1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2017 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <darrick.wong@oracle.com>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_btree.h"
#include "xfs_rmap_btree.h"
#include "xfs_trace.h"
#include "xfs_rmap.h"
#include "xfs_alloc.h"
#include "xfs_bit.h"
#include <linux/fsmap.h>
#include "xfs_fsmap.h"
#include "xfs_refcount.h"
#include "xfs_refcount_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_rtbitmap.h"
#include "xfs_ag.h"
#include "xfs_rtgroup.h"
#include "xfs_rtrmap_btree.h"
#include "xfs_rtrefcount_btree.h"
/* Convert an xfs_fsmap to an fsmap. */
static void
xfs_fsmap_from_internal(
struct fsmap *dest,
struct xfs_fsmap *src)
{
dest->fmr_device = src->fmr_device;
dest->fmr_flags = src->fmr_flags;
dest->fmr_physical = BBTOB(src->fmr_physical);
dest->fmr_owner = src->fmr_owner;
dest->fmr_offset = BBTOB(src->fmr_offset);
dest->fmr_length = BBTOB(src->fmr_length);
dest->fmr_reserved[0] = 0;
dest->fmr_reserved[1] = 0;
dest->fmr_reserved[2] = 0;
}
/* Convert an fsmap to an xfs_fsmap. */
static void
xfs_fsmap_to_internal(
struct xfs_fsmap *dest,
struct fsmap *src)
{
dest->fmr_device = src->fmr_device;
dest->fmr_flags = src->fmr_flags;
dest->fmr_physical = BTOBBT(src->fmr_physical);
dest->fmr_owner = src->fmr_owner;
dest->fmr_offset = BTOBBT(src->fmr_offset);
dest->fmr_length = BTOBBT(src->fmr_length);
}
/* Convert an fsmap owner into an rmapbt owner. */
static int
xfs_fsmap_owner_to_rmap(
struct xfs_rmap_irec *dest,
const struct xfs_fsmap *src)
{
if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) {
dest->rm_owner = src->fmr_owner;
return 0;
}
switch (src->fmr_owner) {
case 0: /* "lowest owner id possible" */
case -1ULL: /* "highest owner id possible" */
dest->rm_owner = src->fmr_owner;
break;
case XFS_FMR_OWN_FREE:
dest->rm_owner = XFS_RMAP_OWN_NULL;
break;
case XFS_FMR_OWN_UNKNOWN:
dest->rm_owner = XFS_RMAP_OWN_UNKNOWN;
break;
case XFS_FMR_OWN_FS:
dest->rm_owner = XFS_RMAP_OWN_FS;
break;
case XFS_FMR_OWN_LOG:
dest->rm_owner = XFS_RMAP_OWN_LOG;
break;
case XFS_FMR_OWN_AG:
dest->rm_owner = XFS_RMAP_OWN_AG;
break;
case XFS_FMR_OWN_INOBT:
dest->rm_owner = XFS_RMAP_OWN_INOBT;
break;
case XFS_FMR_OWN_INODES:
dest->rm_owner = XFS_RMAP_OWN_INODES;
break;
case XFS_FMR_OWN_REFC:
dest->rm_owner = XFS_RMAP_OWN_REFC;
break;
case XFS_FMR_OWN_COW:
dest->rm_owner = XFS_RMAP_OWN_COW;
break;
case XFS_FMR_OWN_DEFECTIVE: /* not implemented */
/* fall through */
default:
return -EINVAL;
}
return 0;
}
/* Convert an rmapbt owner into an fsmap owner. */
static int
xfs_fsmap_owner_from_frec(
struct xfs_fsmap *dest,
const struct xfs_fsmap_irec *frec)
{
dest->fmr_flags = 0;
if (!XFS_RMAP_NON_INODE_OWNER(frec->owner)) {
dest->fmr_owner = frec->owner;
return 0;
}
dest->fmr_flags |= FMR_OF_SPECIAL_OWNER;
switch (frec->owner) {
case XFS_RMAP_OWN_FS:
dest->fmr_owner = XFS_FMR_OWN_FS;
break;
case XFS_RMAP_OWN_LOG:
dest->fmr_owner = XFS_FMR_OWN_LOG;
break;
case XFS_RMAP_OWN_AG:
dest->fmr_owner = XFS_FMR_OWN_AG;
break;
case XFS_RMAP_OWN_INOBT:
dest->fmr_owner = XFS_FMR_OWN_INOBT;
break;
case XFS_RMAP_OWN_INODES:
dest->fmr_owner = XFS_FMR_OWN_INODES;
break;
case XFS_RMAP_OWN_REFC:
dest->fmr_owner = XFS_FMR_OWN_REFC;
break;
case XFS_RMAP_OWN_COW:
dest->fmr_owner = XFS_FMR_OWN_COW;
break;
case XFS_RMAP_OWN_NULL: /* "free" */
dest->fmr_owner = XFS_FMR_OWN_FREE;
break;
default:
ASSERT(0);
return -EFSCORRUPTED;
}
return 0;
}
/* getfsmap query state */
struct xfs_getfsmap_info {
struct xfs_fsmap_head *head;
struct fsmap *fsmap_recs; /* mapping records */
struct xfs_buf *agf_bp; /* AGF, for refcount queries */
struct xfs_group *group; /* group info, if applicable */
xfs_daddr_t next_daddr; /* next daddr we expect */
/* daddr of low fsmap key when we're using the rtbitmap */
xfs_daddr_t low_daddr;
/* daddr of high fsmap key, or the last daddr on the device */
xfs_daddr_t end_daddr;
u64 missing_owner; /* owner of holes */
u32 dev; /* device id */
/*
* Low rmap key for the query. If low.rm_blockcount is nonzero, this
* is the second (or later) call to retrieve the recordset in pieces.
* xfs_getfsmap_rec_before_start will compare all records retrieved
* by the rmapbt query to filter out any records that start before
* the last record.
*/
struct xfs_rmap_irec low;
struct xfs_rmap_irec high; /* high rmap key */
bool last; /* last extent? */
};
/* Associate a device with a getfsmap handler. */
struct xfs_getfsmap_dev {
u32 dev;
int (*fn)(struct xfs_trans *tp,
const struct xfs_fsmap *keys,
struct xfs_getfsmap_info *info);
sector_t nr_sectors;
};
/* Compare two getfsmap device handlers. */
static int
xfs_getfsmap_dev_compare(
const void *p1,
const void *p2)
{
const struct xfs_getfsmap_dev *d1 = p1;
const struct xfs_getfsmap_dev *d2 = p2;
return d1->dev - d2->dev;
}
/* Decide if this mapping is shared. */
STATIC int
xfs_getfsmap_is_shared(
struct xfs_trans *tp,
struct xfs_getfsmap_info *info,
const struct xfs_fsmap_irec *frec,
bool *stat)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_btree_cur *cur;
xfs_agblock_t fbno;
xfs_extlen_t flen = 0;
int error;
*stat = false;
if (!xfs_has_reflink(mp) || !info->group)
return 0;
if (info->group->xg_type == XG_TYPE_RTG)
cur = xfs_rtrefcountbt_init_cursor(tp, to_rtg(info->group));
else
cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp,
to_perag(info->group));
/* Are there any shared blocks here? */
error = xfs_refcount_find_shared(cur, frec->rec_key,
XFS_BB_TO_FSBT(mp, frec->len_daddr), &fbno, &flen,
false);
xfs_btree_del_cursor(cur, error);
if (error)
return error;
*stat = flen > 0;
return 0;
}
static inline void
xfs_getfsmap_format(
struct xfs_mount *mp,
struct xfs_fsmap *xfm,
struct xfs_getfsmap_info *info)
{
struct fsmap *rec;
trace_xfs_getfsmap_mapping(mp, xfm);
rec = &info->fsmap_recs[info->head->fmh_entries++];
xfs_fsmap_from_internal(rec, xfm);
}
static inline bool
xfs_getfsmap_frec_before_start(
struct xfs_getfsmap_info *info,
const struct xfs_fsmap_irec *frec)
{
if (info->low_daddr != XFS_BUF_DADDR_NULL)
return frec->start_daddr < info->low_daddr;
if (info->low.rm_blockcount) {
struct xfs_rmap_irec rec = {
.rm_startblock = frec->rec_key,
.rm_owner = frec->owner,
.rm_flags = frec->rm_flags,
};
return xfs_rmap_compare(&rec, &info->low) < 0;
}
return false;
}
/*
* Format a reverse mapping for getfsmap, having translated rm_startblock
* into the appropriate daddr units. Pass in a nonzero @len_daddr if the
* length could be larger than rm_blockcount in struct xfs_rmap_irec.
*/
STATIC int
xfs_getfsmap_helper(
struct xfs_trans *tp,
struct xfs_getfsmap_info *info,
const struct xfs_fsmap_irec *frec)
{
struct xfs_fsmap fmr;
struct xfs_mount *mp = tp->t_mountp;
bool shared;
int error = 0;
if (fatal_signal_pending(current))
return -EINTR;
/*
* Filter out records that start before our startpoint, if the
* caller requested that.
*/
if (xfs_getfsmap_frec_before_start(info, frec))
goto out;
/* Are we just counting mappings? */
if (info->head->fmh_count == 0) {
if (info->head->fmh_entries == UINT_MAX)
return -ECANCELED;
if (frec->start_daddr > info->next_daddr)
info->head->fmh_entries++;
if (info->last)
return 0;
info->head->fmh_entries++;
goto out;
}
/*
* If the record starts past the last physical block we saw,
* then we've found a gap. Report the gap as being owned by
* whatever the caller specified is the missing owner.
*/
if (frec->start_daddr > info->next_daddr) {
if (info->head->fmh_entries >= info->head->fmh_count)
return -ECANCELED;
fmr.fmr_device = info->dev;
fmr.fmr_physical = info->next_daddr;
fmr.fmr_owner = info->missing_owner;
fmr.fmr_offset = 0;
fmr.fmr_length = frec->start_daddr - info->next_daddr;
fmr.fmr_flags = FMR_OF_SPECIAL_OWNER;
xfs_getfsmap_format(mp, &fmr, info);
}
if (info->last)
goto out;
/* Fill out the extent we found */
if (info->head->fmh_entries >= info->head->fmh_count)
return -ECANCELED;
trace_xfs_fsmap_mapping(mp, info->dev,
info->group ? info->group->xg_gno : NULLAGNUMBER,
frec);
fmr.fmr_device = info->dev;
fmr.fmr_physical = frec->start_daddr;
error = xfs_fsmap_owner_from_frec(&fmr, frec);
if (error)
return error;
fmr.fmr_offset = XFS_FSB_TO_BB(mp, frec->offset);
fmr.fmr_length = frec->len_daddr;
if (frec->rm_flags & XFS_RMAP_UNWRITTEN)
fmr.fmr_flags |= FMR_OF_PREALLOC;
if (frec->rm_flags & XFS_RMAP_ATTR_FORK)
fmr.fmr_flags |= FMR_OF_ATTR_FORK;
if (frec->rm_flags & XFS_RMAP_BMBT_BLOCK)
fmr.fmr_flags |= FMR_OF_EXTENT_MAP;
if (fmr.fmr_flags == 0) {
error = xfs_getfsmap_is_shared(tp, info, frec, &shared);
if (error)
return error;
if (shared)
fmr.fmr_flags |= FMR_OF_SHARED;
}
xfs_getfsmap_format(mp, &fmr, info);
out:
info->next_daddr = max(info->next_daddr,
frec->start_daddr + frec->len_daddr);
return 0;
}
static inline int
xfs_getfsmap_group_helper(
struct xfs_getfsmap_info *info,
struct xfs_trans *tp,
struct xfs_group *xg,
xfs_agblock_t startblock,
xfs_extlen_t blockcount,
struct xfs_fsmap_irec *frec)
{
/*
* For an info->last query, we're looking for a gap between the last
* mapping emitted and the high key specified by userspace. If the
* user's query spans less than 1 fsblock, then info->high and
* info->low will have the same rm_startblock, which causes rec_daddr
* and next_daddr to be the same. Therefore, use the end_daddr that
* we calculated from userspace's high key to synthesize the record.
* Note that if the btree query found a mapping, there won't be a gap.
*/
if (info->last)
frec->start_daddr = info->end_daddr + 1;
else
frec->start_daddr = xfs_gbno_to_daddr(xg, startblock);
frec->len_daddr = XFS_FSB_TO_BB(xg->xg_mount, blockcount);
return xfs_getfsmap_helper(tp, info, frec);
}
/* Transform a rmapbt irec into a fsmap */
STATIC int
xfs_getfsmap_rmapbt_helper(
struct xfs_btree_cur *cur,
const struct xfs_rmap_irec *rec,
void *priv)
{
struct xfs_fsmap_irec frec = {
.owner = rec->rm_owner,
.offset = rec->rm_offset,
.rm_flags = rec->rm_flags,
.rec_key = rec->rm_startblock,
};
struct xfs_getfsmap_info *info = priv;
return xfs_getfsmap_group_helper(info, cur->bc_tp, cur->bc_group,
rec->rm_startblock, rec->rm_blockcount, &frec);
}
/* Transform a bnobt irec into a fsmap */
STATIC int
xfs_getfsmap_datadev_bnobt_helper(
struct xfs_btree_cur *cur,
const struct xfs_alloc_rec_incore *rec,
void *priv)
{
struct xfs_fsmap_irec frec = {
.owner = XFS_RMAP_OWN_NULL, /* "free" */
.rec_key = rec->ar_startblock,
};
struct xfs_getfsmap_info *info = priv;
return xfs_getfsmap_group_helper(info, cur->bc_tp, cur->bc_group,
rec->ar_startblock, rec->ar_blockcount, &frec);
}
/* Set rmap flags based on the getfsmap flags */
static void
xfs_getfsmap_set_irec_flags(
struct xfs_rmap_irec *irec,
const struct xfs_fsmap *fmr)
{
irec->rm_flags = 0;
if (fmr->fmr_flags & FMR_OF_ATTR_FORK)
irec->rm_flags |= XFS_RMAP_ATTR_FORK;
if (fmr->fmr_flags & FMR_OF_EXTENT_MAP)
irec->rm_flags |= XFS_RMAP_BMBT_BLOCK;
if (fmr->fmr_flags & FMR_OF_PREALLOC)
irec->rm_flags |= XFS_RMAP_UNWRITTEN;
}
static inline bool
rmap_not_shareable(struct xfs_mount *mp, const struct xfs_rmap_irec *r)
{
if (!xfs_has_reflink(mp))
return true;
if (XFS_RMAP_NON_INODE_OWNER(r->rm_owner))
return true;
if (r->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK |
XFS_RMAP_UNWRITTEN))
return true;
return false;
}
/* Execute a getfsmap query against the regular data device. */
STATIC int
__xfs_getfsmap_datadev(
struct xfs_trans *tp,
const struct xfs_fsmap *keys,
struct xfs_getfsmap_info *info,
int (*query_fn)(struct xfs_trans *,
struct xfs_getfsmap_info *,
struct xfs_btree_cur **,
void *),
void *priv)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_perag *pag = NULL;
struct xfs_btree_cur *bt_cur = NULL;
xfs_fsblock_t start_fsb;
xfs_fsblock_t end_fsb;
xfs_agnumber_t start_ag, end_ag;
uint64_t eofs;
int error = 0;
eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
if (keys[0].fmr_physical >= eofs)
return 0;
start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical);
end_fsb = XFS_DADDR_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
/*
* Convert the fsmap low/high keys to AG based keys. Initialize
* low to the fsmap low key and max out the high key to the end
* of the AG.
*/
info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]);
if (error)
return error;
info->low.rm_blockcount = XFS_BB_TO_FSBT(mp, keys[0].fmr_length);
xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
/* Adjust the low key if we are continuing from where we left off. */
if (info->low.rm_blockcount == 0) {
/* No previous record from which to continue */
} else if (rmap_not_shareable(mp, &info->low)) {
/* Last record seen was an unshareable extent */
info->low.rm_owner = 0;
info->low.rm_offset = 0;
start_fsb += info->low.rm_blockcount;
if (XFS_FSB_TO_DADDR(mp, start_fsb) >= eofs)
return 0;
} else {
/* Last record seen was a shareable file data extent */
info->low.rm_offset += info->low.rm_blockcount;
}
info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb);
info->high.rm_startblock = -1U;
info->high.rm_owner = ULLONG_MAX;
info->high.rm_offset = ULLONG_MAX;
info->high.rm_blockcount = 0;
info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
start_ag = XFS_FSB_TO_AGNO(mp, start_fsb);
end_ag = XFS_FSB_TO_AGNO(mp, end_fsb);
while ((pag = xfs_perag_next_range(mp, pag, start_ag, end_ag))) {
/*
* Set the AG high key from the fsmap high key if this
* is the last AG that we're querying.
*/
info->group = pag_group(pag);
if (pag_agno(pag) == end_ag) {
info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp,
end_fsb);
info->high.rm_offset = XFS_BB_TO_FSBT(mp,
keys[1].fmr_offset);
error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
if (error)
break;
xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
}
if (bt_cur) {
xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR);
bt_cur = NULL;
xfs_trans_brelse(tp, info->agf_bp);
info->agf_bp = NULL;
}
error = xfs_alloc_read_agf(pag, tp, 0, &info->agf_bp);
if (error)
break;
trace_xfs_fsmap_low_group_key(mp, info->dev, pag_agno(pag),
&info->low);
trace_xfs_fsmap_high_group_key(mp, info->dev, pag_agno(pag),
&info->high);
error = query_fn(tp, info, &bt_cur, priv);
if (error)
break;
/*
* Set the AG low key to the start of the AG prior to
* moving on to the next AG.
*/
if (pag_agno(pag) == start_ag)
memset(&info->low, 0, sizeof(info->low));
/*
* If this is the last AG, report any gap at the end of it
* before we drop the reference to the perag when the loop
* terminates.
*/
if (pag_agno(pag) == end_ag) {
info->last = true;
error = query_fn(tp, info, &bt_cur, priv);
if (error)
break;
}
info->group = NULL;
}
if (bt_cur)
xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR :
XFS_BTREE_NOERROR);
if (info->agf_bp) {
xfs_trans_brelse(tp, info->agf_bp);
info->agf_bp = NULL;
}
if (info->group) {
xfs_perag_rele(pag);
info->group = NULL;
} else if (pag) {
/* loop termination case */
xfs_perag_rele(pag);
}
return error;
}
/* Actually query the rmap btree. */
STATIC int
xfs_getfsmap_datadev_rmapbt_query(
struct xfs_trans *tp,
struct xfs_getfsmap_info *info,
struct xfs_btree_cur **curpp,
void *priv)
{
/* Report any gap at the end of the last AG. */
if (info->last)
return xfs_getfsmap_rmapbt_helper(*curpp, &info->high, info);
/* Allocate cursor for this AG and query_range it. */
*curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp,
to_perag(info->group));
return xfs_rmap_query_range(*curpp, &info->low, &info->high,
xfs_getfsmap_rmapbt_helper, info);
}
/* Execute a getfsmap query against the regular data device rmapbt. */
STATIC int
xfs_getfsmap_datadev_rmapbt(
struct xfs_trans *tp,
const struct xfs_fsmap *keys,
struct xfs_getfsmap_info *info)
{
info->missing_owner = XFS_FMR_OWN_FREE;
return __xfs_getfsmap_datadev(tp, keys, info,
xfs_getfsmap_datadev_rmapbt_query, NULL);
}
/* Actually query the bno btree. */
STATIC int
xfs_getfsmap_datadev_bnobt_query(
struct xfs_trans *tp,
struct xfs_getfsmap_info *info,
struct xfs_btree_cur **curpp,
void *priv)
{
struct xfs_alloc_rec_incore *key = priv;
/* Report any gap at the end of the last AG. */
if (info->last)
return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info);
/* Allocate cursor for this AG and query_range it. */
*curpp = xfs_bnobt_init_cursor(tp->t_mountp, tp, info->agf_bp,
to_perag(info->group));
key->ar_startblock = info->low.rm_startblock;
key[1].ar_startblock = info->high.rm_startblock;
return xfs_alloc_query_range(*curpp, key, &key[1],
xfs_getfsmap_datadev_bnobt_helper, info);
}
/* Execute a getfsmap query against the regular data device's bnobt. */
STATIC int
xfs_getfsmap_datadev_bnobt(
struct xfs_trans *tp,
const struct xfs_fsmap *keys,
struct xfs_getfsmap_info *info)
{
struct xfs_alloc_rec_incore akeys[2];
memset(akeys, 0, sizeof(akeys));
info->missing_owner = XFS_FMR_OWN_UNKNOWN;
return __xfs_getfsmap_datadev(tp, keys, info,
xfs_getfsmap_datadev_bnobt_query, &akeys[0]);
}
/* Execute a getfsmap query against the log device. */
STATIC int
xfs_getfsmap_logdev(
struct xfs_trans *tp,
const struct xfs_fsmap *keys,
struct xfs_getfsmap_info *info)
{
struct xfs_fsmap_irec frec = {
.start_daddr = 0,
.rec_key = 0,
.owner = XFS_RMAP_OWN_LOG,
};
struct xfs_mount *mp = tp->t_mountp;
xfs_fsblock_t start_fsb, end_fsb;
uint64_t eofs;
eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
if (keys[0].fmr_physical >= eofs)
return 0;
start_fsb = XFS_BB_TO_FSBT(mp,
keys[0].fmr_physical + keys[0].fmr_length);
end_fsb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
/* Adjust the low key if we are continuing from where we left off. */
if (keys[0].fmr_length > 0)
info->low_daddr = XFS_FSB_TO_BB(mp, start_fsb);
trace_xfs_fsmap_low_linear_key(mp, info->dev, start_fsb);
trace_xfs_fsmap_high_linear_key(mp, info->dev, end_fsb);
if (start_fsb > 0)
return 0;
/* Fabricate an rmap entry for the external log device. */
frec.len_daddr = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
return xfs_getfsmap_helper(tp, info, &frec);
}
#ifdef CONFIG_XFS_RT
/* Transform a rtbitmap "record" into a fsmap */
STATIC int
xfs_getfsmap_rtdev_rtbitmap_helper(
struct xfs_rtgroup *rtg,
struct xfs_trans *tp,
const struct xfs_rtalloc_rec *rec,
void *priv)
{
struct xfs_fsmap_irec frec = {
.owner = XFS_RMAP_OWN_NULL, /* "free" */
};
struct xfs_mount *mp = rtg_mount(rtg);
struct xfs_getfsmap_info *info = priv;
xfs_rtblock_t start_rtb =
xfs_rtx_to_rtb(rtg, rec->ar_startext);
uint64_t rtbcount =
xfs_rtbxlen_to_blen(mp, rec->ar_extcount);
/*
* For an info->last query, we're looking for a gap between the last
* mapping emitted and the high key specified by userspace. If the
* user's query spans less than 1 fsblock, then info->high and
* info->low will have the same rm_startblock, which causes rec_daddr
* and next_daddr to be the same. Therefore, use the end_daddr that
* we calculated from userspace's high key to synthesize the record.
* Note that if the btree query found a mapping, there won't be a gap.
*/
if (info->last)
frec.start_daddr = info->end_daddr + 1;
else
frec.start_daddr = xfs_rtb_to_daddr(mp, start_rtb);
frec.len_daddr = XFS_FSB_TO_BB(mp, rtbcount);
return xfs_getfsmap_helper(tp, info, &frec);
}
/* Execute a getfsmap query against the realtime device rtbitmap. */
STATIC int
xfs_getfsmap_rtdev_rtbitmap(
struct xfs_trans *tp,
const struct xfs_fsmap *keys,
struct xfs_getfsmap_info *info)
{
struct xfs_mount *mp = tp->t_mountp;
xfs_rtblock_t start_rtbno, end_rtbno;
xfs_rtxnum_t start_rtx, end_rtx;
xfs_rgnumber_t start_rgno, end_rgno;
struct xfs_rtgroup *rtg = NULL;
uint64_t eofs;
int error;
eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
if (keys[0].fmr_physical >= eofs)
return 0;
info->missing_owner = XFS_FMR_OWN_UNKNOWN;
/* Adjust the low key if we are continuing from where we left off. */
start_rtbno = xfs_daddr_to_rtb(mp,
keys[0].fmr_physical + keys[0].fmr_length);
if (keys[0].fmr_length > 0) {
info->low_daddr = xfs_rtb_to_daddr(mp, start_rtbno);
if (info->low_daddr >= eofs)
return 0;
}
start_rtx = xfs_rtb_to_rtx(mp, start_rtbno);
start_rgno = xfs_rtb_to_rgno(mp, start_rtbno);
end_rtbno = xfs_daddr_to_rtb(mp, min(eofs - 1, keys[1].fmr_physical));
end_rgno = xfs_rtb_to_rgno(mp, end_rtbno);
trace_xfs_fsmap_low_linear_key(mp, info->dev, start_rtbno);
trace_xfs_fsmap_high_linear_key(mp, info->dev, end_rtbno);
end_rtx = -1ULL;
while ((rtg = xfs_rtgroup_next_range(mp, rtg, start_rgno, end_rgno))) {
if (rtg_rgno(rtg) == end_rgno)
end_rtx = xfs_rtb_to_rtx(mp,
end_rtbno + mp->m_sb.sb_rextsize - 1);
info->group = rtg_group(rtg);
xfs_rtgroup_lock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
error = xfs_rtalloc_query_range(rtg, tp, start_rtx, end_rtx,
xfs_getfsmap_rtdev_rtbitmap_helper, info);
if (error)
break;
/*
* Report any gaps at the end of the rtbitmap by simulating a
* zero-length free extent starting at the rtx after the end
* of the query range.
*/
if (rtg_rgno(rtg) == end_rgno) {
struct xfs_rtalloc_rec ahigh = {
.ar_startext = min(end_rtx + 1,
rtg->rtg_extents),
};
info->last = true;
error = xfs_getfsmap_rtdev_rtbitmap_helper(rtg, tp,
&ahigh, info);
if (error)
break;
}
xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
info->group = NULL;
start_rtx = 0;
}
/* loop termination case */
if (rtg) {
if (info->group) {
xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
info->group = NULL;
}
xfs_rtgroup_rele(rtg);
}
return error;
}
/* Transform a realtime rmapbt record into a fsmap */
STATIC int
xfs_getfsmap_rtdev_rmapbt_helper(
struct xfs_btree_cur *cur,
const struct xfs_rmap_irec *rec,
void *priv)
{
struct xfs_fsmap_irec frec = {
.owner = rec->rm_owner,
.offset = rec->rm_offset,
.rm_flags = rec->rm_flags,
.rec_key = rec->rm_startblock,
};
struct xfs_getfsmap_info *info = priv;
return xfs_getfsmap_group_helper(info, cur->bc_tp, cur->bc_group,
rec->rm_startblock, rec->rm_blockcount, &frec);
}
/* Actually query the rtrmap btree. */
STATIC int
xfs_getfsmap_rtdev_rmapbt_query(
struct xfs_trans *tp,
struct xfs_getfsmap_info *info,
struct xfs_btree_cur **curpp)
{
struct xfs_rtgroup *rtg = to_rtg(info->group);
/* Query the rtrmapbt */
xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP | XFS_RTGLOCK_REFCOUNT);
*curpp = xfs_rtrmapbt_init_cursor(tp, rtg);
return xfs_rmap_query_range(*curpp, &info->low, &info->high,
xfs_getfsmap_rtdev_rmapbt_helper, info);
}
/* Execute a getfsmap query against the realtime device rmapbt. */
STATIC int
xfs_getfsmap_rtdev_rmapbt(
struct xfs_trans *tp,
const struct xfs_fsmap *keys,
struct xfs_getfsmap_info *info)
{
struct xfs_fsmap key0 = *keys; /* struct copy */
struct xfs_mount *mp = tp->t_mountp;
struct xfs_rtgroup *rtg = NULL;
struct xfs_btree_cur *bt_cur = NULL;
xfs_daddr_t rtstart_daddr;
xfs_rtblock_t start_rtb;
xfs_rtblock_t end_rtb;
xfs_rgnumber_t start_rg, end_rg;
uint64_t eofs;
int error = 0;
eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rtstart + mp->m_sb.sb_rblocks);
if (key0.fmr_physical >= eofs)
return 0;
/*
* On zoned filesystems with an internal rt volume, the volume comes
* immediately after the end of the data volume. However, the
* xfs_rtblock_t address space is relative to the start of the data
* device, which means that the first @rtstart fsblocks do not actually
* point anywhere. If a fsmap query comes in with the low key starting
* below @rtstart, report it as "owned by filesystem".
*/
rtstart_daddr = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rtstart);
if (xfs_has_zoned(mp) && key0.fmr_physical < rtstart_daddr) {
struct xfs_fsmap_irec frec = {
.owner = XFS_RMAP_OWN_FS,
.len_daddr = rtstart_daddr,
};
/*
* Adjust the start of the query range if we're picking up from
* a previous round, and only emit the record if we haven't
* already gone past.
*/
key0.fmr_physical += key0.fmr_length;
if (key0.fmr_physical < rtstart_daddr) {
error = xfs_getfsmap_helper(tp, info, &frec);
if (error)
return error;
key0.fmr_physical = rtstart_daddr;
}
/* Zero the other fields to avoid further adjustments. */
key0.fmr_owner = 0;
key0.fmr_offset = 0;
key0.fmr_length = 0;
}
start_rtb = xfs_daddr_to_rtb(mp, key0.fmr_physical);
end_rtb = xfs_daddr_to_rtb(mp, min(eofs - 1, keys[1].fmr_physical));
info->missing_owner = XFS_FMR_OWN_FREE;
/*
* Convert the fsmap low/high keys to rtgroup based keys. Initialize
* low to the fsmap low key and max out the high key to the end
* of the rtgroup.
*/
info->low.rm_offset = XFS_BB_TO_FSBT(mp, key0.fmr_offset);
error = xfs_fsmap_owner_to_rmap(&info->low, &key0);
if (error)
return error;
info->low.rm_blockcount = XFS_BB_TO_FSBT(mp, key0.fmr_length);
xfs_getfsmap_set_irec_flags(&info->low, &key0);
/* Adjust the low key if we are continuing from where we left off. */
if (info->low.rm_blockcount == 0) {
/* No previous record from which to continue */
} else if (rmap_not_shareable(mp, &info->low)) {
/* Last record seen was an unshareable extent */
info->low.rm_owner = 0;
info->low.rm_offset = 0;
start_rtb += info->low.rm_blockcount;
if (xfs_rtb_to_daddr(mp, start_rtb) >= eofs)
return 0;
} else {
/* Last record seen was a shareable file data extent */
info->low.rm_offset += info->low.rm_blockcount;
}
info->low.rm_startblock = xfs_rtb_to_rgbno(mp, start_rtb);
info->high.rm_startblock = -1U;
info->high.rm_owner = ULLONG_MAX;
info->high.rm_offset = ULLONG_MAX;
info->high.rm_blockcount = 0;
info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
start_rg = xfs_rtb_to_rgno(mp, start_rtb);
end_rg = xfs_rtb_to_rgno(mp, end_rtb);
while ((rtg = xfs_rtgroup_next_range(mp, rtg, start_rg, end_rg))) {
/*
* Set the rtgroup high key from the fsmap high key if this
* is the last rtgroup that we're querying.
*/
info->group = rtg_group(rtg);
if (rtg_rgno(rtg) == end_rg) {
info->high.rm_startblock =
xfs_rtb_to_rgbno(mp, end_rtb);
info->high.rm_offset =
XFS_BB_TO_FSBT(mp, keys[1].fmr_offset);
error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
if (error)
break;
xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
}
if (bt_cur) {
xfs_rtgroup_unlock(to_rtg(bt_cur->bc_group),
XFS_RTGLOCK_RMAP |
XFS_RTGLOCK_REFCOUNT);
xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR);
bt_cur = NULL;
}
trace_xfs_fsmap_low_group_key(mp, info->dev, rtg_rgno(rtg),
&info->low);
trace_xfs_fsmap_high_group_key(mp, info->dev, rtg_rgno(rtg),
&info->high);
error = xfs_getfsmap_rtdev_rmapbt_query(tp, info, &bt_cur);
if (error)
break;
/*
* Set the rtgroup low key to the start of the rtgroup prior to
* moving on to the next rtgroup.
*/
if (rtg_rgno(rtg) == start_rg)
memset(&info->low, 0, sizeof(info->low));
/*
* If this is the last rtgroup, report any gap at the end of it
* before we drop the reference to the perag when the loop
* terminates.
*/
if (rtg_rgno(rtg) == end_rg) {
info->last = true;
error = xfs_getfsmap_rtdev_rmapbt_helper(bt_cur,
&info->high, info);
if (error)
break;
}
info->group = NULL;
}
if (bt_cur) {
xfs_rtgroup_unlock(to_rtg(bt_cur->bc_group),
XFS_RTGLOCK_RMAP | XFS_RTGLOCK_REFCOUNT);
xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR :
XFS_BTREE_NOERROR);
}
/* loop termination case */
if (rtg) {
info->group = NULL;
xfs_rtgroup_rele(rtg);
}
return error;
}
#endif /* CONFIG_XFS_RT */
static uint32_t
xfs_getfsmap_device(
struct xfs_mount *mp,
enum xfs_device dev)
{
if (mp->m_sb.sb_rtstart)
return dev;
switch (dev) {
case XFS_DEV_DATA:
return new_encode_dev(mp->m_ddev_targp->bt_dev);
case XFS_DEV_LOG:
return new_encode_dev(mp->m_logdev_targp->bt_dev);
case XFS_DEV_RT:
if (!mp->m_rtdev_targp)
break;
return new_encode_dev(mp->m_rtdev_targp->bt_dev);
}
return -1;
}
/* Do we recognize the device? */
STATIC bool
xfs_getfsmap_is_valid_device(
struct xfs_mount *mp,
struct xfs_fsmap *fm)
{
return fm->fmr_device == 0 ||
fm->fmr_device == UINT_MAX ||
fm->fmr_device == xfs_getfsmap_device(mp, XFS_DEV_DATA) ||
fm->fmr_device == xfs_getfsmap_device(mp, XFS_DEV_LOG) ||
(mp->m_rtdev_targp &&
fm->fmr_device == xfs_getfsmap_device(mp, XFS_DEV_RT));
}
/* Ensure that the low key is less than the high key. */
STATIC bool
xfs_getfsmap_check_keys(
struct xfs_fsmap *low_key,
struct xfs_fsmap *high_key)
{
if (low_key->fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) {
if (low_key->fmr_offset)
return false;
}
if (high_key->fmr_flags != -1U &&
(high_key->fmr_flags & (FMR_OF_SPECIAL_OWNER |
FMR_OF_EXTENT_MAP))) {
if (high_key->fmr_offset && high_key->fmr_offset != -1ULL)
return false;
}
if (high_key->fmr_length && high_key->fmr_length != -1ULL)
return false;
if (low_key->fmr_device > high_key->fmr_device)
return false;
if (low_key->fmr_device < high_key->fmr_device)
return true;
if (low_key->fmr_physical > high_key->fmr_physical)
return false;
if (low_key->fmr_physical < high_key->fmr_physical)
return true;
if (low_key->fmr_owner > high_key->fmr_owner)
return false;
if (low_key->fmr_owner < high_key->fmr_owner)
return true;
if (low_key->fmr_offset > high_key->fmr_offset)
return false;
if (low_key->fmr_offset < high_key->fmr_offset)
return true;
return false;
}
/*
* There are only two devices if we didn't configure RT devices at build time.
*/
#ifdef CONFIG_XFS_RT
#define XFS_GETFSMAP_DEVS 3
#else
#define XFS_GETFSMAP_DEVS 2
#endif /* CONFIG_XFS_RT */
/*
* Get filesystem's extents as described in head, and format for output. Fills
* in the supplied records array until there are no more reverse mappings to
* return or head.fmh_entries == head.fmh_count. In the second case, this
* function returns -ECANCELED to indicate that more records would have been
* returned.
*
* Key to Confusion
* ----------------
* There are multiple levels of keys and counters at work here:
* xfs_fsmap_head.fmh_keys -- low and high fsmap keys passed in;
* these reflect fs-wide sector addrs.
* dkeys -- fmh_keys used to query each device;
* these are fmh_keys but w/ the low key
* bumped up by fmr_length.
* xfs_getfsmap_info.next_daddr -- next disk addr we expect to see; this
* is how we detect gaps in the fsmap
records and report them.
* xfs_getfsmap_info.low/high -- per-AG low/high keys computed from
* dkeys; used to query the metadata.
*/
STATIC int
xfs_getfsmap(
struct xfs_mount *mp,
struct xfs_fsmap_head *head,
struct fsmap *fsmap_recs)
{
struct xfs_trans *tp = NULL;
struct xfs_fsmap dkeys[2]; /* per-dev keys */
struct xfs_getfsmap_dev handlers[XFS_GETFSMAP_DEVS];
struct xfs_getfsmap_info info = {
.fsmap_recs = fsmap_recs,
.head = head,
};
bool use_rmap;
int i;
int error = 0;
if (head->fmh_iflags & ~FMH_IF_VALID)
return -EINVAL;
if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) ||
!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1]))
return -EINVAL;
if (!xfs_getfsmap_check_keys(&head->fmh_keys[0], &head->fmh_keys[1]))
return -EINVAL;
use_rmap = xfs_has_rmapbt(mp) &&
has_capability_noaudit(current, CAP_SYS_ADMIN);
head->fmh_entries = 0;
/* Set up our device handlers. */
memset(handlers, 0, sizeof(handlers));
handlers[0].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
handlers[0].dev = xfs_getfsmap_device(mp, XFS_DEV_DATA);
if (use_rmap)
handlers[0].fn = xfs_getfsmap_datadev_rmapbt;
else
handlers[0].fn = xfs_getfsmap_datadev_bnobt;
if (mp->m_logdev_targp != mp->m_ddev_targp) {
handlers[1].nr_sectors = XFS_FSB_TO_BB(mp,
mp->m_sb.sb_logblocks);
handlers[1].dev = xfs_getfsmap_device(mp, XFS_DEV_LOG);
handlers[1].fn = xfs_getfsmap_logdev;
}
#ifdef CONFIG_XFS_RT
/*
* For zoned file systems there is no rtbitmap, so only support fsmap
* if the callers is privileged enough to use the full rmap version.
*/
if (mp->m_rtdev_targp && (use_rmap || !xfs_has_zoned(mp))) {
handlers[2].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
handlers[2].dev = xfs_getfsmap_device(mp, XFS_DEV_RT);
if (use_rmap)
handlers[2].fn = xfs_getfsmap_rtdev_rmapbt;
else
handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap;
}
#endif /* CONFIG_XFS_RT */
xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev),
xfs_getfsmap_dev_compare);
/*
* To continue where we left off, we allow userspace to use the
* last mapping from a previous call as the low key of the next.
* This is identified by a non-zero length in the low key. We
* have to increment the low key in this scenario to ensure we
* don't return the same mapping again, and instead return the
* very next mapping.
*
* If the low key mapping refers to file data, the same physical
* blocks could be mapped to several other files/offsets.
* According to rmapbt record ordering, the minimal next
* possible record for the block range is the next starting
* offset in the same inode. Therefore, each fsmap backend bumps
* the file offset to continue the search appropriately. For
* all other low key mapping types (attr blocks, metadata), each
* fsmap backend bumps the physical offset as there can be no
* other mapping for the same physical block range.
*/
dkeys[0] = head->fmh_keys[0];
memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap));
info.next_daddr = head->fmh_keys[0].fmr_physical +
head->fmh_keys[0].fmr_length;
/* For each device we support... */
for (i = 0; i < XFS_GETFSMAP_DEVS; i++) {
/* Is this device within the range the user asked for? */
if (!handlers[i].fn)
continue;
if (head->fmh_keys[0].fmr_device > handlers[i].dev)
continue;
if (head->fmh_keys[1].fmr_device < handlers[i].dev)
break;
/*
* If this device number matches the high key, we have to pass
* the high key to the handler to limit the query results, and
* set the end_daddr so that we can synthesize records at the
* end of the query range or device.
*/
if (handlers[i].dev == head->fmh_keys[1].fmr_device) {
dkeys[1] = head->fmh_keys[1];
info.end_daddr = min(handlers[i].nr_sectors - 1,
dkeys[1].fmr_physical);
} else {
info.end_daddr = handlers[i].nr_sectors - 1;
}
/*
* If the device number exceeds the low key, zero out the low
* key so that we get everything from the beginning.
*/
if (handlers[i].dev > head->fmh_keys[0].fmr_device)
memset(&dkeys[0], 0, sizeof(struct xfs_fsmap));
/*
* Grab an empty transaction so that we can use its recursive
* buffer locking abilities to detect cycles in the rmapbt
* without deadlocking.
*/
tp = xfs_trans_alloc_empty(mp);
info.dev = handlers[i].dev;
info.last = false;
info.group = NULL;
info.low_daddr = XFS_BUF_DADDR_NULL;
info.low.rm_blockcount = 0;
error = handlers[i].fn(tp, dkeys, &info);
if (error)
break;
xfs_trans_cancel(tp);
tp = NULL;
info.next_daddr = 0;
}
if (tp)
xfs_trans_cancel(tp);
/*
* For internal RT device we need to report different synthetic devices
* for a single physical device, and thus can't report the actual dev_t.
*/
if (!mp->m_sb.sb_rtstart)
head->fmh_oflags = FMH_OF_DEV_T;
return error;
}
int
xfs_ioc_getfsmap(
struct xfs_inode *ip,
struct fsmap_head __user *arg)
{
struct xfs_fsmap_head xhead = {0};
struct fsmap_head head;
struct fsmap *recs;
unsigned int count;
__u32 last_flags = 0;
bool done = false;
int error;
if (copy_from_user(&head, arg, sizeof(struct fsmap_head)))
return -EFAULT;
if (memchr_inv(head.fmh_reserved, 0, sizeof(head.fmh_reserved)) ||
memchr_inv(head.fmh_keys[0].fmr_reserved, 0,
sizeof(head.fmh_keys[0].fmr_reserved)) ||
memchr_inv(head.fmh_keys[1].fmr_reserved, 0,
sizeof(head.fmh_keys[1].fmr_reserved)))
return -EINVAL;
/*
* Use an internal memory buffer so that we don't have to copy fsmap
* data to userspace while holding locks. Start by trying to allocate
* up to 128k for the buffer, but fall back to a single page if needed.
*/
count = min_t(unsigned int, head.fmh_count,
131072 / sizeof(struct fsmap));
recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL);
if (!recs) {
count = min_t(unsigned int, head.fmh_count,
PAGE_SIZE / sizeof(struct fsmap));
recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL);
if (!recs)
return -ENOMEM;
}
xhead.fmh_iflags = head.fmh_iflags;
xfs_fsmap_to_internal(&xhead.fmh_keys[0], &head.fmh_keys[0]);
xfs_fsmap_to_internal(&xhead.fmh_keys[1], &head.fmh_keys[1]);
trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]);
trace_xfs_getfsmap_high_key(ip->i_mount, &xhead.fmh_keys[1]);
head.fmh_entries = 0;
do {
struct fsmap __user *user_recs;
struct fsmap *last_rec;
user_recs = &arg->fmh_recs[head.fmh_entries];
xhead.fmh_entries = 0;
xhead.fmh_count = min_t(unsigned int, count,
head.fmh_count - head.fmh_entries);
/* Run query, record how many entries we got. */
error = xfs_getfsmap(ip->i_mount, &xhead, recs);
switch (error) {
case 0:
/*
* There are no more records in the result set. Copy
* whatever we got to userspace and break out.
*/
done = true;
break;
case -ECANCELED:
/*
* The internal memory buffer is full. Copy whatever
* records we got to userspace and go again if we have
* not yet filled the userspace buffer.
*/
error = 0;
break;
default:
goto out_free;
}
head.fmh_entries += xhead.fmh_entries;
head.fmh_oflags = xhead.fmh_oflags;
/*
* If the caller wanted a record count or there aren't any
* new records to return, we're done.
*/
if (head.fmh_count == 0 || xhead.fmh_entries == 0)
break;
/* Copy all the records we got out to userspace. */
if (copy_to_user(user_recs, recs,
xhead.fmh_entries * sizeof(struct fsmap))) {
error = -EFAULT;
goto out_free;
}
/* Remember the last record flags we copied to userspace. */
last_rec = &recs[xhead.fmh_entries - 1];
last_flags = last_rec->fmr_flags;
/* Set up the low key for the next iteration. */
xfs_fsmap_to_internal(&xhead.fmh_keys[0], last_rec);
trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]);
} while (!done && head.fmh_entries < head.fmh_count);
/*
* If there are no more records in the query result set and we're not
* in counting mode, mark the last record returned with the LAST flag.
*/
if (done && head.fmh_count > 0 && head.fmh_entries > 0) {
struct fsmap __user *user_rec;
last_flags |= FMR_OF_LAST;
user_rec = &arg->fmh_recs[head.fmh_entries - 1];
if (copy_to_user(&user_rec->fmr_flags, &last_flags,
sizeof(last_flags))) {
error = -EFAULT;
goto out_free;
}
}
/* copy back header */
if (copy_to_user(arg, &head, sizeof(struct fsmap_head))) {
error = -EFAULT;
goto out_free;
}
out_free:
kvfree(recs);
return error;
}
|