1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
|
// SPDX-License-Identifier: GPL-2.0
//! VBIOS extraction and parsing.
use crate::driver::Bar0;
use crate::firmware::fwsec::Bcrt30Rsa3kSignature;
use crate::firmware::FalconUCodeDescV3;
use core::convert::TryFrom;
use kernel::device;
use kernel::error::Result;
use kernel::pci;
use kernel::prelude::*;
/// The offset of the VBIOS ROM in the BAR0 space.
const ROM_OFFSET: usize = 0x300000;
/// The maximum length of the VBIOS ROM to scan into.
const BIOS_MAX_SCAN_LEN: usize = 0x100000;
/// The size to read ahead when parsing initial BIOS image headers.
const BIOS_READ_AHEAD_SIZE: usize = 1024;
/// The bit in the last image indicator byte for the PCI Data Structure that
/// indicates the last image. Bit 0-6 are reserved, bit 7 is last image bit.
const LAST_IMAGE_BIT_MASK: u8 = 0x80;
// PMU lookup table entry types. Used to locate PMU table entries
// in the Fwsec image, corresponding to falcon ucodes.
#[expect(dead_code)]
const FALCON_UCODE_ENTRY_APPID_FIRMWARE_SEC_LIC: u8 = 0x05;
#[expect(dead_code)]
const FALCON_UCODE_ENTRY_APPID_FWSEC_DBG: u8 = 0x45;
const FALCON_UCODE_ENTRY_APPID_FWSEC_PROD: u8 = 0x85;
/// Vbios Reader for constructing the VBIOS data.
struct VbiosIterator<'a> {
pdev: &'a pci::Device,
bar0: &'a Bar0,
/// VBIOS data vector: As BIOS images are scanned, they are added to this vector for reference
/// or copying into other data structures. It is the entire scanned contents of the VBIOS which
/// progressively extends. It is used so that we do not re-read any contents that are already
/// read as we use the cumulative length read so far, and re-read any gaps as we extend the
/// length.
data: KVec<u8>,
/// Current offset of the [`Iterator`].
current_offset: usize,
/// Indicate whether the last image has been found.
last_found: bool,
}
impl<'a> VbiosIterator<'a> {
fn new(pdev: &'a pci::Device, bar0: &'a Bar0) -> Result<Self> {
Ok(Self {
pdev,
bar0,
data: KVec::new(),
current_offset: 0,
last_found: false,
})
}
/// Read bytes from the ROM at the current end of the data vector.
fn read_more(&mut self, len: usize) -> Result {
let current_len = self.data.len();
let start = ROM_OFFSET + current_len;
// Ensure length is a multiple of 4 for 32-bit reads
if len % core::mem::size_of::<u32>() != 0 {
dev_err!(
self.pdev.as_ref(),
"VBIOS read length {} is not a multiple of 4\n",
len
);
return Err(EINVAL);
}
self.data.reserve(len, GFP_KERNEL)?;
// Read ROM data bytes and push directly to `data`.
for addr in (start..start + len).step_by(core::mem::size_of::<u32>()) {
// Read 32-bit word from the VBIOS ROM
let word = self.bar0.try_read32(addr)?;
// Convert the `u32` to a 4 byte array and push each byte.
word.to_ne_bytes()
.iter()
.try_for_each(|&b| self.data.push(b, GFP_KERNEL))?;
}
Ok(())
}
/// Read bytes at a specific offset, filling any gap.
fn read_more_at_offset(&mut self, offset: usize, len: usize) -> Result {
if offset > BIOS_MAX_SCAN_LEN {
dev_err!(self.pdev.as_ref(), "Error: exceeded BIOS scan limit.\n");
return Err(EINVAL);
}
// If `offset` is beyond current data size, fill the gap first.
let current_len = self.data.len();
let gap_bytes = offset.saturating_sub(current_len);
// Now read the requested bytes at the offset.
self.read_more(gap_bytes + len)
}
/// Read a BIOS image at a specific offset and create a [`BiosImage`] from it.
///
/// `self.data` is extended as needed and a new [`BiosImage`] is returned.
/// `context` is a string describing the operation for error reporting.
fn read_bios_image_at_offset(
&mut self,
offset: usize,
len: usize,
context: &str,
) -> Result<BiosImage> {
let data_len = self.data.len();
if offset + len > data_len {
self.read_more_at_offset(offset, len).inspect_err(|e| {
dev_err!(
self.pdev.as_ref(),
"Failed to read more at offset {:#x}: {:?}\n",
offset,
e
)
})?;
}
BiosImage::new(self.pdev, &self.data[offset..offset + len]).inspect_err(|err| {
dev_err!(
self.pdev.as_ref(),
"Failed to {} at offset {:#x}: {:?}\n",
context,
offset,
err
)
})
}
}
impl<'a> Iterator for VbiosIterator<'a> {
type Item = Result<BiosImage>;
/// Iterate over all VBIOS images until the last image is detected or offset
/// exceeds scan limit.
fn next(&mut self) -> Option<Self::Item> {
if self.last_found {
return None;
}
if self.current_offset > BIOS_MAX_SCAN_LEN {
dev_err!(
self.pdev.as_ref(),
"Error: exceeded BIOS scan limit, stopping scan\n"
);
return None;
}
// Parse image headers first to get image size.
let image_size = match self.read_bios_image_at_offset(
self.current_offset,
BIOS_READ_AHEAD_SIZE,
"parse initial BIOS image headers",
) {
Ok(image) => image.image_size_bytes(),
Err(e) => return Some(Err(e)),
};
// Now create a new `BiosImage` with the full image data.
let full_image = match self.read_bios_image_at_offset(
self.current_offset,
image_size,
"parse full BIOS image",
) {
Ok(image) => image,
Err(e) => return Some(Err(e)),
};
self.last_found = full_image.is_last();
// Advance to next image (aligned to 512 bytes).
self.current_offset += image_size;
// TODO[NUMM]: replace with `align_up` once it lands.
self.current_offset = self.current_offset.next_multiple_of(512);
Some(Ok(full_image))
}
}
pub(crate) struct Vbios {
fwsec_image: FwSecBiosImage,
}
impl Vbios {
/// Probe for VBIOS extraction.
///
/// Once the VBIOS object is built, `bar0` is not read for [`Vbios`] purposes anymore.
pub(crate) fn new(pdev: &pci::Device, bar0: &Bar0) -> Result<Vbios> {
// Images to extract from iteration
let mut pci_at_image: Option<PciAtBiosImage> = None;
let mut first_fwsec_image: Option<FwSecBiosBuilder> = None;
let mut second_fwsec_image: Option<FwSecBiosBuilder> = None;
// Parse all VBIOS images in the ROM
for image_result in VbiosIterator::new(pdev, bar0)? {
let full_image = image_result?;
dev_dbg!(
pdev.as_ref(),
"Found BIOS image: size: {:#x}, type: {}, last: {}\n",
full_image.image_size_bytes(),
full_image.image_type_str(),
full_image.is_last()
);
// Get references to images we will need after the loop, in order to
// setup the falcon data offset.
match full_image {
BiosImage::PciAt(image) => {
pci_at_image = Some(image);
}
BiosImage::FwSec(image) => {
if first_fwsec_image.is_none() {
first_fwsec_image = Some(image);
} else {
second_fwsec_image = Some(image);
}
}
// For now we don't need to handle these
BiosImage::Efi(_image) => {}
BiosImage::Nbsi(_image) => {}
}
}
// Using all the images, setup the falcon data pointer in Fwsec.
if let (Some(mut second), Some(first), Some(pci_at)) =
(second_fwsec_image, first_fwsec_image, pci_at_image)
{
second
.setup_falcon_data(pdev, &pci_at, &first)
.inspect_err(|e| dev_err!(pdev.as_ref(), "Falcon data setup failed: {:?}\n", e))?;
Ok(Vbios {
fwsec_image: second.build(pdev)?,
})
} else {
dev_err!(
pdev.as_ref(),
"Missing required images for falcon data setup, skipping\n"
);
Err(EINVAL)
}
}
pub(crate) fn fwsec_image(&self) -> &FwSecBiosImage {
&self.fwsec_image
}
}
/// PCI Data Structure as defined in PCI Firmware Specification
#[derive(Debug, Clone)]
#[repr(C)]
struct PcirStruct {
/// PCI Data Structure signature ("PCIR" or "NPDS")
signature: [u8; 4],
/// PCI Vendor ID (e.g., 0x10DE for NVIDIA)
vendor_id: u16,
/// PCI Device ID
device_id: u16,
/// Device List Pointer
device_list_ptr: u16,
/// PCI Data Structure Length
pci_data_struct_len: u16,
/// PCI Data Structure Revision
pci_data_struct_rev: u8,
/// Class code (3 bytes, 0x03 for display controller)
class_code: [u8; 3],
/// Size of this image in 512-byte blocks
image_len: u16,
/// Revision Level of the Vendor's ROM
vendor_rom_rev: u16,
/// ROM image type (0x00 = PC-AT compatible, 0x03 = EFI, 0x70 = NBSI)
code_type: u8,
/// Last image indicator (0x00 = Not last image, 0x80 = Last image)
last_image: u8,
/// Maximum Run-time Image Length (units of 512 bytes)
max_runtime_image_len: u16,
}
impl PcirStruct {
fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
if data.len() < core::mem::size_of::<PcirStruct>() {
dev_err!(pdev.as_ref(), "Not enough data for PcirStruct\n");
return Err(EINVAL);
}
let mut signature = [0u8; 4];
signature.copy_from_slice(&data[0..4]);
// Signature should be "PCIR" (0x52494350) or "NPDS" (0x5344504e).
if &signature != b"PCIR" && &signature != b"NPDS" {
dev_err!(
pdev.as_ref(),
"Invalid signature for PcirStruct: {:?}\n",
signature
);
return Err(EINVAL);
}
let mut class_code = [0u8; 3];
class_code.copy_from_slice(&data[13..16]);
let image_len = u16::from_le_bytes([data[16], data[17]]);
if image_len == 0 {
dev_err!(pdev.as_ref(), "Invalid image length: 0\n");
return Err(EINVAL);
}
Ok(PcirStruct {
signature,
vendor_id: u16::from_le_bytes([data[4], data[5]]),
device_id: u16::from_le_bytes([data[6], data[7]]),
device_list_ptr: u16::from_le_bytes([data[8], data[9]]),
pci_data_struct_len: u16::from_le_bytes([data[10], data[11]]),
pci_data_struct_rev: data[12],
class_code,
image_len,
vendor_rom_rev: u16::from_le_bytes([data[18], data[19]]),
code_type: data[20],
last_image: data[21],
max_runtime_image_len: u16::from_le_bytes([data[22], data[23]]),
})
}
/// Check if this is the last image in the ROM.
fn is_last(&self) -> bool {
self.last_image & LAST_IMAGE_BIT_MASK != 0
}
/// Calculate image size in bytes from 512-byte blocks.
fn image_size_bytes(&self) -> usize {
self.image_len as usize * 512
}
}
/// BIOS Information Table (BIT) Header.
///
/// This is the head of the BIT table, that is used to locate the Falcon data. The BIT table (with
/// its header) is in the [`PciAtBiosImage`] and the falcon data it is pointing to is in the
/// [`FwSecBiosImage`].
#[derive(Debug, Clone, Copy)]
#[expect(dead_code)]
struct BitHeader {
/// 0h: BIT Header Identifier (BMP=0x7FFF/BIT=0xB8FF)
id: u16,
/// 2h: BIT Header Signature ("BIT\0")
signature: [u8; 4],
/// 6h: Binary Coded Decimal Version, ex: 0x0100 is 1.00.
bcd_version: u16,
/// 8h: Size of BIT Header (in bytes)
header_size: u8,
/// 9h: Size of BIT Tokens (in bytes)
token_size: u8,
/// 10h: Number of token entries that follow
token_entries: u8,
/// 11h: BIT Header Checksum
checksum: u8,
}
impl BitHeader {
fn new(data: &[u8]) -> Result<Self> {
if data.len() < 12 {
return Err(EINVAL);
}
let mut signature = [0u8; 4];
signature.copy_from_slice(&data[2..6]);
// Check header ID and signature
let id = u16::from_le_bytes([data[0], data[1]]);
if id != 0xB8FF || &signature != b"BIT\0" {
return Err(EINVAL);
}
Ok(BitHeader {
id,
signature,
bcd_version: u16::from_le_bytes([data[6], data[7]]),
header_size: data[8],
token_size: data[9],
token_entries: data[10],
checksum: data[11],
})
}
}
/// BIT Token Entry: Records in the BIT table followed by the BIT header.
#[derive(Debug, Clone, Copy)]
#[expect(dead_code)]
struct BitToken {
/// 00h: Token identifier
id: u8,
/// 01h: Version of the token data
data_version: u8,
/// 02h: Size of token data in bytes
data_size: u16,
/// 04h: Offset to the token data
data_offset: u16,
}
// Define the token ID for the Falcon data
const BIT_TOKEN_ID_FALCON_DATA: u8 = 0x70;
impl BitToken {
/// Find a BIT token entry by BIT ID in a PciAtBiosImage
fn from_id(image: &PciAtBiosImage, token_id: u8) -> Result<Self> {
let header = &image.bit_header;
// Offset to the first token entry
let tokens_start = image.bit_offset + header.header_size as usize;
for i in 0..header.token_entries as usize {
let entry_offset = tokens_start + (i * header.token_size as usize);
// Make sure we don't go out of bounds
if entry_offset + header.token_size as usize > image.base.data.len() {
return Err(EINVAL);
}
// Check if this token has the requested ID
if image.base.data[entry_offset] == token_id {
return Ok(BitToken {
id: image.base.data[entry_offset],
data_version: image.base.data[entry_offset + 1],
data_size: u16::from_le_bytes([
image.base.data[entry_offset + 2],
image.base.data[entry_offset + 3],
]),
data_offset: u16::from_le_bytes([
image.base.data[entry_offset + 4],
image.base.data[entry_offset + 5],
]),
});
}
}
// Token not found
Err(ENOENT)
}
}
/// PCI ROM Expansion Header as defined in PCI Firmware Specification.
///
/// This is header is at the beginning of every image in the set of images in the ROM. It contains
/// a pointer to the PCI Data Structure which describes the image. For "NBSI" images (NoteBook
/// System Information), the ROM header deviates from the standard and contains an offset to the
/// NBSI image however we do not yet parse that in this module and keep it for future reference.
#[derive(Debug, Clone, Copy)]
#[expect(dead_code)]
struct PciRomHeader {
/// 00h: Signature (0xAA55)
signature: u16,
/// 02h: Reserved bytes for processor architecture unique data (20 bytes)
reserved: [u8; 20],
/// 16h: NBSI Data Offset (NBSI-specific, offset from header to NBSI image)
nbsi_data_offset: Option<u16>,
/// 18h: Pointer to PCI Data Structure (offset from start of ROM image)
pci_data_struct_offset: u16,
/// 1Ah: Size of block (this is NBSI-specific)
size_of_block: Option<u32>,
}
impl PciRomHeader {
fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
if data.len() < 26 {
// Need at least 26 bytes to read pciDataStrucPtr and sizeOfBlock.
return Err(EINVAL);
}
let signature = u16::from_le_bytes([data[0], data[1]]);
// Check for valid ROM signatures.
match signature {
0xAA55 | 0xBB77 | 0x4E56 => {}
_ => {
dev_err!(pdev.as_ref(), "ROM signature unknown {:#x}\n", signature);
return Err(EINVAL);
}
}
// Read the pointer to the PCI Data Structure at offset 0x18.
let pci_data_struct_ptr = u16::from_le_bytes([data[24], data[25]]);
// Try to read optional fields if enough data.
let mut size_of_block = None;
let mut nbsi_data_offset = None;
if data.len() >= 30 {
// Read size_of_block at offset 0x1A.
size_of_block = Some(
u32::from(data[29]) << 24
| u32::from(data[28]) << 16
| u32::from(data[27]) << 8
| u32::from(data[26]),
);
}
// For NBSI images, try to read the nbsiDataOffset at offset 0x16.
if data.len() >= 24 {
nbsi_data_offset = Some(u16::from_le_bytes([data[22], data[23]]));
}
Ok(PciRomHeader {
signature,
reserved: [0u8; 20],
pci_data_struct_offset: pci_data_struct_ptr,
size_of_block,
nbsi_data_offset,
})
}
}
/// NVIDIA PCI Data Extension Structure.
///
/// This is similar to the PCI Data Structure, but is Nvidia-specific and is placed right after the
/// PCI Data Structure. It contains some fields that are redundant with the PCI Data Structure, but
/// are needed for traversing the BIOS images. It is expected to be present in all BIOS images
/// except for NBSI images.
#[derive(Debug, Clone)]
#[repr(C)]
struct NpdeStruct {
/// 00h: Signature ("NPDE")
signature: [u8; 4],
/// 04h: NVIDIA PCI Data Extension Revision
npci_data_ext_rev: u16,
/// 06h: NVIDIA PCI Data Extension Length
npci_data_ext_len: u16,
/// 08h: Sub-image Length (in 512-byte units)
subimage_len: u16,
/// 0Ah: Last image indicator flag
last_image: u8,
}
impl NpdeStruct {
fn new(pdev: &pci::Device, data: &[u8]) -> Option<Self> {
if data.len() < core::mem::size_of::<Self>() {
dev_dbg!(pdev.as_ref(), "Not enough data for NpdeStruct\n");
return None;
}
let mut signature = [0u8; 4];
signature.copy_from_slice(&data[0..4]);
// Signature should be "NPDE" (0x4544504E).
if &signature != b"NPDE" {
dev_dbg!(
pdev.as_ref(),
"Invalid signature for NpdeStruct: {:?}\n",
signature
);
return None;
}
let subimage_len = u16::from_le_bytes([data[8], data[9]]);
if subimage_len == 0 {
dev_dbg!(pdev.as_ref(), "Invalid subimage length: 0\n");
return None;
}
Some(NpdeStruct {
signature,
npci_data_ext_rev: u16::from_le_bytes([data[4], data[5]]),
npci_data_ext_len: u16::from_le_bytes([data[6], data[7]]),
subimage_len,
last_image: data[10],
})
}
/// Check if this is the last image in the ROM.
fn is_last(&self) -> bool {
self.last_image & LAST_IMAGE_BIT_MASK != 0
}
/// Calculate image size in bytes from 512-byte blocks.
fn image_size_bytes(&self) -> usize {
self.subimage_len as usize * 512
}
/// Try to find NPDE in the data, the NPDE is right after the PCIR.
fn find_in_data(
pdev: &pci::Device,
data: &[u8],
rom_header: &PciRomHeader,
pcir: &PcirStruct,
) -> Option<Self> {
// Calculate the offset where NPDE might be located
// NPDE should be right after the PCIR structure, aligned to 16 bytes
let pcir_offset = rom_header.pci_data_struct_offset as usize;
let npde_start = (pcir_offset + pcir.pci_data_struct_len as usize + 0x0F) & !0x0F;
// Check if we have enough data
if npde_start + core::mem::size_of::<Self>() > data.len() {
dev_dbg!(pdev.as_ref(), "Not enough data for NPDE\n");
return None;
}
// Try to create NPDE from the data
NpdeStruct::new(pdev, &data[npde_start..])
}
}
// Use a macro to implement BiosImage enum and methods. This avoids having to
// repeat each enum type when implementing functions like base() in BiosImage.
macro_rules! bios_image {
(
$($variant:ident: $class:ident),* $(,)?
) => {
// BiosImage enum with variants for each image type
enum BiosImage {
$($variant($class)),*
}
impl BiosImage {
/// Get a reference to the common BIOS image data regardless of type
fn base(&self) -> &BiosImageBase {
match self {
$(Self::$variant(img) => &img.base),*
}
}
/// Returns a string representing the type of BIOS image
fn image_type_str(&self) -> &'static str {
match self {
$(Self::$variant(_) => stringify!($variant)),*
}
}
}
}
}
impl BiosImage {
/// Check if this is the last image.
fn is_last(&self) -> bool {
let base = self.base();
// For NBSI images (type == 0x70), return true as they're
// considered the last image
if matches!(self, Self::Nbsi(_)) {
return true;
}
// For other image types, check the NPDE first if available
if let Some(ref npde) = base.npde {
return npde.is_last();
}
// Otherwise, fall back to checking the PCIR last_image flag
base.pcir.is_last()
}
/// Get the image size in bytes.
fn image_size_bytes(&self) -> usize {
let base = self.base();
// Prefer NPDE image size if available
if let Some(ref npde) = base.npde {
return npde.image_size_bytes();
}
// Otherwise, fall back to the PCIR image size
base.pcir.image_size_bytes()
}
/// Create a [`BiosImageBase`] from a byte slice and convert it to a [`BiosImage`] which
/// triggers the constructor of the specific BiosImage enum variant.
fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
let base = BiosImageBase::new(pdev, data)?;
let image = base.into_image().inspect_err(|e| {
dev_err!(pdev.as_ref(), "Failed to create BiosImage: {:?}\n", e);
})?;
Ok(image)
}
}
bios_image! {
PciAt: PciAtBiosImage, // PCI-AT compatible BIOS image
Efi: EfiBiosImage, // EFI (Extensible Firmware Interface)
Nbsi: NbsiBiosImage, // NBSI (Nvidia Bios System Interface)
FwSec: FwSecBiosBuilder, // FWSEC (Firmware Security)
}
/// The PciAt BIOS image is typically the first BIOS image type found in the BIOS image chain.
///
/// It contains the BIT header and the BIT tokens.
struct PciAtBiosImage {
base: BiosImageBase,
bit_header: BitHeader,
bit_offset: usize,
}
struct EfiBiosImage {
base: BiosImageBase,
// EFI-specific fields can be added here in the future.
}
struct NbsiBiosImage {
base: BiosImageBase,
// NBSI-specific fields can be added here in the future.
}
struct FwSecBiosBuilder {
base: BiosImageBase,
/// These are temporary fields that are used during the construction of the
/// [`FwSecBiosBuilder`].
///
/// Once FwSecBiosBuilder is constructed, the `falcon_ucode_offset` will be copied into a new
/// [`FwSecBiosImage`].
///
/// The offset of the Falcon data from the start of Fwsec image.
falcon_data_offset: Option<usize>,
/// The [`PmuLookupTable`] starts at the offset of the falcon data pointer.
pmu_lookup_table: Option<PmuLookupTable>,
/// The offset of the Falcon ucode.
falcon_ucode_offset: Option<usize>,
}
/// The [`FwSecBiosImage`] structure contains the PMU table and the Falcon Ucode.
///
/// The PMU table contains voltage/frequency tables as well as a pointer to the Falcon Ucode.
pub(crate) struct FwSecBiosImage {
base: BiosImageBase,
/// The offset of the Falcon ucode.
falcon_ucode_offset: usize,
}
// Convert from BiosImageBase to BiosImage
impl TryFrom<BiosImageBase> for BiosImage {
type Error = Error;
fn try_from(base: BiosImageBase) -> Result<Self> {
match base.pcir.code_type {
0x00 => Ok(BiosImage::PciAt(base.try_into()?)),
0x03 => Ok(BiosImage::Efi(EfiBiosImage { base })),
0x70 => Ok(BiosImage::Nbsi(NbsiBiosImage { base })),
0xE0 => Ok(BiosImage::FwSec(FwSecBiosBuilder {
base,
falcon_data_offset: None,
pmu_lookup_table: None,
falcon_ucode_offset: None,
})),
_ => Err(EINVAL),
}
}
}
/// BIOS Image structure containing various headers and reference fields to all BIOS images.
///
/// Each BiosImage type has a BiosImageBase type along with other image-specific fields. Note that
/// Rust favors composition of types over inheritance.
#[derive(Debug)]
#[expect(dead_code)]
struct BiosImageBase {
/// PCI ROM Expansion Header
rom_header: PciRomHeader,
/// PCI Data Structure
pcir: PcirStruct,
/// NVIDIA PCI Data Extension (optional)
npde: Option<NpdeStruct>,
/// Image data (includes ROM header and PCIR)
data: KVec<u8>,
}
impl BiosImageBase {
fn into_image(self) -> Result<BiosImage> {
BiosImage::try_from(self)
}
/// Creates a new BiosImageBase from raw byte data.
fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
// Ensure we have enough data for the ROM header.
if data.len() < 26 {
dev_err!(pdev.as_ref(), "Not enough data for ROM header\n");
return Err(EINVAL);
}
// Parse the ROM header.
let rom_header = PciRomHeader::new(pdev, &data[0..26])
.inspect_err(|e| dev_err!(pdev.as_ref(), "Failed to create PciRomHeader: {:?}\n", e))?;
// Get the PCI Data Structure using the pointer from the ROM header.
let pcir_offset = rom_header.pci_data_struct_offset as usize;
let pcir_data = data
.get(pcir_offset..pcir_offset + core::mem::size_of::<PcirStruct>())
.ok_or(EINVAL)
.inspect_err(|_| {
dev_err!(
pdev.as_ref(),
"PCIR offset {:#x} out of bounds (data length: {})\n",
pcir_offset,
data.len()
);
dev_err!(
pdev.as_ref(),
"Consider reading more data for construction of BiosImage\n"
);
})?;
let pcir = PcirStruct::new(pdev, pcir_data)
.inspect_err(|e| dev_err!(pdev.as_ref(), "Failed to create PcirStruct: {:?}\n", e))?;
// Look for NPDE structure if this is not an NBSI image (type != 0x70).
let npde = NpdeStruct::find_in_data(pdev, data, &rom_header, &pcir);
// Create a copy of the data.
let mut data_copy = KVec::new();
data_copy.extend_from_slice(data, GFP_KERNEL)?;
Ok(BiosImageBase {
rom_header,
pcir,
npde,
data: data_copy,
})
}
}
impl PciAtBiosImage {
/// Find a byte pattern in a slice.
fn find_byte_pattern(haystack: &[u8], needle: &[u8]) -> Result<usize> {
haystack
.windows(needle.len())
.position(|window| window == needle)
.ok_or(EINVAL)
}
/// Find the BIT header in the [`PciAtBiosImage`].
fn find_bit_header(data: &[u8]) -> Result<(BitHeader, usize)> {
let bit_pattern = [0xff, 0xb8, b'B', b'I', b'T', 0x00];
let bit_offset = Self::find_byte_pattern(data, &bit_pattern)?;
let bit_header = BitHeader::new(&data[bit_offset..])?;
Ok((bit_header, bit_offset))
}
/// Get a BIT token entry from the BIT table in the [`PciAtBiosImage`]
fn get_bit_token(&self, token_id: u8) -> Result<BitToken> {
BitToken::from_id(self, token_id)
}
/// Find the Falcon data pointer structure in the [`PciAtBiosImage`].
///
/// This is just a 4 byte structure that contains a pointer to the Falcon data in the FWSEC
/// image.
fn falcon_data_ptr(&self, pdev: &pci::Device) -> Result<u32> {
let token = self.get_bit_token(BIT_TOKEN_ID_FALCON_DATA)?;
// Make sure we don't go out of bounds
if token.data_offset as usize + 4 > self.base.data.len() {
return Err(EINVAL);
}
// read the 4 bytes at the offset specified in the token
let offset = token.data_offset as usize;
let bytes: [u8; 4] = self.base.data[offset..offset + 4].try_into().map_err(|_| {
dev_err!(pdev.as_ref(), "Failed to convert data slice to array");
EINVAL
})?;
let data_ptr = u32::from_le_bytes(bytes);
if (data_ptr as usize) < self.base.data.len() {
dev_err!(pdev.as_ref(), "Falcon data pointer out of bounds\n");
return Err(EINVAL);
}
Ok(data_ptr)
}
}
impl TryFrom<BiosImageBase> for PciAtBiosImage {
type Error = Error;
fn try_from(base: BiosImageBase) -> Result<Self> {
let data_slice = &base.data;
let (bit_header, bit_offset) = PciAtBiosImage::find_bit_header(data_slice)?;
Ok(PciAtBiosImage {
base,
bit_header,
bit_offset,
})
}
}
/// The [`PmuLookupTableEntry`] structure is a single entry in the [`PmuLookupTable`].
///
/// See the [`PmuLookupTable`] description for more information.
#[expect(dead_code)]
struct PmuLookupTableEntry {
application_id: u8,
target_id: u8,
data: u32,
}
impl PmuLookupTableEntry {
fn new(data: &[u8]) -> Result<Self> {
if data.len() < 6 {
return Err(EINVAL);
}
Ok(PmuLookupTableEntry {
application_id: data[0],
target_id: data[1],
data: u32::from_le_bytes(data[2..6].try_into().map_err(|_| EINVAL)?),
})
}
}
/// The [`PmuLookupTableEntry`] structure is used to find the [`PmuLookupTableEntry`] for a given
/// application ID.
///
/// The table of entries is pointed to by the falcon data pointer in the BIT table, and is used to
/// locate the Falcon Ucode.
#[expect(dead_code)]
struct PmuLookupTable {
version: u8,
header_len: u8,
entry_len: u8,
entry_count: u8,
table_data: KVec<u8>,
}
impl PmuLookupTable {
fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
if data.len() < 4 {
return Err(EINVAL);
}
let header_len = data[1] as usize;
let entry_len = data[2] as usize;
let entry_count = data[3] as usize;
let required_bytes = header_len + (entry_count * entry_len);
if data.len() < required_bytes {
dev_err!(
pdev.as_ref(),
"PmuLookupTable data length less than required\n"
);
return Err(EINVAL);
}
// Create a copy of only the table data
let table_data = {
let mut ret = KVec::new();
ret.extend_from_slice(&data[header_len..required_bytes], GFP_KERNEL)?;
ret
};
// Debug logging of entries (dumps the table data to dmesg)
for i in (header_len..required_bytes).step_by(entry_len) {
dev_dbg!(
pdev.as_ref(),
"PMU entry: {:02x?}\n",
&data[i..][..entry_len]
);
}
Ok(PmuLookupTable {
version: data[0],
header_len: header_len as u8,
entry_len: entry_len as u8,
entry_count: entry_count as u8,
table_data,
})
}
fn lookup_index(&self, idx: u8) -> Result<PmuLookupTableEntry> {
if idx >= self.entry_count {
return Err(EINVAL);
}
let index = (idx as usize) * self.entry_len as usize;
PmuLookupTableEntry::new(&self.table_data[index..])
}
// find entry by type value
fn find_entry_by_type(&self, entry_type: u8) -> Result<PmuLookupTableEntry> {
for i in 0..self.entry_count {
let entry = self.lookup_index(i)?;
if entry.application_id == entry_type {
return Ok(entry);
}
}
Err(EINVAL)
}
}
impl FwSecBiosBuilder {
fn setup_falcon_data(
&mut self,
pdev: &pci::Device,
pci_at_image: &PciAtBiosImage,
first_fwsec: &FwSecBiosBuilder,
) -> Result {
let mut offset = pci_at_image.falcon_data_ptr(pdev)? as usize;
let mut pmu_in_first_fwsec = false;
// The falcon data pointer assumes that the PciAt and FWSEC images
// are contiguous in memory. However, testing shows the EFI image sits in
// between them. So calculate the offset from the end of the PciAt image
// rather than the start of it. Compensate.
offset -= pci_at_image.base.data.len();
// The offset is now from the start of the first Fwsec image, however
// the offset points to a location in the second Fwsec image. Since
// the fwsec images are contiguous, subtract the length of the first Fwsec
// image from the offset to get the offset to the start of the second
// Fwsec image.
if offset < first_fwsec.base.data.len() {
pmu_in_first_fwsec = true;
} else {
offset -= first_fwsec.base.data.len();
}
self.falcon_data_offset = Some(offset);
if pmu_in_first_fwsec {
self.pmu_lookup_table =
Some(PmuLookupTable::new(pdev, &first_fwsec.base.data[offset..])?);
} else {
self.pmu_lookup_table = Some(PmuLookupTable::new(pdev, &self.base.data[offset..])?);
}
match self
.pmu_lookup_table
.as_ref()
.ok_or(EINVAL)?
.find_entry_by_type(FALCON_UCODE_ENTRY_APPID_FWSEC_PROD)
{
Ok(entry) => {
let mut ucode_offset = entry.data as usize;
ucode_offset -= pci_at_image.base.data.len();
if ucode_offset < first_fwsec.base.data.len() {
dev_err!(pdev.as_ref(), "Falcon Ucode offset not in second Fwsec.\n");
return Err(EINVAL);
}
ucode_offset -= first_fwsec.base.data.len();
self.falcon_ucode_offset = Some(ucode_offset);
}
Err(e) => {
dev_err!(
pdev.as_ref(),
"PmuLookupTableEntry not found, error: {:?}\n",
e
);
return Err(EINVAL);
}
}
Ok(())
}
/// Build the final FwSecBiosImage from this builder
fn build(self, pdev: &pci::Device) -> Result<FwSecBiosImage> {
let ret = FwSecBiosImage {
base: self.base,
falcon_ucode_offset: self.falcon_ucode_offset.ok_or(EINVAL)?,
};
if cfg!(debug_assertions) {
// Print the desc header for debugging
let desc = ret.header(pdev.as_ref())?;
dev_dbg!(pdev.as_ref(), "PmuLookupTableEntry desc: {:#?}\n", desc);
}
Ok(ret)
}
}
impl FwSecBiosImage {
/// Get the FwSec header ([`FalconUCodeDescV3`]).
pub(crate) fn header(&self, dev: &device::Device) -> Result<&FalconUCodeDescV3> {
// Get the falcon ucode offset that was found in setup_falcon_data.
let falcon_ucode_offset = self.falcon_ucode_offset;
// Make sure the offset is within the data bounds.
if falcon_ucode_offset + core::mem::size_of::<FalconUCodeDescV3>() > self.base.data.len() {
dev_err!(dev, "fwsec-frts header not contained within BIOS bounds\n");
return Err(ERANGE);
}
// Read the first 4 bytes to get the version.
let hdr_bytes: [u8; 4] = self.base.data[falcon_ucode_offset..falcon_ucode_offset + 4]
.try_into()
.map_err(|_| EINVAL)?;
let hdr = u32::from_le_bytes(hdr_bytes);
let ver = (hdr & 0xff00) >> 8;
if ver != 3 {
dev_err!(dev, "invalid fwsec firmware version: {:?}\n", ver);
return Err(EINVAL);
}
// Return a reference to the FalconUCodeDescV3 structure.
//
// SAFETY: We have checked that `falcon_ucode_offset + size_of::<FalconUCodeDescV3>` is
// within the bounds of `data`. Also, this data vector is from ROM, and the `data` field
// in `BiosImageBase` is immutable after construction.
Ok(unsafe {
&*(self
.base
.data
.as_ptr()
.add(falcon_ucode_offset)
.cast::<FalconUCodeDescV3>())
})
}
/// Get the ucode data as a byte slice
pub(crate) fn ucode(&self, dev: &device::Device, desc: &FalconUCodeDescV3) -> Result<&[u8]> {
let falcon_ucode_offset = self.falcon_ucode_offset;
// The ucode data follows the descriptor.
let ucode_data_offset = falcon_ucode_offset + desc.size();
let size = (desc.imem_load_size + desc.dmem_load_size) as usize;
// Get the data slice, checking bounds in a single operation.
self.base
.data
.get(ucode_data_offset..ucode_data_offset + size)
.ok_or(ERANGE)
.inspect_err(|_| dev_err!(dev, "fwsec ucode data not contained within BIOS bounds\n"))
}
/// Get the signatures as a byte slice
pub(crate) fn sigs(
&self,
dev: &device::Device,
desc: &FalconUCodeDescV3,
) -> Result<&[Bcrt30Rsa3kSignature]> {
// The signatures data follows the descriptor.
let sigs_data_offset = self.falcon_ucode_offset + core::mem::size_of::<FalconUCodeDescV3>();
let sigs_size =
desc.signature_count as usize * core::mem::size_of::<Bcrt30Rsa3kSignature>();
// Make sure the data is within bounds.
if sigs_data_offset + sigs_size > self.base.data.len() {
dev_err!(
dev,
"fwsec signatures data not contained within BIOS bounds\n"
);
return Err(ERANGE);
}
// SAFETY: we checked that `data + sigs_data_offset + (signature_count *
// sizeof::<Bcrt30Rsa3kSignature>()` is within the bounds of `data`.
Ok(unsafe {
core::slice::from_raw_parts(
self.base
.data
.as_ptr()
.add(sigs_data_offset)
.cast::<Bcrt30Rsa3kSignature>(),
desc.signature_count as usize,
)
})
}
}
|