1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2019 ARM Ltd.
*
* Generic implementation of update_vsyscall and update_vsyscall_tz.
*
* Based on the x86 specific implementation.
*/
#include <linux/hrtimer.h>
#include <linux/timekeeper_internal.h>
#include <vdso/datapage.h>
#include <vdso/helpers.h>
#include <vdso/vsyscall.h>
#include "timekeeping_internal.h"
static inline void fill_clock_configuration(struct vdso_clock *vc, const struct tk_read_base *base)
{
vc->cycle_last = base->cycle_last;
#ifdef CONFIG_GENERIC_VDSO_OVERFLOW_PROTECT
vc->max_cycles = base->clock->max_cycles;
#endif
vc->mask = base->mask;
vc->mult = base->mult;
vc->shift = base->shift;
}
static inline void update_vdso_time_data(struct vdso_time_data *vdata, struct timekeeper *tk)
{
struct vdso_clock *vc = vdata->clock_data;
struct vdso_timestamp *vdso_ts;
u64 nsec, sec;
fill_clock_configuration(&vc[CS_HRES_COARSE], &tk->tkr_mono);
fill_clock_configuration(&vc[CS_RAW], &tk->tkr_raw);
/* CLOCK_MONOTONIC */
vdso_ts = &vc[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC];
vdso_ts->sec = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
nsec = tk->tkr_mono.xtime_nsec;
nsec += ((u64)tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift);
vdso_ts->sec++;
}
vdso_ts->nsec = nsec;
/* Copy MONOTONIC time for BOOTTIME */
sec = vdso_ts->sec;
/* Add the boot offset */
sec += tk->monotonic_to_boot.tv_sec;
nsec += (u64)tk->monotonic_to_boot.tv_nsec << tk->tkr_mono.shift;
/* CLOCK_BOOTTIME */
vdso_ts = &vc[CS_HRES_COARSE].basetime[CLOCK_BOOTTIME];
vdso_ts->sec = sec;
while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift);
vdso_ts->sec++;
}
vdso_ts->nsec = nsec;
/* CLOCK_MONOTONIC_RAW */
vdso_ts = &vc[CS_RAW].basetime[CLOCK_MONOTONIC_RAW];
vdso_ts->sec = tk->raw_sec;
vdso_ts->nsec = tk->tkr_raw.xtime_nsec;
/* CLOCK_TAI */
vdso_ts = &vc[CS_HRES_COARSE].basetime[CLOCK_TAI];
vdso_ts->sec = tk->xtime_sec + (s64)tk->tai_offset;
vdso_ts->nsec = tk->tkr_mono.xtime_nsec;
}
void update_vsyscall(struct timekeeper *tk)
{
struct vdso_time_data *vdata = vdso_k_time_data;
struct vdso_clock *vc = vdata->clock_data;
struct vdso_timestamp *vdso_ts;
s32 clock_mode;
u64 nsec;
/* copy vsyscall data */
vdso_write_begin(vdata);
clock_mode = tk->tkr_mono.clock->vdso_clock_mode;
vc[CS_HRES_COARSE].clock_mode = clock_mode;
vc[CS_RAW].clock_mode = clock_mode;
/* CLOCK_REALTIME also required for time() */
vdso_ts = &vc[CS_HRES_COARSE].basetime[CLOCK_REALTIME];
vdso_ts->sec = tk->xtime_sec;
vdso_ts->nsec = tk->tkr_mono.xtime_nsec;
/* CLOCK_REALTIME_COARSE */
vdso_ts = &vc[CS_HRES_COARSE].basetime[CLOCK_REALTIME_COARSE];
vdso_ts->sec = tk->xtime_sec;
vdso_ts->nsec = tk->coarse_nsec;
/* CLOCK_MONOTONIC_COARSE */
vdso_ts = &vc[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC_COARSE];
vdso_ts->sec = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
nsec = tk->coarse_nsec;
nsec = nsec + tk->wall_to_monotonic.tv_nsec;
vdso_ts->sec += __iter_div_u64_rem(nsec, NSEC_PER_SEC, &vdso_ts->nsec);
/*
* Read without the seqlock held by clock_getres().
*/
WRITE_ONCE(vdata->hrtimer_res, hrtimer_resolution);
/*
* If the current clocksource is not VDSO capable, then spare the
* update of the high resolution parts.
*/
if (clock_mode != VDSO_CLOCKMODE_NONE)
update_vdso_time_data(vdata, tk);
__arch_update_vdso_clock(&vc[CS_HRES_COARSE]);
__arch_update_vdso_clock(&vc[CS_RAW]);
vdso_write_end(vdata);
__arch_sync_vdso_time_data(vdata);
}
void update_vsyscall_tz(void)
{
struct vdso_time_data *vdata = vdso_k_time_data;
vdata->tz_minuteswest = sys_tz.tz_minuteswest;
vdata->tz_dsttime = sys_tz.tz_dsttime;
__arch_sync_vdso_time_data(vdata);
}
#ifdef CONFIG_POSIX_AUX_CLOCKS
void vdso_time_update_aux(struct timekeeper *tk)
{
struct vdso_time_data *vdata = vdso_k_time_data;
struct vdso_timestamp *vdso_ts;
struct vdso_clock *vc;
s32 clock_mode;
u64 nsec;
vc = &vdata->aux_clock_data[tk->id - TIMEKEEPER_AUX_FIRST];
vdso_ts = &vc->basetime[VDSO_BASE_AUX];
clock_mode = tk->tkr_mono.clock->vdso_clock_mode;
if (!tk->clock_valid)
clock_mode = VDSO_CLOCKMODE_NONE;
/* copy vsyscall data */
vdso_write_begin_clock(vc);
vc->clock_mode = clock_mode;
if (clock_mode != VDSO_CLOCKMODE_NONE) {
fill_clock_configuration(vc, &tk->tkr_mono);
vdso_ts->sec = tk->xtime_sec + tk->monotonic_to_aux.tv_sec;
nsec = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
nsec += tk->monotonic_to_aux.tv_nsec;
vdso_ts->sec += __iter_div_u64_rem(nsec, NSEC_PER_SEC, &nsec);
nsec = nsec << tk->tkr_mono.shift;
vdso_ts->nsec = nsec;
}
__arch_update_vdso_clock(vc);
vdso_write_end_clock(vc);
__arch_sync_vdso_time_data(vdata);
}
#endif
/**
* vdso_update_begin - Start of a VDSO update section
*
* Allows architecture code to safely update the architecture specific VDSO
* data. Disables interrupts, acquires timekeeper lock to serialize against
* concurrent updates from timekeeping and invalidates the VDSO data
* sequence counter to prevent concurrent readers from accessing
* inconsistent data.
*
* Returns: Saved interrupt flags which need to be handed in to
* vdso_update_end().
*/
unsigned long vdso_update_begin(void)
{
struct vdso_time_data *vdata = vdso_k_time_data;
unsigned long flags = timekeeper_lock_irqsave();
vdso_write_begin(vdata);
return flags;
}
/**
* vdso_update_end - End of a VDSO update section
* @flags: Interrupt flags as returned from vdso_update_begin()
*
* Pairs with vdso_update_begin(). Marks vdso data consistent, invokes data
* synchronization if the architecture requires it, drops timekeeper lock
* and restores interrupt flags.
*/
void vdso_update_end(unsigned long flags)
{
struct vdso_time_data *vdata = vdso_k_time_data;
vdso_write_end(vdata);
__arch_sync_vdso_time_data(vdata);
timekeeper_unlock_irqrestore(flags);
}
|