pub(crate) len: u32,
}
/// Parameters for the falcon boot ROM.
#[derive(Debug)]
pub(crate) struct FalconBromParams {
/// Offset in `DMEM`` of the firmware's signature.
pub(crate) pkc_data_offset: u32,
/// Mask of engines valid for this firmware.
pub(crate) engine_id_mask: u16,
/// ID of the ucode used to infer a fuse register to validate the signature.
pub(crate) ucode_id: u8,
}
/// Trait for providing load parameters of falcon firmwares.
pub(crate) trait FalconLoadParams {
/// Returns the load parameters for `IMEM`.
fn imem_load_params(&self) -> FalconLoadTarget;
/// Returns the load parameters for `DMEM`.
fn dmem_load_params(&self) -> FalconLoadTarget;
/// Returns the parameters to write into the BROM registers.
fn brom_params(&self) -> FalconBromParams;
/// Returns the start address of the firmware.
fn boot_addr(&self) -> u32;
}
/// Trait for a falcon firmware.
///
/// A falcon firmware can be loaded on a given engine, and is presented in the form of a DMA
/// object.
pub(crate) trait FalconFirmware: FalconLoadParams + Deref<Target = DmaObject> {
/// Engine on which this firmware is to be loaded.
type Target: FalconEngine;
}
/// Contains the base parameters common to all Falcon instances.
pub(crate) struct Falcon<E: FalconEngine> {
hal: KBox<dyn FalconHal<E>>,
dev: ARef<device::Device>,
}
impl<E: FalconEngine + 'static> Falcon<E> {
/// Create a new falcon instance.
///
/// `need_riscv` is set to `true` if the caller expects the falcon to be a dual falcon/riscv
/// controller.
pub(crate) fn new(
dev: &device::Device,
chipset: Chipset,
bar: &Bar0,
need_riscv: bool,
) -> Result<Self> {
let hwcfg1 = regs::NV_PFALCON_FALCON_HWCFG1::read(bar, E::BASE);
// Check that the revision and security model contain valid values.
let _ = hwcfg1.core_rev()?;
let _ = hwcfg1.security_model()?;
if need_riscv {
let hwcfg2 = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, E::BASE);
if !hwcfg2.riscv() {
dev_err!(
dev,
"riscv support requested on a controller that does not support it\n"
);
return Err(EINVAL);
}
}
Ok(Self {
hal: hal::falcon_hal(chipset)?,
dev: dev.into(),
})
}
/// Wait for memory scrubbing to complete.
fn reset_wait_mem_scrubbing(&self, bar: &Bar0) -> Result {
// TIMEOUT: memory scrubbing should complete in less than 20ms.
util::wait_on(Delta::from_millis(20), || {
if regs::NV_PFALCON_FALCON_HWCFG2::read(bar, E::BASE).mem_scrubbing_done() {
Some(())
} else {
None
}
})
}
/// Reset the falcon engine.
fn reset_eng(&self, bar: &Bar0) -> Result {
let _ = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, E::BASE);
// According to OpenRM's `kflcnPreResetWait_GA102` documentation, HW sometimes does not set
// RESET_READY so a non-failing timeout is used.
let _ = util::wait_on(Delta::from_micros(150), || {
let r = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, E::BASE);
if r.reset_ready() {
Some(())
} else {
None
}
});
regs::NV_PFALCON_FALCON_ENGINE::alter(bar, E::BASE, |v| v.set_reset(true));
// TODO[DLAY]: replace with udelay() or equivalent once available.
// TIMEOUT: falcon engine should not take more than 10us to reset.
let _: Result = util::wait_on(Delta::from_micros(10), || None);
regs::NV_PFALCON_FALCON_ENGINE::alter(bar, E::BASE, |v| v.set_reset(false));
self.reset_wait_mem_scrubbing(bar)?;
Ok(())
}
/// Reset the controller, select the falcon core, and wait for memory scrubbing to complete.
pub(crate) fn reset(&self, bar: &Bar0) -> Result {
self.reset_eng(bar)?;
self.hal.select_core(self, bar)?;
self.reset_wait_mem_scrubbing(bar)?;
regs::NV_PFALCON_FALCON_RM::default()
.set_value(regs::NV_PMC_BOOT_0::read(bar).into())
.write(bar, E::BASE);
Ok(())
}
/// Perform a DMA write according to `load_offsets` from `dma_handle` into the falcon's
/// `target_mem`.
///
/// `sec` is set if the loaded firmware is expected to run in secure mode.
fn dma_wr<F: FalconFirmware<Target = E>>(
&self,
bar: &Bar0,
fw: &F,
target_mem: FalconMem,
load_offsets: FalconLoadTarget,
sec: bool,
) -> Result {
const DMA_LEN: u32 = 256;
// For IMEM, we want to use the start offset as a virtual address tag for each page, since
// code addresses in the firmware (and the boot vector) are virtual.
//
// For DMEM we can fold the start offset into the DMA handle.
let (src_start, dma_start) = match target_mem {
FalconMem::Imem => (load_offsets.src_start, fw.dma_handle()),
FalconMem::Dmem => (
0,
fw.dma_handle_with_offset(load_offsets.src_start as usize)?,
),
};
if dma_start % bindings::dma_addr_t::from(DMA_LEN) > 0 {
dev_err!(
self.dev,
"DMA transfer start addresses must be a multiple of {}",
DMA_LEN
);
return Err(EINVAL);
}
if load_offsets.len % DMA_LEN > 0 {
dev_err!(
self.dev,
"DMA transfer length must be a multiple of {}",
DMA_LEN
);
return Err(EINVAL);
}
// Set up the base source DMA address.
regs::NV_PFALCON_FALCON_DMATRFBASE::default()
.set_base((dma_start >> 8) as u32)
.write(bar, E::BASE);
regs::NV_PFALCON_FALCON_DMATRFBASE1::default()
.set_base((dma_start >> 40) as u16)
.write(bar, E::BASE);
let cmd = regs::NV_PFALCON_FALCON_DMATRFCMD::default()
.set_size(DmaTrfCmdSize::Size256B)
.set_imem(target_mem == FalconMem::Imem)
.set_sec(if sec { 1 } else { 0 });
for pos in (0..load_offsets.len).step_by(DMA_LEN as usize) {
// Perform a transfer of size `DMA_LEN`.
regs::NV_PFALCON_FALCON_DMATRFMOFFS::default()
.set_offs(load_offsets.dst_start + pos)
.write(bar, E::BASE);
regs::NV_PFALCON_FALCON_DMATRFFBOFFS::default()
.set_offs(src_start + pos)
.write(bar, E::BASE);
cmd.write(bar, E::BASE);
// Wait for the transfer to complete.
// TIMEOUT: arbitrarily large value, no DMA transfer to the falcon's small memories
// should ever take that long.
util::wait_on(Delta::from_secs(2), || {
let r = regs::NV_PFALCON_FALCON_DMATRFCMD::read(bar, E::BASE);
if r.idle() {
Some(())
} else {
None
}
})?;
}
Ok(())
}
/// Perform a DMA load into `IMEM` and `DMEM` of `fw`, and prepare the falcon to run it.
pub(crate) fn dma_load<F: FalconFirmware<Target = E>>(&self, bar: &Bar0, fw: &F) -> Result {
regs::NV_PFALCON_FBIF_CTL::alter(bar, E::BASE, |v| v.set_allow_phys_no_ctx(true));
regs::NV_PFALCON_FALCON_DMACTL::default().write(bar, E::BASE);
regs::NV_PFALCON_FBIF_TRANSCFG::alter(bar, E::BASE, |v| {
v.set_target(FalconFbifTarget::CoherentSysmem)
.set_mem_type(FalconFbifMemType::Physical)
});
self.dma_wr(bar, fw, FalconMem::Imem, fw.imem_load_params(), true)?;
self.dma_wr(bar, fw, FalconMem::Dmem, fw.dmem_load_params(), true)?;
self.hal.program_brom(self, bar, &fw.brom_params())?;
// Set `BootVec` to start of non-secure code.
regs::NV_PFALCON_FALCON_BOOTVEC::default()
.set_value(fw.boot_addr())
.write(bar, E::BASE);
Ok(())
}
/// Runs the loaded firmware and waits for its completion.
///
/// `mbox0` and `mbox1` are optional parameters to write into the `MBOX0` and `MBOX1` registers
/// prior to running.
///
/// Wait up to two seconds for the firmware to complete, and return its exit status read from
/// the `MBOX0` and `MBOX1` registers.
pub(crate) fn boot(
&self,
bar: &Bar0,
mbox0: Option<u32>,
mbox1: Option<u32>,
) -> Result<(u32, u32)> {
if let Some(mbox0) = mbox0 {
regs::NV_PFALCON_FALCON_MAILBOX0::default()
.set_value(mbox0)
.write(bar, E::BASE);
}
if let Some(mbox1) = mbox1 {
regs::NV_PFALCON_FALCON_MAILBOX1::default()
.set_value(mbox1)
.write(bar, E::BASE);
}
match regs::NV_PFALCON_FALCON_CPUCTL::read(bar, E::BASE).alias_en() {
true => regs::NV_PFALCON_FALCON_CPUCTL_ALIAS::default()
.set_startcpu(true)
.write(bar, E::BASE),
false => regs::NV_PFALCON_FALCON_CPUCTL::default()
.set_startcpu(true)
.write(bar, E::BASE),
}
// TIMEOUT: arbitrarily large value, firmwares should complete in less than 2 seconds.
util::wait_on(Delta::from_secs(2), || {
let r = regs::NV_PFALCON_FALCON_CPUCTL::read(bar, E::BASE);
if r.halted() {
Some(())
} else {
None
}
})?;
let (mbox0, mbox1) = (
regs::NV_PFALCON_FALCON_MAILBOX0::read(bar, E::BASE).value(),
regs::NV_PFALCON_FALCON_MAILBOX1::read(bar, E::BASE).value(),
);
Ok((mbox0, mbox1))
}
/// Returns the fused version of the signature to use in order to run a HS firmware on this
/// falcon instance. `engine_id_mask` and `ucode_id` are obtained from the firmware header.
pub(crate) fn signature_reg_fuse_version(
&self,
bar: &Bar0,
engine_id_mask: u16,
ucode_id: u8,
) -> Result<u32> {
self.hal
.signature_reg_fuse_version(self, bar, engine_id_mask, ucode_id)
}
}
|