1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2023 Intel Corporation
*/
#include "xe_devcoredump.h"
#include "xe_devcoredump_types.h"
#include <linux/ascii85.h>
#include <linux/devcoredump.h>
#include <generated/utsrelease.h>
#include <drm/drm_managed.h>
#include "xe_device.h"
#include "xe_exec_queue.h"
#include "xe_force_wake.h"
#include "xe_gt.h"
#include "xe_gt_printk.h"
#include "xe_guc_capture.h"
#include "xe_guc_ct.h"
#include "xe_guc_log.h"
#include "xe_guc_submit.h"
#include "xe_hw_engine.h"
#include "xe_module.h"
#include "xe_pm.h"
#include "xe_sched_job.h"
#include "xe_vm.h"
/**
* DOC: Xe device coredump
*
* Xe uses dev_coredump infrastructure for exposing the crash errors in a
* standardized way. Once a crash occurs, devcoredump exposes a temporary
* node under ``/sys/class/devcoredump/devcd<m>/``. The same node is also
* accessible in ``/sys/class/drm/card<n>/device/devcoredump/``. The
* ``failing_device`` symlink points to the device that crashed and created the
* coredump.
*
* The following characteristics are observed by xe when creating a device
* coredump:
*
* **Snapshot at hang**:
* The 'data' file contains a snapshot of the HW and driver states at the time
* the hang happened. Due to the driver recovering from resets/crashes, it may
* not correspond to the state of the system when the file is read by
* userspace.
*
* **Coredump release**:
* After a coredump is generated, it stays in kernel memory until released by
* userspace by writing anything to it, or after an internal timer expires. The
* exact timeout may vary and should not be relied upon. Example to release
* a coredump:
*
* .. code-block:: shell
*
* $ > /sys/class/drm/card0/device/devcoredump/data
*
* **First failure only**:
* In general, the first hang is the most critical one since the following
* hangs can be a consequence of the initial hang. For this reason a snapshot
* is taken only for the first failure. Until the devcoredump is released by
* userspace or kernel, all subsequent hangs do not override the snapshot nor
* create new ones. Devcoredump has a delayed work queue that will eventually
* delete the file node and free all the dump information.
*/
#ifdef CONFIG_DEV_COREDUMP
/* 1 hour timeout */
#define XE_COREDUMP_TIMEOUT_JIFFIES (60 * 60 * HZ)
static struct xe_device *coredump_to_xe(const struct xe_devcoredump *coredump)
{
return container_of(coredump, struct xe_device, devcoredump);
}
static struct xe_guc *exec_queue_to_guc(struct xe_exec_queue *q)
{
return &q->gt->uc.guc;
}
static ssize_t __xe_devcoredump_read(char *buffer, ssize_t count,
ssize_t start,
struct xe_devcoredump *coredump)
{
struct xe_device *xe;
struct xe_devcoredump_snapshot *ss;
struct drm_printer p;
struct drm_print_iterator iter;
struct timespec64 ts;
int i;
xe = coredump_to_xe(coredump);
ss = &coredump->snapshot;
iter.data = buffer;
iter.start = start;
iter.remain = count;
p = drm_coredump_printer(&iter);
drm_puts(&p, "**** Xe Device Coredump ****\n");
drm_printf(&p, "Reason: %s\n", ss->reason);
drm_puts(&p, "kernel: " UTS_RELEASE "\n");
drm_puts(&p, "module: " KBUILD_MODNAME "\n");
ts = ktime_to_timespec64(ss->snapshot_time);
drm_printf(&p, "Snapshot time: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
ts = ktime_to_timespec64(ss->boot_time);
drm_printf(&p, "Uptime: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
drm_printf(&p, "Process: %s [%d]\n", ss->process_name, ss->pid);
xe_device_snapshot_print(xe, &p);
drm_printf(&p, "\n**** GT #%d ****\n", ss->gt->info.id);
drm_printf(&p, "\tTile: %d\n", ss->gt->tile->id);
drm_puts(&p, "\n**** GuC Log ****\n");
xe_guc_log_snapshot_print(ss->guc.log, &p);
drm_puts(&p, "\n**** GuC CT ****\n");
xe_guc_ct_snapshot_print(ss->guc.ct, &p);
drm_puts(&p, "\n**** Contexts ****\n");
xe_guc_exec_queue_snapshot_print(ss->ge, &p);
drm_puts(&p, "\n**** Job ****\n");
xe_sched_job_snapshot_print(ss->job, &p);
drm_puts(&p, "\n**** HW Engines ****\n");
for (i = 0; i < XE_NUM_HW_ENGINES; i++)
if (ss->hwe[i])
xe_engine_snapshot_print(ss->hwe[i], &p);
drm_puts(&p, "\n**** VM state ****\n");
xe_vm_snapshot_print(ss->vm, &p);
return count - iter.remain;
}
static void xe_devcoredump_snapshot_free(struct xe_devcoredump_snapshot *ss)
{
int i;
kfree(ss->reason);
ss->reason = NULL;
xe_guc_log_snapshot_free(ss->guc.log);
ss->guc.log = NULL;
xe_guc_ct_snapshot_free(ss->guc.ct);
ss->guc.ct = NULL;
xe_guc_capture_put_matched_nodes(&ss->gt->uc.guc);
ss->matched_node = NULL;
xe_guc_exec_queue_snapshot_free(ss->ge);
ss->ge = NULL;
xe_sched_job_snapshot_free(ss->job);
ss->job = NULL;
for (i = 0; i < XE_NUM_HW_ENGINES; i++)
if (ss->hwe[i]) {
xe_hw_engine_snapshot_free(ss->hwe[i]);
ss->hwe[i] = NULL;
}
xe_vm_snapshot_free(ss->vm);
ss->vm = NULL;
}
#define XE_DEVCOREDUMP_CHUNK_MAX (SZ_512M + SZ_1G)
/**
* xe_devcoredump_read() - Read data from the Xe device coredump snapshot
* @buffer: Destination buffer to copy the coredump data into
* @offset: Offset in the coredump data to start reading from
* @count: Number of bytes to read
* @data: Pointer to the xe_devcoredump structure
* @datalen: Length of the data (unused)
*
* Reads a chunk of the coredump snapshot data into the provided buffer.
* If the devcoredump is smaller than 1.5 GB (XE_DEVCOREDUMP_CHUNK_MAX),
* it is read directly from a pre-written buffer. For larger devcoredumps,
* the pre-written buffer must be periodically repopulated from the snapshot
* state due to kmalloc size limitations.
*
* Return: Number of bytes copied on success, or a negative error code on failure.
*/
static ssize_t xe_devcoredump_read(char *buffer, loff_t offset,
size_t count, void *data, size_t datalen)
{
struct xe_devcoredump *coredump = data;
struct xe_devcoredump_snapshot *ss;
ssize_t byte_copied = 0;
u32 chunk_offset;
ssize_t new_chunk_position;
bool pm_needed = false;
int ret = 0;
if (!coredump)
return -ENODEV;
ss = &coredump->snapshot;
/* Ensure delayed work is captured before continuing */
flush_work(&ss->work);
pm_needed = ss->read.size > XE_DEVCOREDUMP_CHUNK_MAX;
if (pm_needed)
xe_pm_runtime_get(gt_to_xe(ss->gt));
mutex_lock(&coredump->lock);
if (!ss->read.buffer) {
ret = -ENODEV;
goto unlock;
}
if (offset >= ss->read.size)
goto unlock;
new_chunk_position = div_u64_rem(offset,
XE_DEVCOREDUMP_CHUNK_MAX,
&chunk_offset);
if (offset >= ss->read.chunk_position + XE_DEVCOREDUMP_CHUNK_MAX ||
offset < ss->read.chunk_position) {
ss->read.chunk_position = new_chunk_position *
XE_DEVCOREDUMP_CHUNK_MAX;
__xe_devcoredump_read(ss->read.buffer,
XE_DEVCOREDUMP_CHUNK_MAX,
ss->read.chunk_position, coredump);
}
byte_copied = count < ss->read.size - offset ? count :
ss->read.size - offset;
memcpy(buffer, ss->read.buffer + chunk_offset, byte_copied);
unlock:
mutex_unlock(&coredump->lock);
if (pm_needed)
xe_pm_runtime_put(gt_to_xe(ss->gt));
return byte_copied ? byte_copied : ret;
}
static void xe_devcoredump_free(void *data)
{
struct xe_devcoredump *coredump = data;
/* Our device is gone. Nothing to do... */
if (!data || !coredump_to_xe(coredump))
return;
cancel_work_sync(&coredump->snapshot.work);
mutex_lock(&coredump->lock);
xe_devcoredump_snapshot_free(&coredump->snapshot);
kvfree(coredump->snapshot.read.buffer);
/* To prevent stale data on next snapshot, clear everything */
memset(&coredump->snapshot, 0, sizeof(coredump->snapshot));
coredump->captured = false;
drm_info(&coredump_to_xe(coredump)->drm,
"Xe device coredump has been deleted.\n");
mutex_unlock(&coredump->lock);
}
static void xe_devcoredump_deferred_snap_work(struct work_struct *work)
{
struct xe_devcoredump_snapshot *ss = container_of(work, typeof(*ss), work);
struct xe_devcoredump *coredump = container_of(ss, typeof(*coredump), snapshot);
struct xe_device *xe = coredump_to_xe(coredump);
unsigned int fw_ref;
/*
* NB: Despite passing a GFP_ flags parameter here, more allocations are done
* internally using GFP_KERNEL explicitly. Hence this call must be in the worker
* thread and not in the initial capture call.
*/
dev_coredumpm_timeout(gt_to_xe(ss->gt)->drm.dev, THIS_MODULE, coredump, 0, GFP_KERNEL,
xe_devcoredump_read, xe_devcoredump_free,
XE_COREDUMP_TIMEOUT_JIFFIES);
xe_pm_runtime_get(xe);
/* keep going if fw fails as we still want to save the memory and SW data */
fw_ref = xe_force_wake_get(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL);
if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL))
xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n");
xe_vm_snapshot_capture_delayed(ss->vm);
xe_guc_exec_queue_snapshot_capture_delayed(ss->ge);
xe_force_wake_put(gt_to_fw(ss->gt), fw_ref);
ss->read.chunk_position = 0;
/* Calculate devcoredump size */
ss->read.size = __xe_devcoredump_read(NULL, LONG_MAX, 0, coredump);
if (ss->read.size > XE_DEVCOREDUMP_CHUNK_MAX) {
ss->read.buffer = kvmalloc(XE_DEVCOREDUMP_CHUNK_MAX,
GFP_USER);
if (!ss->read.buffer)
goto put_pm;
__xe_devcoredump_read(ss->read.buffer,
XE_DEVCOREDUMP_CHUNK_MAX,
0, coredump);
} else {
ss->read.buffer = kvmalloc(ss->read.size, GFP_USER);
if (!ss->read.buffer)
goto put_pm;
__xe_devcoredump_read(ss->read.buffer, ss->read.size, 0,
coredump);
xe_devcoredump_snapshot_free(ss);
}
put_pm:
xe_pm_runtime_put(xe);
}
static void devcoredump_snapshot(struct xe_devcoredump *coredump,
struct xe_exec_queue *q,
struct xe_sched_job *job)
{
struct xe_devcoredump_snapshot *ss = &coredump->snapshot;
struct xe_guc *guc = exec_queue_to_guc(q);
const char *process_name = "no process";
unsigned int fw_ref;
bool cookie;
ss->snapshot_time = ktime_get_real();
ss->boot_time = ktime_get_boottime();
if (q->vm && q->vm->xef) {
process_name = q->vm->xef->process_name;
ss->pid = q->vm->xef->pid;
}
strscpy(ss->process_name, process_name);
ss->gt = q->gt;
INIT_WORK(&ss->work, xe_devcoredump_deferred_snap_work);
cookie = dma_fence_begin_signalling();
/* keep going if fw fails as we still want to save the memory and SW data */
fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL);
ss->guc.log = xe_guc_log_snapshot_capture(&guc->log, true);
ss->guc.ct = xe_guc_ct_snapshot_capture(&guc->ct);
ss->ge = xe_guc_exec_queue_snapshot_capture(q);
if (job)
ss->job = xe_sched_job_snapshot_capture(job);
ss->vm = xe_vm_snapshot_capture(q->vm);
xe_engine_snapshot_capture_for_queue(q);
queue_work(system_unbound_wq, &ss->work);
xe_force_wake_put(gt_to_fw(q->gt), fw_ref);
dma_fence_end_signalling(cookie);
}
/**
* xe_devcoredump - Take the required snapshots and initialize coredump device.
* @q: The faulty xe_exec_queue, where the issue was detected.
* @job: The faulty xe_sched_job, where the issue was detected.
* @fmt: Printf format + args to describe the reason for the core dump
*
* This function should be called at the crash time within the serialized
* gt_reset. It is skipped if we still have the core dump device available
* with the information of the 'first' snapshot.
*/
__printf(3, 4)
void xe_devcoredump(struct xe_exec_queue *q, struct xe_sched_job *job, const char *fmt, ...)
{
struct xe_device *xe = gt_to_xe(q->gt);
struct xe_devcoredump *coredump = &xe->devcoredump;
va_list varg;
mutex_lock(&coredump->lock);
if (coredump->captured) {
drm_dbg(&xe->drm, "Multiple hangs are occurring, but only the first snapshot was taken\n");
mutex_unlock(&coredump->lock);
return;
}
coredump->captured = true;
va_start(varg, fmt);
coredump->snapshot.reason = kvasprintf(GFP_ATOMIC, fmt, varg);
va_end(varg);
devcoredump_snapshot(coredump, q, job);
drm_info(&xe->drm, "Xe device coredump has been created\n");
drm_info(&xe->drm, "Check your /sys/class/drm/card%d/device/devcoredump/data\n",
xe->drm.primary->index);
mutex_unlock(&coredump->lock);
}
static void xe_driver_devcoredump_fini(void *arg)
{
struct drm_device *drm = arg;
dev_coredump_put(drm->dev);
}
int xe_devcoredump_init(struct xe_device *xe)
{
int err;
err = drmm_mutex_init(&xe->drm, &xe->devcoredump.lock);
if (err)
return err;
if (IS_ENABLED(CONFIG_LOCKDEP)) {
fs_reclaim_acquire(GFP_KERNEL);
might_lock(&xe->devcoredump.lock);
fs_reclaim_release(GFP_KERNEL);
}
return devm_add_action_or_reset(xe->drm.dev, xe_driver_devcoredump_fini, &xe->drm);
}
#endif
/**
* xe_print_blob_ascii85 - print a BLOB to some useful location in ASCII85
*
* The output is split into multiple calls to drm_puts() because some print
* targets, e.g. dmesg, cannot handle arbitrarily long lines. These targets may
* add newlines, as is the case with dmesg: each drm_puts() call creates a
* separate line.
*
* There is also a scheduler yield call to prevent the 'task has been stuck for
* 120s' kernel hang check feature from firing when printing to a slow target
* such as dmesg over a serial port.
*
* @p: the printer object to output to
* @prefix: optional prefix to add to output string
* @suffix: optional suffix to add at the end. 0 disables it and is
* not added to the output, which is useful when using multiple calls
* to dump data to @p
* @blob: the Binary Large OBject to dump out
* @offset: offset in bytes to skip from the front of the BLOB, must be a multiple of sizeof(u32)
* @size: the size in bytes of the BLOB, must be a multiple of sizeof(u32)
*/
void xe_print_blob_ascii85(struct drm_printer *p, const char *prefix, char suffix,
const void *blob, size_t offset, size_t size)
{
const u32 *blob32 = (const u32 *)blob;
char buff[ASCII85_BUFSZ], *line_buff;
size_t line_pos = 0;
#define DMESG_MAX_LINE_LEN 800
/* Always leave space for the suffix char and the \0 */
#define MIN_SPACE (ASCII85_BUFSZ + 2) /* 85 + "<suffix>\0" */
if (size & 3)
drm_printf(p, "Size not word aligned: %zu", size);
if (offset & 3)
drm_printf(p, "Offset not word aligned: %zu", offset);
line_buff = kzalloc(DMESG_MAX_LINE_LEN, GFP_ATOMIC);
if (!line_buff) {
drm_printf(p, "Failed to allocate line buffer\n");
return;
}
blob32 += offset / sizeof(*blob32);
size /= sizeof(*blob32);
if (prefix) {
strscpy(line_buff, prefix, DMESG_MAX_LINE_LEN - MIN_SPACE - 2);
line_pos = strlen(line_buff);
line_buff[line_pos++] = ':';
line_buff[line_pos++] = ' ';
}
while (size--) {
u32 val = *(blob32++);
strscpy(line_buff + line_pos, ascii85_encode(val, buff),
DMESG_MAX_LINE_LEN - line_pos);
line_pos += strlen(line_buff + line_pos);
if ((line_pos + MIN_SPACE) >= DMESG_MAX_LINE_LEN) {
line_buff[line_pos++] = 0;
drm_puts(p, line_buff);
line_pos = 0;
/* Prevent 'stuck thread' time out errors */
cond_resched();
}
}
if (suffix)
line_buff[line_pos++] = suffix;
if (line_pos) {
line_buff[line_pos++] = 0;
drm_puts(p, line_buff);
}
kfree(line_buff);
#undef MIN_SPACE
#undef DMESG_MAX_LINE_LEN
}
|