1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Resource Director Technology(RDT)
* - Monitoring code
*
* Copyright (C) 2017 Intel Corporation
*
* Author:
* Vikas Shivappa <vikas.shivappa@intel.com>
*
* This replaces the cqm.c based on perf but we reuse a lot of
* code and datastructures originally from Peter Zijlstra and Matt Fleming.
*
* More information about RDT be found in the Intel (R) x86 Architecture
* Software Developer Manual June 2016, volume 3, section 17.17.
*/
#define pr_fmt(fmt) "resctrl: " fmt
#include <linux/cpu.h>
#include <linux/resctrl.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include "internal.h"
#define CREATE_TRACE_POINTS
#include "monitor_trace.h"
/**
* struct rmid_entry - dirty tracking for all RMID.
* @closid: The CLOSID for this entry.
* @rmid: The RMID for this entry.
* @busy: The number of domains with cached data using this RMID.
* @list: Member of the rmid_free_lru list when busy == 0.
*
* Depending on the architecture the correct monitor is accessed using
* both @closid and @rmid, or @rmid only.
*
* Take the rdtgroup_mutex when accessing.
*/
struct rmid_entry {
u32 closid;
u32 rmid;
int busy;
struct list_head list;
};
/*
* @rmid_free_lru - A least recently used list of free RMIDs
* These RMIDs are guaranteed to have an occupancy less than the
* threshold occupancy
*/
static LIST_HEAD(rmid_free_lru);
/*
* @closid_num_dirty_rmid The number of dirty RMID each CLOSID has.
* Only allocated when CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is defined.
* Indexed by CLOSID. Protected by rdtgroup_mutex.
*/
static u32 *closid_num_dirty_rmid;
/*
* @rmid_limbo_count - count of currently unused but (potentially)
* dirty RMIDs.
* This counts RMIDs that no one is currently using but that
* may have a occupancy value > resctrl_rmid_realloc_threshold. User can
* change the threshold occupancy value.
*/
static unsigned int rmid_limbo_count;
/*
* @rmid_entry - The entry in the limbo and free lists.
*/
static struct rmid_entry *rmid_ptrs;
/*
* This is the threshold cache occupancy in bytes at which we will consider an
* RMID available for re-allocation.
*/
unsigned int resctrl_rmid_realloc_threshold;
/*
* This is the maximum value for the reallocation threshold, in bytes.
*/
unsigned int resctrl_rmid_realloc_limit;
/*
* x86 and arm64 differ in their handling of monitoring.
* x86's RMID are independent numbers, there is only one source of traffic
* with an RMID value of '1'.
* arm64's PMG extends the PARTID/CLOSID space, there are multiple sources of
* traffic with a PMG value of '1', one for each CLOSID, meaning the RMID
* value is no longer unique.
* To account for this, resctrl uses an index. On x86 this is just the RMID,
* on arm64 it encodes the CLOSID and RMID. This gives a unique number.
*
* The domain's rmid_busy_llc and rmid_ptrs[] are sized by index. The arch code
* must accept an attempt to read every index.
*/
static inline struct rmid_entry *__rmid_entry(u32 idx)
{
struct rmid_entry *entry;
u32 closid, rmid;
entry = &rmid_ptrs[idx];
resctrl_arch_rmid_idx_decode(idx, &closid, &rmid);
WARN_ON_ONCE(entry->closid != closid);
WARN_ON_ONCE(entry->rmid != rmid);
return entry;
}
static void limbo_release_entry(struct rmid_entry *entry)
{
lockdep_assert_held(&rdtgroup_mutex);
rmid_limbo_count--;
list_add_tail(&entry->list, &rmid_free_lru);
if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
closid_num_dirty_rmid[entry->closid]--;
}
/*
* Check the RMIDs that are marked as busy for this domain. If the
* reported LLC occupancy is below the threshold clear the busy bit and
* decrement the count. If the busy count gets to zero on an RMID, we
* free the RMID
*/
void __check_limbo(struct rdt_mon_domain *d, bool force_free)
{
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
u32 idx_limit = resctrl_arch_system_num_rmid_idx();
struct rmid_entry *entry;
u32 idx, cur_idx = 1;
void *arch_mon_ctx;
bool rmid_dirty;
u64 val = 0;
arch_mon_ctx = resctrl_arch_mon_ctx_alloc(r, QOS_L3_OCCUP_EVENT_ID);
if (IS_ERR(arch_mon_ctx)) {
pr_warn_ratelimited("Failed to allocate monitor context: %ld",
PTR_ERR(arch_mon_ctx));
return;
}
/*
* Skip RMID 0 and start from RMID 1 and check all the RMIDs that
* are marked as busy for occupancy < threshold. If the occupancy
* is less than the threshold decrement the busy counter of the
* RMID and move it to the free list when the counter reaches 0.
*/
for (;;) {
idx = find_next_bit(d->rmid_busy_llc, idx_limit, cur_idx);
if (idx >= idx_limit)
break;
entry = __rmid_entry(idx);
if (resctrl_arch_rmid_read(r, d, entry->closid, entry->rmid,
QOS_L3_OCCUP_EVENT_ID, &val,
arch_mon_ctx)) {
rmid_dirty = true;
} else {
rmid_dirty = (val >= resctrl_rmid_realloc_threshold);
/*
* x86's CLOSID and RMID are independent numbers, so the entry's
* CLOSID is an empty CLOSID (X86_RESCTRL_EMPTY_CLOSID). On Arm the
* RMID (PMG) extends the CLOSID (PARTID) space with bits that aren't
* used to select the configuration. It is thus necessary to track both
* CLOSID and RMID because there may be dependencies between them
* on some architectures.
*/
trace_mon_llc_occupancy_limbo(entry->closid, entry->rmid, d->hdr.id, val);
}
if (force_free || !rmid_dirty) {
clear_bit(idx, d->rmid_busy_llc);
if (!--entry->busy)
limbo_release_entry(entry);
}
cur_idx = idx + 1;
}
resctrl_arch_mon_ctx_free(r, QOS_L3_OCCUP_EVENT_ID, arch_mon_ctx);
}
bool has_busy_rmid(struct rdt_mon_domain *d)
{
u32 idx_limit = resctrl_arch_system_num_rmid_idx();
return find_first_bit(d->rmid_busy_llc, idx_limit) != idx_limit;
}
static struct rmid_entry *resctrl_find_free_rmid(u32 closid)
{
struct rmid_entry *itr;
u32 itr_idx, cmp_idx;
if (list_empty(&rmid_free_lru))
return rmid_limbo_count ? ERR_PTR(-EBUSY) : ERR_PTR(-ENOSPC);
list_for_each_entry(itr, &rmid_free_lru, list) {
/*
* Get the index of this free RMID, and the index it would need
* to be if it were used with this CLOSID.
* If the CLOSID is irrelevant on this architecture, the two
* index values are always the same on every entry and thus the
* very first entry will be returned.
*/
itr_idx = resctrl_arch_rmid_idx_encode(itr->closid, itr->rmid);
cmp_idx = resctrl_arch_rmid_idx_encode(closid, itr->rmid);
if (itr_idx == cmp_idx)
return itr;
}
return ERR_PTR(-ENOSPC);
}
/**
* resctrl_find_cleanest_closid() - Find a CLOSID where all the associated
* RMID are clean, or the CLOSID that has
* the most clean RMID.
*
* MPAM's equivalent of RMID are per-CLOSID, meaning a freshly allocated CLOSID
* may not be able to allocate clean RMID. To avoid this the allocator will
* choose the CLOSID with the most clean RMID.
*
* When the CLOSID and RMID are independent numbers, the first free CLOSID will
* be returned.
*/
int resctrl_find_cleanest_closid(void)
{
u32 cleanest_closid = ~0;
int i = 0;
lockdep_assert_held(&rdtgroup_mutex);
if (!IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
return -EIO;
for (i = 0; i < closids_supported(); i++) {
int num_dirty;
if (closid_allocated(i))
continue;
num_dirty = closid_num_dirty_rmid[i];
if (num_dirty == 0)
return i;
if (cleanest_closid == ~0)
cleanest_closid = i;
if (num_dirty < closid_num_dirty_rmid[cleanest_closid])
cleanest_closid = i;
}
if (cleanest_closid == ~0)
return -ENOSPC;
return cleanest_closid;
}
/*
* For MPAM the RMID value is not unique, and has to be considered with
* the CLOSID. The (CLOSID, RMID) pair is allocated on all domains, which
* allows all domains to be managed by a single free list.
* Each domain also has a rmid_busy_llc to reduce the work of the limbo handler.
*/
int alloc_rmid(u32 closid)
{
struct rmid_entry *entry;
lockdep_assert_held(&rdtgroup_mutex);
entry = resctrl_find_free_rmid(closid);
if (IS_ERR(entry))
return PTR_ERR(entry);
list_del(&entry->list);
return entry->rmid;
}
static void add_rmid_to_limbo(struct rmid_entry *entry)
{
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
struct rdt_mon_domain *d;
u32 idx;
lockdep_assert_held(&rdtgroup_mutex);
/* Walking r->domains, ensure it can't race with cpuhp */
lockdep_assert_cpus_held();
idx = resctrl_arch_rmid_idx_encode(entry->closid, entry->rmid);
entry->busy = 0;
list_for_each_entry(d, &r->mon_domains, hdr.list) {
/*
* For the first limbo RMID in the domain,
* setup up the limbo worker.
*/
if (!has_busy_rmid(d))
cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL,
RESCTRL_PICK_ANY_CPU);
set_bit(idx, d->rmid_busy_llc);
entry->busy++;
}
rmid_limbo_count++;
if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
closid_num_dirty_rmid[entry->closid]++;
}
void free_rmid(u32 closid, u32 rmid)
{
u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
struct rmid_entry *entry;
lockdep_assert_held(&rdtgroup_mutex);
/*
* Do not allow the default rmid to be free'd. Comparing by index
* allows architectures that ignore the closid parameter to avoid an
* unnecessary check.
*/
if (!resctrl_arch_mon_capable() ||
idx == resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
RESCTRL_RESERVED_RMID))
return;
entry = __rmid_entry(idx);
if (resctrl_arch_is_llc_occupancy_enabled())
add_rmid_to_limbo(entry);
else
list_add_tail(&entry->list, &rmid_free_lru);
}
static struct mbm_state *get_mbm_state(struct rdt_mon_domain *d, u32 closid,
u32 rmid, enum resctrl_event_id evtid)
{
u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
switch (evtid) {
case QOS_L3_MBM_TOTAL_EVENT_ID:
return &d->mbm_total[idx];
case QOS_L3_MBM_LOCAL_EVENT_ID:
return &d->mbm_local[idx];
default:
return NULL;
}
}
static int __mon_event_count(u32 closid, u32 rmid, struct rmid_read *rr)
{
int cpu = smp_processor_id();
struct rdt_mon_domain *d;
struct mbm_state *m;
int err, ret;
u64 tval = 0;
if (rr->first) {
resctrl_arch_reset_rmid(rr->r, rr->d, closid, rmid, rr->evtid);
m = get_mbm_state(rr->d, closid, rmid, rr->evtid);
if (m)
memset(m, 0, sizeof(struct mbm_state));
return 0;
}
if (rr->d) {
/* Reading a single domain, must be on a CPU in that domain. */
if (!cpumask_test_cpu(cpu, &rr->d->hdr.cpu_mask))
return -EINVAL;
rr->err = resctrl_arch_rmid_read(rr->r, rr->d, closid, rmid,
rr->evtid, &tval, rr->arch_mon_ctx);
if (rr->err)
return rr->err;
rr->val += tval;
return 0;
}
/* Summing domains that share a cache, must be on a CPU for that cache. */
if (!cpumask_test_cpu(cpu, &rr->ci->shared_cpu_map))
return -EINVAL;
/*
* Legacy files must report the sum of an event across all
* domains that share the same L3 cache instance.
* Report success if a read from any domain succeeds, -EINVAL
* (translated to "Unavailable" for user space) if reading from
* all domains fail for any reason.
*/
ret = -EINVAL;
list_for_each_entry(d, &rr->r->mon_domains, hdr.list) {
if (d->ci_id != rr->ci->id)
continue;
err = resctrl_arch_rmid_read(rr->r, d, closid, rmid,
rr->evtid, &tval, rr->arch_mon_ctx);
if (!err) {
rr->val += tval;
ret = 0;
}
}
if (ret)
rr->err = ret;
return ret;
}
/*
* mbm_bw_count() - Update bw count from values previously read by
* __mon_event_count().
* @closid: The closid used to identify the cached mbm_state.
* @rmid: The rmid used to identify the cached mbm_state.
* @rr: The struct rmid_read populated by __mon_event_count().
*
* Supporting function to calculate the memory bandwidth
* and delta bandwidth in MBps. The chunks value previously read by
* __mon_event_count() is compared with the chunks value from the previous
* invocation. This must be called once per second to maintain values in MBps.
*/
static void mbm_bw_count(u32 closid, u32 rmid, struct rmid_read *rr)
{
u64 cur_bw, bytes, cur_bytes;
struct mbm_state *m;
m = get_mbm_state(rr->d, closid, rmid, rr->evtid);
if (WARN_ON_ONCE(!m))
return;
cur_bytes = rr->val;
bytes = cur_bytes - m->prev_bw_bytes;
m->prev_bw_bytes = cur_bytes;
cur_bw = bytes / SZ_1M;
m->prev_bw = cur_bw;
}
/*
* This is scheduled by mon_event_read() to read the CQM/MBM counters
* on a domain.
*/
void mon_event_count(void *info)
{
struct rdtgroup *rdtgrp, *entry;
struct rmid_read *rr = info;
struct list_head *head;
int ret;
rdtgrp = rr->rgrp;
ret = __mon_event_count(rdtgrp->closid, rdtgrp->mon.rmid, rr);
/*
* For Ctrl groups read data from child monitor groups and
* add them together. Count events which are read successfully.
* Discard the rmid_read's reporting errors.
*/
head = &rdtgrp->mon.crdtgrp_list;
if (rdtgrp->type == RDTCTRL_GROUP) {
list_for_each_entry(entry, head, mon.crdtgrp_list) {
if (__mon_event_count(entry->closid, entry->mon.rmid,
rr) == 0)
ret = 0;
}
}
/*
* __mon_event_count() calls for newly created monitor groups may
* report -EINVAL/Unavailable if the monitor hasn't seen any traffic.
* Discard error if any of the monitor event reads succeeded.
*/
if (ret == 0)
rr->err = 0;
}
static struct rdt_ctrl_domain *get_ctrl_domain_from_cpu(int cpu,
struct rdt_resource *r)
{
struct rdt_ctrl_domain *d;
lockdep_assert_cpus_held();
list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
/* Find the domain that contains this CPU */
if (cpumask_test_cpu(cpu, &d->hdr.cpu_mask))
return d;
}
return NULL;
}
/*
* Feedback loop for MBA software controller (mba_sc)
*
* mba_sc is a feedback loop where we periodically read MBM counters and
* adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
* that:
*
* current bandwidth(cur_bw) < user specified bandwidth(user_bw)
*
* This uses the MBM counters to measure the bandwidth and MBA throttle
* MSRs to control the bandwidth for a particular rdtgrp. It builds on the
* fact that resctrl rdtgroups have both monitoring and control.
*
* The frequency of the checks is 1s and we just tag along the MBM overflow
* timer. Having 1s interval makes the calculation of bandwidth simpler.
*
* Although MBA's goal is to restrict the bandwidth to a maximum, there may
* be a need to increase the bandwidth to avoid unnecessarily restricting
* the L2 <-> L3 traffic.
*
* Since MBA controls the L2 external bandwidth where as MBM measures the
* L3 external bandwidth the following sequence could lead to such a
* situation.
*
* Consider an rdtgroup which had high L3 <-> memory traffic in initial
* phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
* after some time rdtgroup has mostly L2 <-> L3 traffic.
*
* In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
* throttle MSRs already have low percentage values. To avoid
* unnecessarily restricting such rdtgroups, we also increase the bandwidth.
*/
static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_mon_domain *dom_mbm)
{
u32 closid, rmid, cur_msr_val, new_msr_val;
struct mbm_state *pmbm_data, *cmbm_data;
struct rdt_ctrl_domain *dom_mba;
enum resctrl_event_id evt_id;
struct rdt_resource *r_mba;
struct list_head *head;
struct rdtgroup *entry;
u32 cur_bw, user_bw;
r_mba = resctrl_arch_get_resource(RDT_RESOURCE_MBA);
evt_id = rgrp->mba_mbps_event;
closid = rgrp->closid;
rmid = rgrp->mon.rmid;
pmbm_data = get_mbm_state(dom_mbm, closid, rmid, evt_id);
if (WARN_ON_ONCE(!pmbm_data))
return;
dom_mba = get_ctrl_domain_from_cpu(smp_processor_id(), r_mba);
if (!dom_mba) {
pr_warn_once("Failure to get domain for MBA update\n");
return;
}
cur_bw = pmbm_data->prev_bw;
user_bw = dom_mba->mbps_val[closid];
/* MBA resource doesn't support CDP */
cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE);
/*
* For Ctrl groups read data from child monitor groups.
*/
head = &rgrp->mon.crdtgrp_list;
list_for_each_entry(entry, head, mon.crdtgrp_list) {
cmbm_data = get_mbm_state(dom_mbm, entry->closid, entry->mon.rmid, evt_id);
if (WARN_ON_ONCE(!cmbm_data))
return;
cur_bw += cmbm_data->prev_bw;
}
/*
* Scale up/down the bandwidth linearly for the ctrl group. The
* bandwidth step is the bandwidth granularity specified by the
* hardware.
* Always increase throttling if current bandwidth is above the
* target set by user.
* But avoid thrashing up and down on every poll by checking
* whether a decrease in throttling is likely to push the group
* back over target. E.g. if currently throttling to 30% of bandwidth
* on a system with 10% granularity steps, check whether moving to
* 40% would go past the limit by multiplying current bandwidth by
* "(30 + 10) / 30".
*/
if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
} else if (cur_msr_val < MAX_MBA_BW &&
(user_bw > (cur_bw * (cur_msr_val + r_mba->membw.min_bw) / cur_msr_val))) {
new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
} else {
return;
}
resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val);
}
static void mbm_update_one_event(struct rdt_resource *r, struct rdt_mon_domain *d,
u32 closid, u32 rmid, enum resctrl_event_id evtid)
{
struct rmid_read rr = {0};
rr.r = r;
rr.d = d;
rr.evtid = evtid;
rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid);
if (IS_ERR(rr.arch_mon_ctx)) {
pr_warn_ratelimited("Failed to allocate monitor context: %ld",
PTR_ERR(rr.arch_mon_ctx));
return;
}
__mon_event_count(closid, rmid, &rr);
/*
* If the software controller is enabled, compute the
* bandwidth for this event id.
*/
if (is_mba_sc(NULL))
mbm_bw_count(closid, rmid, &rr);
resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx);
}
static void mbm_update(struct rdt_resource *r, struct rdt_mon_domain *d,
u32 closid, u32 rmid)
{
/*
* This is protected from concurrent reads from user as both
* the user and overflow handler hold the global mutex.
*/
if (resctrl_arch_is_mbm_total_enabled())
mbm_update_one_event(r, d, closid, rmid, QOS_L3_MBM_TOTAL_EVENT_ID);
if (resctrl_arch_is_mbm_local_enabled())
mbm_update_one_event(r, d, closid, rmid, QOS_L3_MBM_LOCAL_EVENT_ID);
}
/*
* Handler to scan the limbo list and move the RMIDs
* to free list whose occupancy < threshold_occupancy.
*/
void cqm_handle_limbo(struct work_struct *work)
{
unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
struct rdt_mon_domain *d;
cpus_read_lock();
mutex_lock(&rdtgroup_mutex);
d = container_of(work, struct rdt_mon_domain, cqm_limbo.work);
__check_limbo(d, false);
if (has_busy_rmid(d)) {
d->cqm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask,
RESCTRL_PICK_ANY_CPU);
schedule_delayed_work_on(d->cqm_work_cpu, &d->cqm_limbo,
delay);
}
mutex_unlock(&rdtgroup_mutex);
cpus_read_unlock();
}
/**
* cqm_setup_limbo_handler() - Schedule the limbo handler to run for this
* domain.
* @dom: The domain the limbo handler should run for.
* @delay_ms: How far in the future the handler should run.
* @exclude_cpu: Which CPU the handler should not run on,
* RESCTRL_PICK_ANY_CPU to pick any CPU.
*/
void cqm_setup_limbo_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
int exclude_cpu)
{
unsigned long delay = msecs_to_jiffies(delay_ms);
int cpu;
cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu);
dom->cqm_work_cpu = cpu;
if (cpu < nr_cpu_ids)
schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
}
void mbm_handle_overflow(struct work_struct *work)
{
unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
struct rdtgroup *prgrp, *crgrp;
struct rdt_mon_domain *d;
struct list_head *head;
struct rdt_resource *r;
cpus_read_lock();
mutex_lock(&rdtgroup_mutex);
/*
* If the filesystem has been unmounted this work no longer needs to
* run.
*/
if (!resctrl_mounted || !resctrl_arch_mon_capable())
goto out_unlock;
r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
d = container_of(work, struct rdt_mon_domain, mbm_over.work);
list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
mbm_update(r, d, prgrp->closid, prgrp->mon.rmid);
head = &prgrp->mon.crdtgrp_list;
list_for_each_entry(crgrp, head, mon.crdtgrp_list)
mbm_update(r, d, crgrp->closid, crgrp->mon.rmid);
if (is_mba_sc(NULL))
update_mba_bw(prgrp, d);
}
/*
* Re-check for housekeeping CPUs. This allows the overflow handler to
* move off a nohz_full CPU quickly.
*/
d->mbm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask,
RESCTRL_PICK_ANY_CPU);
schedule_delayed_work_on(d->mbm_work_cpu, &d->mbm_over, delay);
out_unlock:
mutex_unlock(&rdtgroup_mutex);
cpus_read_unlock();
}
/**
* mbm_setup_overflow_handler() - Schedule the overflow handler to run for this
* domain.
* @dom: The domain the overflow handler should run for.
* @delay_ms: How far in the future the handler should run.
* @exclude_cpu: Which CPU the handler should not run on,
* RESCTRL_PICK_ANY_CPU to pick any CPU.
*/
void mbm_setup_overflow_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
int exclude_cpu)
{
unsigned long delay = msecs_to_jiffies(delay_ms);
int cpu;
/*
* When a domain comes online there is no guarantee the filesystem is
* mounted. If not, there is no need to catch counter overflow.
*/
if (!resctrl_mounted || !resctrl_arch_mon_capable())
return;
cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu);
dom->mbm_work_cpu = cpu;
if (cpu < nr_cpu_ids)
schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
}
static int dom_data_init(struct rdt_resource *r)
{
u32 idx_limit = resctrl_arch_system_num_rmid_idx();
u32 num_closid = resctrl_arch_get_num_closid(r);
struct rmid_entry *entry = NULL;
int err = 0, i;
u32 idx;
mutex_lock(&rdtgroup_mutex);
if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
u32 *tmp;
/*
* If the architecture hasn't provided a sanitised value here,
* this may result in larger arrays than necessary. Resctrl will
* use a smaller system wide value based on the resources in
* use.
*/
tmp = kcalloc(num_closid, sizeof(*tmp), GFP_KERNEL);
if (!tmp) {
err = -ENOMEM;
goto out_unlock;
}
closid_num_dirty_rmid = tmp;
}
rmid_ptrs = kcalloc(idx_limit, sizeof(struct rmid_entry), GFP_KERNEL);
if (!rmid_ptrs) {
if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
kfree(closid_num_dirty_rmid);
closid_num_dirty_rmid = NULL;
}
err = -ENOMEM;
goto out_unlock;
}
for (i = 0; i < idx_limit; i++) {
entry = &rmid_ptrs[i];
INIT_LIST_HEAD(&entry->list);
resctrl_arch_rmid_idx_decode(i, &entry->closid, &entry->rmid);
list_add_tail(&entry->list, &rmid_free_lru);
}
/*
* RESCTRL_RESERVED_CLOSID and RESCTRL_RESERVED_RMID are special and
* are always allocated. These are used for the rdtgroup_default
* control group, which will be setup later in resctrl_init().
*/
idx = resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
RESCTRL_RESERVED_RMID);
entry = __rmid_entry(idx);
list_del(&entry->list);
out_unlock:
mutex_unlock(&rdtgroup_mutex);
return err;
}
static void dom_data_exit(struct rdt_resource *r)
{
mutex_lock(&rdtgroup_mutex);
if (!r->mon_capable)
goto out_unlock;
if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
kfree(closid_num_dirty_rmid);
closid_num_dirty_rmid = NULL;
}
kfree(rmid_ptrs);
rmid_ptrs = NULL;
out_unlock:
mutex_unlock(&rdtgroup_mutex);
}
static struct mon_evt llc_occupancy_event = {
.name = "llc_occupancy",
.evtid = QOS_L3_OCCUP_EVENT_ID,
};
static struct mon_evt mbm_total_event = {
.name = "mbm_total_bytes",
.evtid = QOS_L3_MBM_TOTAL_EVENT_ID,
};
static struct mon_evt mbm_local_event = {
.name = "mbm_local_bytes",
.evtid = QOS_L3_MBM_LOCAL_EVENT_ID,
};
/*
* Initialize the event list for the resource.
*
* Note that MBM events are also part of RDT_RESOURCE_L3 resource
* because as per the SDM the total and local memory bandwidth
* are enumerated as part of L3 monitoring.
*/
static void l3_mon_evt_init(struct rdt_resource *r)
{
INIT_LIST_HEAD(&r->evt_list);
if (resctrl_arch_is_llc_occupancy_enabled())
list_add_tail(&llc_occupancy_event.list, &r->evt_list);
if (resctrl_arch_is_mbm_total_enabled())
list_add_tail(&mbm_total_event.list, &r->evt_list);
if (resctrl_arch_is_mbm_local_enabled())
list_add_tail(&mbm_local_event.list, &r->evt_list);
}
/**
* resctrl_mon_resource_init() - Initialise global monitoring structures.
*
* Allocate and initialise global monitor resources that do not belong to a
* specific domain. i.e. the rmid_ptrs[] used for the limbo and free lists.
* Called once during boot after the struct rdt_resource's have been configured
* but before the filesystem is mounted.
* Resctrl's cpuhp callbacks may be called before this point to bring a domain
* online.
*
* Returns 0 for success, or -ENOMEM.
*/
int resctrl_mon_resource_init(void)
{
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
int ret;
if (!r->mon_capable)
return 0;
ret = dom_data_init(r);
if (ret)
return ret;
l3_mon_evt_init(r);
if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_TOTAL_EVENT_ID)) {
mbm_total_event.configurable = true;
resctrl_file_fflags_init("mbm_total_bytes_config",
RFTYPE_MON_INFO | RFTYPE_RES_CACHE);
}
if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_LOCAL_EVENT_ID)) {
mbm_local_event.configurable = true;
resctrl_file_fflags_init("mbm_local_bytes_config",
RFTYPE_MON_INFO | RFTYPE_RES_CACHE);
}
if (resctrl_arch_is_mbm_local_enabled())
mba_mbps_default_event = QOS_L3_MBM_LOCAL_EVENT_ID;
else if (resctrl_arch_is_mbm_total_enabled())
mba_mbps_default_event = QOS_L3_MBM_TOTAL_EVENT_ID;
return 0;
}
void resctrl_mon_resource_exit(void)
{
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
dom_data_exit(r);
}
|