1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
|
// SPDX-License-Identifier: GPL-2.0
//! Macro to define register layout and accessors.
//!
//! A single register typically includes several fields, which are accessed through a combination
//! of bit-shift and mask operations that introduce a class of potential mistakes, notably because
//! not all possible field values are necessarily valid.
//!
//! The macro in this module allow to define, using an intruitive and readable syntax, a dedicated
//! type for each register with its own field accessors that can return an error is a field's value
//! is invalid.
/// Defines a dedicated type for a register with an absolute offset, alongside with getter and
/// setter methods for its fields and methods to read and write it from an `Io` region.
///
/// Example:
///
/// ```no_run
/// register!(BOOT_0 @ 0x00000100, "Basic revision information about the GPU" {
/// 3:0 minor_revision as u8, "Minor revision of the chip";
/// 7:4 major_revision as u8, "Major revision of the chip";
/// 28:20 chipset as u32 ?=> Chipset, "Chipset model";
/// });
/// ```
///
/// This defines a `BOOT_0` type which can be read or written from offset `0x100` of an `Io`
/// region. It is composed of 3 fields, for instance `minor_revision` is made of the 4 less
/// significant bits of the register. Each field can be accessed and modified using accessor
/// methods:
///
/// ```no_run
/// // Read from the register's defined offset (0x100).
/// let boot0 = BOOT_0::read(&bar);
/// pr_info!("chip revision: {}.{}", boot0.major_revision(), boot0.minor_revision());
///
/// // `Chipset::try_from` will be called with the value of the field and returns an error if the
/// // value is invalid.
/// let chipset = boot0.chipset()?;
///
/// // Update some fields and write the value back.
/// boot0.set_major_revision(3).set_minor_revision(10).write(&bar);
///
/// // Or just read and update the register in a single step:
/// BOOT_0::alter(&bar, |r| r.set_major_revision(3).set_minor_revision(10));
/// ```
///
/// Fields can be defined as follows:
///
/// - `as <type>` simply returns the field value casted as the requested integer type, typically
/// `u32`, `u16`, `u8` or `bool`. Note that `bool` fields must have a range of 1 bit.
/// - `as <type> => <into_type>` calls `<into_type>`'s `From::<<type>>` implementation and returns
/// the result.
/// - `as <type> ?=> <try_into_type>` calls `<try_into_type>`'s `TryFrom::<<type>>` implementation
/// and returns the result. This is useful on fields for which not all values are value.
///
/// The documentation strings are optional. If present, they will be added to the type's
/// definition, or the field getter and setter methods they are attached to.
///
/// Putting a `+` before the address of the register makes it relative to a base: the `read` and
/// `write` methods take a `base` argument that is added to the specified address before access,
/// and `try_read` and `try_write` methods are also created, allowing access with offsets unknown
/// at compile-time:
///
/// ```no_run
/// register!(CPU_CTL @ +0x0000010, "CPU core control" {
/// 0:0 start as bool, "Start the CPU core";
/// });
///
/// // Flip the `start` switch for the CPU core which base address is at `CPU_BASE`.
/// let cpuctl = CPU_CTL::read(&bar, CPU_BASE);
/// pr_info!("CPU CTL: {:#x}", cpuctl);
/// cpuctl.set_start(true).write(&bar, CPU_BASE);
/// ```
///
/// It is also possible to create a alias register by using the `=> ALIAS` syntax. This is useful
/// for cases where a register's interpretation depends on the context:
///
/// ```no_run
/// register!(SCRATCH_0 @ 0x0000100, "Scratch register 0" {
/// 31:0 value as u32, "Raw value";
///
/// register!(SCRATCH_0_BOOT_STATUS => SCRATCH_0, "Boot status of the firmware" {
/// 0:0 completed as bool, "Whether the firmware has completed booting";
/// ```
///
/// In this example, `SCRATCH_0_BOOT_STATUS` uses the same I/O address as `SCRATCH_0`, while also
/// providing its own `completed` method.
macro_rules! register {
// Creates a register at a fixed offset of the MMIO space.
(
$name:ident @ $offset:literal $(, $comment:literal)? {
$($fields:tt)*
}
) => {
register!(@common $name @ $offset $(, $comment)?);
register!(@field_accessors $name { $($fields)* });
register!(@io $name @ $offset);
};
// Creates a alias register of fixed offset register `alias` with its own fields.
(
$name:ident => $alias:ident $(, $comment:literal)? {
$($fields:tt)*
}
) => {
register!(@common $name @ $alias::OFFSET $(, $comment)?);
register!(@field_accessors $name { $($fields)* });
register!(@io $name @ $alias::OFFSET);
};
// Creates a register at a relative offset from a base address.
(
$name:ident @ + $offset:literal $(, $comment:literal)? {
$($fields:tt)*
}
) => {
register!(@common $name @ $offset $(, $comment)?);
register!(@field_accessors $name { $($fields)* });
register!(@io$name @ + $offset);
};
// Creates a alias register of relative offset register `alias` with its own fields.
(
$name:ident => + $alias:ident $(, $comment:literal)? {
$($fields:tt)*
}
) => {
register!(@common $name @ $alias::OFFSET $(, $comment)?);
register!(@field_accessors $name { $($fields)* });
register!(@io $name @ + $alias::OFFSET);
};
// All rules below are helpers.
// Defines the wrapper `$name` type, as well as its relevant implementations (`Debug`, `BitOr`,
// and conversion to regular `u32`).
(@common $name:ident @ $offset:expr $(, $comment:literal)?) => {
$(
#[doc=$comment]
)?
#[repr(transparent)]
#[derive(Clone, Copy, Default)]
pub(crate) struct $name(u32);
#[allow(dead_code)]
impl $name {
pub(crate) const OFFSET: usize = $offset;
}
// TODO[REGA]: display the raw hex value, then the value of all the fields. This requires
// matching the fields, which will complexify the syntax considerably...
impl ::core::fmt::Debug for $name {
fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
f.debug_tuple(stringify!($name))
.field(&format_args!("0x{0:x}", &self.0))
.finish()
}
}
impl ::core::ops::BitOr for $name {
type Output = Self;
fn bitor(self, rhs: Self) -> Self::Output {
Self(self.0 | rhs.0)
}
}
impl ::core::convert::From<$name> for u32 {
fn from(reg: $name) -> u32 {
reg.0
}
}
};
// Defines all the field getter/methods methods for `$name`.
(
@field_accessors $name:ident {
$($hi:tt:$lo:tt $field:ident as $type:tt
$(?=> $try_into_type:ty)?
$(=> $into_type:ty)?
$(, $comment:literal)?
;
)*
}
) => {
$(
register!(@check_field_bounds $hi:$lo $field as $type);
)*
#[allow(dead_code)]
impl $name {
$(
register!(@field_accessor $name $hi:$lo $field as $type
$(?=> $try_into_type)?
$(=> $into_type)?
$(, $comment)?
;
);
)*
}
};
// Boolean fields must have `$hi == $lo`.
(@check_field_bounds $hi:tt:$lo:tt $field:ident as bool) => {
#[allow(clippy::eq_op)]
const _: () = {
::kernel::build_assert!(
$hi == $lo,
concat!("boolean field `", stringify!($field), "` covers more than one bit")
);
};
};
// Non-boolean fields must have `$hi >= $lo`.
(@check_field_bounds $hi:tt:$lo:tt $field:ident as $type:tt) => {
#[allow(clippy::eq_op)]
const _: () = {
::kernel::build_assert!(
$hi >= $lo,
concat!("field `", stringify!($field), "`'s MSB is smaller than its LSB")
);
};
};
// Catches fields defined as `bool` and convert them into a boolean value.
(
@field_accessor $name:ident $hi:tt:$lo:tt $field:ident as bool => $into_type:ty
$(, $comment:literal)?;
) => {
register!(
@leaf_accessor $name $hi:$lo $field as bool
{ |f| <$into_type>::from(if f != 0 { true } else { false }) }
$into_type => $into_type $(, $comment)?;
);
};
// Shortcut for fields defined as `bool` without the `=>` syntax.
(
@field_accessor $name:ident $hi:tt:$lo:tt $field:ident as bool $(, $comment:literal)?;
) => {
register!(@field_accessor $name $hi:$lo $field as bool => bool $(, $comment)?;);
};
// Catches the `?=>` syntax for non-boolean fields.
(
@field_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:tt ?=> $try_into_type:ty
$(, $comment:literal)?;
) => {
register!(@leaf_accessor $name $hi:$lo $field as $type
{ |f| <$try_into_type>::try_from(f as $type) } $try_into_type =>
::core::result::Result<
$try_into_type,
<$try_into_type as ::core::convert::TryFrom<$type>>::Error
>
$(, $comment)?;);
};
// Catches the `=>` syntax for non-boolean fields.
(
@field_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:tt => $into_type:ty
$(, $comment:literal)?;
) => {
register!(@leaf_accessor $name $hi:$lo $field as $type
{ |f| <$into_type>::from(f as $type) } $into_type => $into_type $(, $comment)?;);
};
// Shortcut for fields defined as non-`bool` without the `=>` or `?=>` syntax.
(
@field_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:tt
$(, $comment:literal)?;
) => {
register!(@field_accessor $name $hi:$lo $field as $type => $type $(, $comment)?;);
};
// Generates the accessor methods for a single field.
(
@leaf_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:ty
{ $process:expr } $to_type:ty => $res_type:ty $(, $comment:literal)?;
) => {
::kernel::macros::paste!(
const [<$field:upper>]: ::core::ops::RangeInclusive<u8> = $lo..=$hi;
const [<$field:upper _MASK>]: u32 = ((((1 << $hi) - 1) << 1) + 1) - ((1 << $lo) - 1);
const [<$field:upper _SHIFT>]: u32 = Self::[<$field:upper _MASK>].trailing_zeros();
);
$(
#[doc="Returns the value of this field:"]
#[doc=$comment]
)?
#[inline]
pub(crate) fn $field(self) -> $res_type {
::kernel::macros::paste!(
const MASK: u32 = $name::[<$field:upper _MASK>];
const SHIFT: u32 = $name::[<$field:upper _SHIFT>];
);
let field = ((self.0 & MASK) >> SHIFT);
$process(field)
}
::kernel::macros::paste!(
$(
#[doc="Sets the value of this field:"]
#[doc=$comment]
)?
#[inline]
pub(crate) fn [<set_ $field>](mut self, value: $to_type) -> Self {
const MASK: u32 = $name::[<$field:upper _MASK>];
const SHIFT: u32 = $name::[<$field:upper _SHIFT>];
let value = (u32::from(value) << SHIFT) & MASK;
self.0 = (self.0 & !MASK) | value;
self
}
);
};
// Creates the IO accessors for a fixed offset register.
(@io $name:ident @ $offset:expr) => {
#[allow(dead_code)]
impl $name {
#[inline]
pub(crate) fn read<const SIZE: usize, T>(io: &T) -> Self where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
Self(io.read32($offset))
}
#[inline]
pub(crate) fn write<const SIZE: usize, T>(self, io: &T) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
io.write32(self.0, $offset)
}
#[inline]
pub(crate) fn alter<const SIZE: usize, T, F>(
io: &T,
f: F,
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
F: ::core::ops::FnOnce(Self) -> Self,
{
let reg = f(Self::read(io));
reg.write(io);
}
}
};
// Create the IO accessors for a relative offset register.
(@io $name:ident @ + $offset:literal) => {
#[allow(dead_code)]
impl $name {
#[inline]
pub(crate) fn read<const SIZE: usize, T>(
io: &T,
base: usize,
) -> Self where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
Self(io.read32(base + $offset))
}
#[inline]
pub(crate) fn write<const SIZE: usize, T>(
self,
io: &T,
base: usize,
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
io.write32(self.0, base + $offset)
}
#[inline]
pub(crate) fn alter<const SIZE: usize, T, F>(
io: &T,
base: usize,
f: F,
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
F: ::core::ops::FnOnce(Self) -> Self,
{
let reg = f(Self::read(io, base));
reg.write(io, base);
}
#[inline]
pub(crate) fn try_read<const SIZE: usize, T>(
io: &T,
base: usize,
) -> ::kernel::error::Result<Self> where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
io.try_read32(base + $offset).map(Self)
}
#[inline]
pub(crate) fn try_write<const SIZE: usize, T>(
self,
io: &T,
base: usize,
) -> ::kernel::error::Result<()> where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
io.try_write32(self.0, base + $offset)
}
#[inline]
pub(crate) fn try_alter<const SIZE: usize, T, F>(
io: &T,
base: usize,
f: F,
) -> ::kernel::error::Result<()> where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
F: ::core::ops::FnOnce(Self) -> Self,
{
let reg = f(Self::try_read(io, base)?);
reg.try_write(io, base)
}
}
};
}
|