1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2021 Intel Corporation
*/
#include "xe_ggtt.h"
#include <kunit/visibility.h>
#include <linux/fault-inject.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/sizes.h>
#include <drm/drm_drv.h>
#include <drm/drm_managed.h>
#include <drm/intel/i915_drm.h>
#include <generated/xe_wa_oob.h>
#include "regs/xe_gt_regs.h"
#include "regs/xe_gtt_defs.h"
#include "regs/xe_regs.h"
#include "xe_assert.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_gt.h"
#include "xe_gt_printk.h"
#include "xe_gt_tlb_invalidation.h"
#include "xe_map.h"
#include "xe_mmio.h"
#include "xe_pm.h"
#include "xe_res_cursor.h"
#include "xe_sriov.h"
#include "xe_tile_sriov_vf.h"
#include "xe_wa.h"
#include "xe_wopcm.h"
/**
* DOC: Global Graphics Translation Table (GGTT)
*
* Xe GGTT implements the support for a Global Virtual Address space that is used
* for resources that are accessible to privileged (i.e. kernel-mode) processes,
* and not tied to a specific user-level process. For example, the Graphics
* micro-Controller (GuC) and Display Engine (if present) utilize this Global
* address space.
*
* The Global GTT (GGTT) translates from the Global virtual address to a physical
* address that can be accessed by HW. The GGTT is a flat, single-level table.
*
* Xe implements a simplified version of the GGTT specifically managing only a
* certain range of it that goes from the Write Once Protected Content Memory (WOPCM)
* Layout to a predefined GUC_GGTT_TOP. This approach avoids complications related to
* the GuC (Graphics Microcontroller) hardware limitations. The GuC address space
* is limited on both ends of the GGTT, because the GuC shim HW redirects
* accesses to those addresses to other HW areas instead of going through the
* GGTT. On the bottom end, the GuC can't access offsets below the WOPCM size,
* while on the top side the limit is fixed at GUC_GGTT_TOP. To keep things
* simple, instead of checking each object to see if they are accessed by GuC or
* not, we just exclude those areas from the allocator. Additionally, to simplify
* the driver load, we use the maximum WOPCM size in this logic instead of the
* programmed one, so we don't need to wait until the actual size to be
* programmed is determined (which requires FW fetch) before initializing the
* GGTT. These simplifications might waste space in the GGTT (about 20-25 MBs
* depending on the platform) but we can live with this. Another benefit of this
* is the GuC bootrom can't access anything below the WOPCM max size so anything
* the bootrom needs to access (e.g. a RSA key) needs to be placed in the GGTT
* above the WOPCM max size. Starting the GGTT allocations above the WOPCM max
* give us the correct placement for free.
*/
static u64 xelp_ggtt_pte_flags(struct xe_bo *bo, u16 pat_index)
{
u64 pte = XE_PAGE_PRESENT;
if (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo))
pte |= XE_GGTT_PTE_DM;
return pte;
}
static u64 xelpg_ggtt_pte_flags(struct xe_bo *bo, u16 pat_index)
{
struct xe_device *xe = xe_bo_device(bo);
u64 pte;
pte = xelp_ggtt_pte_flags(bo, pat_index);
xe_assert(xe, pat_index <= 3);
if (pat_index & BIT(0))
pte |= XELPG_GGTT_PTE_PAT0;
if (pat_index & BIT(1))
pte |= XELPG_GGTT_PTE_PAT1;
return pte;
}
static unsigned int probe_gsm_size(struct pci_dev *pdev)
{
u16 gmch_ctl, ggms;
pci_read_config_word(pdev, SNB_GMCH_CTRL, &gmch_ctl);
ggms = (gmch_ctl >> BDW_GMCH_GGMS_SHIFT) & BDW_GMCH_GGMS_MASK;
return ggms ? SZ_1M << ggms : 0;
}
static void ggtt_update_access_counter(struct xe_ggtt *ggtt)
{
struct xe_tile *tile = ggtt->tile;
struct xe_gt *affected_gt = XE_WA(tile->primary_gt, 22019338487) ?
tile->primary_gt : tile->media_gt;
struct xe_mmio *mmio = &affected_gt->mmio;
u32 max_gtt_writes = XE_WA(ggtt->tile->primary_gt, 22019338487) ? 1100 : 63;
/*
* Wa_22019338487: GMD_ID is a RO register, a dummy write forces gunit
* to wait for completion of prior GTT writes before letting this through.
* This needs to be done for all GGTT writes originating from the CPU.
*/
lockdep_assert_held(&ggtt->lock);
if ((++ggtt->access_count % max_gtt_writes) == 0) {
xe_mmio_write32(mmio, GMD_ID, 0x0);
ggtt->access_count = 0;
}
}
static void xe_ggtt_set_pte(struct xe_ggtt *ggtt, u64 addr, u64 pte)
{
xe_tile_assert(ggtt->tile, !(addr & XE_PTE_MASK));
xe_tile_assert(ggtt->tile, addr < ggtt->size);
writeq(pte, &ggtt->gsm[addr >> XE_PTE_SHIFT]);
}
static void xe_ggtt_set_pte_and_flush(struct xe_ggtt *ggtt, u64 addr, u64 pte)
{
xe_ggtt_set_pte(ggtt, addr, pte);
ggtt_update_access_counter(ggtt);
}
static void xe_ggtt_clear(struct xe_ggtt *ggtt, u64 start, u64 size)
{
u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[XE_CACHE_WB];
u64 end = start + size - 1;
u64 scratch_pte;
xe_tile_assert(ggtt->tile, start < end);
if (ggtt->scratch)
scratch_pte = xe_bo_addr(ggtt->scratch, 0, XE_PAGE_SIZE) |
ggtt->pt_ops->pte_encode_flags(ggtt->scratch,
pat_index);
else
scratch_pte = 0;
while (start < end) {
ggtt->pt_ops->ggtt_set_pte(ggtt, start, scratch_pte);
start += XE_PAGE_SIZE;
}
}
/**
* xe_ggtt_alloc - Allocate a GGTT for a given &xe_tile
* @tile: &xe_tile
*
* Allocates a &xe_ggtt for a given tile.
*
* Return: &xe_ggtt on success, or NULL when out of memory.
*/
struct xe_ggtt *xe_ggtt_alloc(struct xe_tile *tile)
{
struct xe_ggtt *ggtt = drmm_kzalloc(&tile_to_xe(tile)->drm, sizeof(*ggtt), GFP_KERNEL);
if (ggtt)
ggtt->tile = tile;
return ggtt;
}
static void ggtt_fini_early(struct drm_device *drm, void *arg)
{
struct xe_ggtt *ggtt = arg;
destroy_workqueue(ggtt->wq);
mutex_destroy(&ggtt->lock);
drm_mm_takedown(&ggtt->mm);
}
static void ggtt_fini(void *arg)
{
struct xe_ggtt *ggtt = arg;
ggtt->scratch = NULL;
}
#ifdef CONFIG_LOCKDEP
void xe_ggtt_might_lock(struct xe_ggtt *ggtt)
{
might_lock(&ggtt->lock);
}
#endif
static void primelockdep(struct xe_ggtt *ggtt)
{
if (!IS_ENABLED(CONFIG_LOCKDEP))
return;
fs_reclaim_acquire(GFP_KERNEL);
might_lock(&ggtt->lock);
fs_reclaim_release(GFP_KERNEL);
}
static const struct xe_ggtt_pt_ops xelp_pt_ops = {
.pte_encode_flags = xelp_ggtt_pte_flags,
.ggtt_set_pte = xe_ggtt_set_pte,
};
static const struct xe_ggtt_pt_ops xelpg_pt_ops = {
.pte_encode_flags = xelpg_ggtt_pte_flags,
.ggtt_set_pte = xe_ggtt_set_pte,
};
static const struct xe_ggtt_pt_ops xelpg_pt_wa_ops = {
.pte_encode_flags = xelpg_ggtt_pte_flags,
.ggtt_set_pte = xe_ggtt_set_pte_and_flush,
};
static void __xe_ggtt_init_early(struct xe_ggtt *ggtt, u32 reserved)
{
drm_mm_init(&ggtt->mm, reserved,
ggtt->size - reserved);
mutex_init(&ggtt->lock);
primelockdep(ggtt);
}
int xe_ggtt_init_kunit(struct xe_ggtt *ggtt, u32 reserved, u32 size)
{
ggtt->size = size;
__xe_ggtt_init_early(ggtt, reserved);
return 0;
}
EXPORT_SYMBOL_IF_KUNIT(xe_ggtt_init_kunit);
static void dev_fini_ggtt(void *arg)
{
struct xe_ggtt *ggtt = arg;
drain_workqueue(ggtt->wq);
}
/**
* xe_ggtt_init_early - Early GGTT initialization
* @ggtt: the &xe_ggtt to be initialized
*
* It allows to create new mappings usable by the GuC.
* Mappings are not usable by the HW engines, as it doesn't have scratch nor
* initial clear done to it yet. That will happen in the regular, non-early
* GGTT initialization.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_ggtt_init_early(struct xe_ggtt *ggtt)
{
struct xe_device *xe = tile_to_xe(ggtt->tile);
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
unsigned int gsm_size;
int err;
if (IS_SRIOV_VF(xe) || GRAPHICS_VERx100(xe) >= 1250)
gsm_size = SZ_8M; /* GGTT is expected to be 4GiB */
else
gsm_size = probe_gsm_size(pdev);
if (gsm_size == 0) {
drm_err(&xe->drm, "Hardware reported no preallocated GSM\n");
return -ENOMEM;
}
ggtt->gsm = ggtt->tile->mmio.regs + SZ_8M;
ggtt->size = (gsm_size / 8) * (u64) XE_PAGE_SIZE;
if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K)
ggtt->flags |= XE_GGTT_FLAGS_64K;
if (ggtt->size > GUC_GGTT_TOP)
ggtt->size = GUC_GGTT_TOP;
if (GRAPHICS_VERx100(xe) >= 1270)
ggtt->pt_ops = (ggtt->tile->media_gt &&
XE_WA(ggtt->tile->media_gt, 22019338487)) ||
XE_WA(ggtt->tile->primary_gt, 22019338487) ?
&xelpg_pt_wa_ops : &xelpg_pt_ops;
else
ggtt->pt_ops = &xelp_pt_ops;
ggtt->wq = alloc_workqueue("xe-ggtt-wq", 0, WQ_MEM_RECLAIM);
if (!ggtt->wq)
return -ENOMEM;
__xe_ggtt_init_early(ggtt, xe_wopcm_size(xe));
err = drmm_add_action_or_reset(&xe->drm, ggtt_fini_early, ggtt);
if (err)
return err;
err = devm_add_action_or_reset(xe->drm.dev, dev_fini_ggtt, ggtt);
if (err)
return err;
if (IS_SRIOV_VF(xe)) {
err = xe_tile_sriov_vf_prepare_ggtt(ggtt->tile);
if (err)
return err;
}
return 0;
}
ALLOW_ERROR_INJECTION(xe_ggtt_init_early, ERRNO); /* See xe_pci_probe() */
static void xe_ggtt_invalidate(struct xe_ggtt *ggtt);
static void xe_ggtt_initial_clear(struct xe_ggtt *ggtt)
{
struct drm_mm_node *hole;
u64 start, end;
/* Display may have allocated inside ggtt, so be careful with clearing here */
mutex_lock(&ggtt->lock);
drm_mm_for_each_hole(hole, &ggtt->mm, start, end)
xe_ggtt_clear(ggtt, start, end - start);
xe_ggtt_invalidate(ggtt);
mutex_unlock(&ggtt->lock);
}
static void ggtt_node_remove(struct xe_ggtt_node *node)
{
struct xe_ggtt *ggtt = node->ggtt;
struct xe_device *xe = tile_to_xe(ggtt->tile);
bool bound;
int idx;
bound = drm_dev_enter(&xe->drm, &idx);
mutex_lock(&ggtt->lock);
if (bound)
xe_ggtt_clear(ggtt, node->base.start, node->base.size);
drm_mm_remove_node(&node->base);
node->base.size = 0;
mutex_unlock(&ggtt->lock);
if (!bound)
goto free_node;
if (node->invalidate_on_remove)
xe_ggtt_invalidate(ggtt);
drm_dev_exit(idx);
free_node:
xe_ggtt_node_fini(node);
}
static void ggtt_node_remove_work_func(struct work_struct *work)
{
struct xe_ggtt_node *node = container_of(work, typeof(*node),
delayed_removal_work);
struct xe_device *xe = tile_to_xe(node->ggtt->tile);
xe_pm_runtime_get(xe);
ggtt_node_remove(node);
xe_pm_runtime_put(xe);
}
/**
* xe_ggtt_node_remove - Remove a &xe_ggtt_node from the GGTT
* @node: the &xe_ggtt_node to be removed
* @invalidate: if node needs invalidation upon removal
*/
void xe_ggtt_node_remove(struct xe_ggtt_node *node, bool invalidate)
{
struct xe_ggtt *ggtt;
struct xe_device *xe;
if (!node || !node->ggtt)
return;
ggtt = node->ggtt;
xe = tile_to_xe(ggtt->tile);
node->invalidate_on_remove = invalidate;
if (xe_pm_runtime_get_if_active(xe)) {
ggtt_node_remove(node);
xe_pm_runtime_put(xe);
} else {
queue_work(ggtt->wq, &node->delayed_removal_work);
}
}
/**
* xe_ggtt_init - Regular non-early GGTT initialization
* @ggtt: the &xe_ggtt to be initialized
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_ggtt_init(struct xe_ggtt *ggtt)
{
struct xe_device *xe = tile_to_xe(ggtt->tile);
unsigned int flags;
int err;
/*
* So we don't need to worry about 64K GGTT layout when dealing with
* scratch entries, rather keep the scratch page in system memory on
* platforms where 64K pages are needed for VRAM.
*/
flags = 0;
if (ggtt->flags & XE_GGTT_FLAGS_64K)
flags |= XE_BO_FLAG_SYSTEM;
else
flags |= XE_BO_FLAG_VRAM_IF_DGFX(ggtt->tile);
ggtt->scratch = xe_managed_bo_create_pin_map(xe, ggtt->tile, XE_PAGE_SIZE, flags);
if (IS_ERR(ggtt->scratch)) {
err = PTR_ERR(ggtt->scratch);
goto err;
}
xe_map_memset(xe, &ggtt->scratch->vmap, 0, 0, xe_bo_size(ggtt->scratch));
xe_ggtt_initial_clear(ggtt);
return devm_add_action_or_reset(xe->drm.dev, ggtt_fini, ggtt);
err:
ggtt->scratch = NULL;
return err;
}
static void ggtt_invalidate_gt_tlb(struct xe_gt *gt)
{
int err;
if (!gt)
return;
err = xe_gt_tlb_invalidation_ggtt(gt);
if (err)
drm_warn(>_to_xe(gt)->drm, "xe_gt_tlb_invalidation_ggtt error=%d", err);
}
static void xe_ggtt_invalidate(struct xe_ggtt *ggtt)
{
struct xe_device *xe = tile_to_xe(ggtt->tile);
/*
* XXX: Barrier for GGTT pages. Unsure exactly why this required but
* without this LNL is having issues with the GuC reading scratch page
* vs. correct GGTT page. Not particularly a hot code path so blindly
* do a mmio read here which results in GuC reading correct GGTT page.
*/
xe_mmio_read32(xe_root_tile_mmio(xe), VF_CAP_REG);
/* Each GT in a tile has its own TLB to cache GGTT lookups */
ggtt_invalidate_gt_tlb(ggtt->tile->primary_gt);
ggtt_invalidate_gt_tlb(ggtt->tile->media_gt);
}
static void xe_ggtt_dump_node(struct xe_ggtt *ggtt,
const struct drm_mm_node *node, const char *description)
{
char buf[10];
if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
string_get_size(node->size, 1, STRING_UNITS_2, buf, sizeof(buf));
xe_gt_dbg(ggtt->tile->primary_gt, "GGTT %#llx-%#llx (%s) %s\n",
node->start, node->start + node->size, buf, description);
}
}
/**
* xe_ggtt_node_insert_balloon_locked - prevent allocation of specified GGTT addresses
* @node: the &xe_ggtt_node to hold reserved GGTT node
* @start: the starting GGTT address of the reserved region
* @end: then end GGTT address of the reserved region
*
* To be used in cases where ggtt->lock is already taken.
* Use xe_ggtt_node_remove_balloon_locked() to release a reserved GGTT node.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_ggtt_node_insert_balloon_locked(struct xe_ggtt_node *node, u64 start, u64 end)
{
struct xe_ggtt *ggtt = node->ggtt;
int err;
xe_tile_assert(ggtt->tile, start < end);
xe_tile_assert(ggtt->tile, IS_ALIGNED(start, XE_PAGE_SIZE));
xe_tile_assert(ggtt->tile, IS_ALIGNED(end, XE_PAGE_SIZE));
xe_tile_assert(ggtt->tile, !drm_mm_node_allocated(&node->base));
lockdep_assert_held(&ggtt->lock);
node->base.color = 0;
node->base.start = start;
node->base.size = end - start;
err = drm_mm_reserve_node(&ggtt->mm, &node->base);
if (xe_gt_WARN(ggtt->tile->primary_gt, err,
"Failed to balloon GGTT %#llx-%#llx (%pe)\n",
node->base.start, node->base.start + node->base.size, ERR_PTR(err)))
return err;
xe_ggtt_dump_node(ggtt, &node->base, "balloon");
return 0;
}
/**
* xe_ggtt_node_remove_balloon_locked - release a reserved GGTT region
* @node: the &xe_ggtt_node with reserved GGTT region
*
* To be used in cases where ggtt->lock is already taken.
* See xe_ggtt_node_insert_balloon_locked() for details.
*/
void xe_ggtt_node_remove_balloon_locked(struct xe_ggtt_node *node)
{
if (!xe_ggtt_node_allocated(node))
return;
lockdep_assert_held(&node->ggtt->lock);
xe_ggtt_dump_node(node->ggtt, &node->base, "remove-balloon");
drm_mm_remove_node(&node->base);
}
static void xe_ggtt_assert_fit(struct xe_ggtt *ggtt, u64 start, u64 size)
{
struct xe_tile *tile = ggtt->tile;
struct xe_device *xe = tile_to_xe(tile);
u64 __maybe_unused wopcm = xe_wopcm_size(xe);
xe_tile_assert(tile, start >= wopcm);
xe_tile_assert(tile, start + size < ggtt->size - wopcm);
}
/**
* xe_ggtt_shift_nodes_locked - Shift GGTT nodes to adjust for a change in usable address range.
* @ggtt: the &xe_ggtt struct instance
* @shift: change to the location of area provisioned for current VF
*
* This function moves all nodes from the GGTT VM, to a temp list. These nodes are expected
* to represent allocations in range formerly assigned to current VF, before the range changed.
* When the GGTT VM is completely clear of any nodes, they are re-added with shifted offsets.
*
* The function has no ability of failing - because it shifts existing nodes, without
* any additional processing. If the nodes were successfully existing at the old address,
* they will do the same at the new one. A fail inside this function would indicate that
* the list of nodes was either already damaged, or that the shift brings the address range
* outside of valid bounds. Both cases justify an assert rather than error code.
*/
void xe_ggtt_shift_nodes_locked(struct xe_ggtt *ggtt, s64 shift)
{
struct xe_tile *tile __maybe_unused = ggtt->tile;
struct drm_mm_node *node, *tmpn;
LIST_HEAD(temp_list_head);
lockdep_assert_held(&ggtt->lock);
if (IS_ENABLED(CONFIG_DRM_XE_DEBUG))
drm_mm_for_each_node_safe(node, tmpn, &ggtt->mm)
xe_ggtt_assert_fit(ggtt, node->start + shift, node->size);
drm_mm_for_each_node_safe(node, tmpn, &ggtt->mm) {
drm_mm_remove_node(node);
list_add(&node->node_list, &temp_list_head);
}
list_for_each_entry_safe(node, tmpn, &temp_list_head, node_list) {
list_del(&node->node_list);
node->start += shift;
drm_mm_reserve_node(&ggtt->mm, node);
xe_tile_assert(tile, drm_mm_node_allocated(node));
}
}
/**
* xe_ggtt_node_insert_locked - Locked version to insert a &xe_ggtt_node into the GGTT
* @node: the &xe_ggtt_node to be inserted
* @size: size of the node
* @align: alignment constrain of the node
* @mm_flags: flags to control the node behavior
*
* It cannot be called without first having called xe_ggtt_init() once.
* To be used in cases where ggtt->lock is already taken.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_ggtt_node_insert_locked(struct xe_ggtt_node *node,
u32 size, u32 align, u32 mm_flags)
{
return drm_mm_insert_node_generic(&node->ggtt->mm, &node->base, size, align, 0,
mm_flags);
}
/**
* xe_ggtt_node_insert - Insert a &xe_ggtt_node into the GGTT
* @node: the &xe_ggtt_node to be inserted
* @size: size of the node
* @align: alignment constrain of the node
*
* It cannot be called without first having called xe_ggtt_init() once.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_ggtt_node_insert(struct xe_ggtt_node *node, u32 size, u32 align)
{
int ret;
if (!node || !node->ggtt)
return -ENOENT;
mutex_lock(&node->ggtt->lock);
ret = xe_ggtt_node_insert_locked(node, size, align,
DRM_MM_INSERT_HIGH);
mutex_unlock(&node->ggtt->lock);
return ret;
}
/**
* xe_ggtt_node_init - Initialize %xe_ggtt_node struct
* @ggtt: the &xe_ggtt where the new node will later be inserted/reserved.
*
* This function will allocate the struct %xe_ggtt_node and return its pointer.
* This struct will then be freed after the node removal upon xe_ggtt_node_remove()
* or xe_ggtt_node_remove_balloon_locked().
* Having %xe_ggtt_node struct allocated doesn't mean that the node is already allocated
* in GGTT. Only the xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(),
* xe_ggtt_node_insert_balloon_locked() will ensure the node is inserted or reserved in GGTT.
*
* Return: A pointer to %xe_ggtt_node struct on success. An ERR_PTR otherwise.
**/
struct xe_ggtt_node *xe_ggtt_node_init(struct xe_ggtt *ggtt)
{
struct xe_ggtt_node *node = kzalloc(sizeof(*node), GFP_NOFS);
if (!node)
return ERR_PTR(-ENOMEM);
INIT_WORK(&node->delayed_removal_work, ggtt_node_remove_work_func);
node->ggtt = ggtt;
return node;
}
/**
* xe_ggtt_node_fini - Forcebly finalize %xe_ggtt_node struct
* @node: the &xe_ggtt_node to be freed
*
* If anything went wrong with either xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(),
* or xe_ggtt_node_insert_balloon_locked(); and this @node is not going to be reused, then,
* this function needs to be called to free the %xe_ggtt_node struct
**/
void xe_ggtt_node_fini(struct xe_ggtt_node *node)
{
kfree(node);
}
/**
* xe_ggtt_node_allocated - Check if node is allocated in GGTT
* @node: the &xe_ggtt_node to be inspected
*
* Return: True if allocated, False otherwise.
*/
bool xe_ggtt_node_allocated(const struct xe_ggtt_node *node)
{
if (!node || !node->ggtt)
return false;
return drm_mm_node_allocated(&node->base);
}
/**
* xe_ggtt_map_bo - Map the BO into GGTT
* @ggtt: the &xe_ggtt where node will be mapped
* @node: the &xe_ggtt_node where this BO is mapped
* @bo: the &xe_bo to be mapped
* @pat_index: Which pat_index to use.
*/
void xe_ggtt_map_bo(struct xe_ggtt *ggtt, struct xe_ggtt_node *node,
struct xe_bo *bo, u16 pat_index)
{
u64 start, pte, end;
struct xe_res_cursor cur;
if (XE_WARN_ON(!node))
return;
start = node->base.start;
end = start + xe_bo_size(bo);
pte = ggtt->pt_ops->pte_encode_flags(bo, pat_index);
if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) {
xe_assert(xe_bo_device(bo), bo->ttm.ttm);
for (xe_res_first_sg(xe_bo_sg(bo), 0, xe_bo_size(bo), &cur);
cur.remaining; xe_res_next(&cur, XE_PAGE_SIZE))
ggtt->pt_ops->ggtt_set_pte(ggtt, end - cur.remaining,
pte | xe_res_dma(&cur));
} else {
/* Prepend GPU offset */
pte |= vram_region_gpu_offset(bo->ttm.resource);
for (xe_res_first(bo->ttm.resource, 0, xe_bo_size(bo), &cur);
cur.remaining; xe_res_next(&cur, XE_PAGE_SIZE))
ggtt->pt_ops->ggtt_set_pte(ggtt, end - cur.remaining,
pte + cur.start);
}
}
/**
* xe_ggtt_map_bo_unlocked - Restore a mapping of a BO into GGTT
* @ggtt: the &xe_ggtt where node will be mapped
* @bo: the &xe_bo to be mapped
*
* This is used to restore a GGTT mapping after suspend.
*/
void xe_ggtt_map_bo_unlocked(struct xe_ggtt *ggtt, struct xe_bo *bo)
{
u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB;
u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[cache_mode];
mutex_lock(&ggtt->lock);
xe_ggtt_map_bo(ggtt, bo->ggtt_node[ggtt->tile->id], bo, pat_index);
mutex_unlock(&ggtt->lock);
}
static int __xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo,
u64 start, u64 end)
{
u64 alignment = bo->min_align > 0 ? bo->min_align : XE_PAGE_SIZE;
u8 tile_id = ggtt->tile->id;
int err;
if (xe_bo_is_vram(bo) && ggtt->flags & XE_GGTT_FLAGS_64K)
alignment = SZ_64K;
if (XE_WARN_ON(bo->ggtt_node[tile_id])) {
/* Someone's already inserted this BO in the GGTT */
xe_tile_assert(ggtt->tile, bo->ggtt_node[tile_id]->base.size == xe_bo_size(bo));
return 0;
}
err = xe_bo_validate(bo, NULL, false);
if (err)
return err;
xe_pm_runtime_get_noresume(tile_to_xe(ggtt->tile));
bo->ggtt_node[tile_id] = xe_ggtt_node_init(ggtt);
if (IS_ERR(bo->ggtt_node[tile_id])) {
err = PTR_ERR(bo->ggtt_node[tile_id]);
bo->ggtt_node[tile_id] = NULL;
goto out;
}
mutex_lock(&ggtt->lock);
err = drm_mm_insert_node_in_range(&ggtt->mm, &bo->ggtt_node[tile_id]->base,
xe_bo_size(bo), alignment, 0, start, end, 0);
if (err) {
xe_ggtt_node_fini(bo->ggtt_node[tile_id]);
bo->ggtt_node[tile_id] = NULL;
} else {
u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB;
u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[cache_mode];
xe_ggtt_map_bo(ggtt, bo->ggtt_node[tile_id], bo, pat_index);
}
mutex_unlock(&ggtt->lock);
if (!err && bo->flags & XE_BO_FLAG_GGTT_INVALIDATE)
xe_ggtt_invalidate(ggtt);
out:
xe_pm_runtime_put(tile_to_xe(ggtt->tile));
return err;
}
/**
* xe_ggtt_insert_bo_at - Insert BO at a specific GGTT space
* @ggtt: the &xe_ggtt where bo will be inserted
* @bo: the &xe_bo to be inserted
* @start: address where it will be inserted
* @end: end of the range where it will be inserted
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo,
u64 start, u64 end)
{
return __xe_ggtt_insert_bo_at(ggtt, bo, start, end);
}
/**
* xe_ggtt_insert_bo - Insert BO into GGTT
* @ggtt: the &xe_ggtt where bo will be inserted
* @bo: the &xe_bo to be inserted
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_ggtt_insert_bo(struct xe_ggtt *ggtt, struct xe_bo *bo)
{
return __xe_ggtt_insert_bo_at(ggtt, bo, 0, U64_MAX);
}
/**
* xe_ggtt_remove_bo - Remove a BO from the GGTT
* @ggtt: the &xe_ggtt where node will be removed
* @bo: the &xe_bo to be removed
*/
void xe_ggtt_remove_bo(struct xe_ggtt *ggtt, struct xe_bo *bo)
{
u8 tile_id = ggtt->tile->id;
if (XE_WARN_ON(!bo->ggtt_node[tile_id]))
return;
/* This BO is not currently in the GGTT */
xe_tile_assert(ggtt->tile, bo->ggtt_node[tile_id]->base.size == xe_bo_size(bo));
xe_ggtt_node_remove(bo->ggtt_node[tile_id],
bo->flags & XE_BO_FLAG_GGTT_INVALIDATE);
}
/**
* xe_ggtt_largest_hole - Largest GGTT hole
* @ggtt: the &xe_ggtt that will be inspected
* @alignment: minimum alignment
* @spare: If not NULL: in: desired memory size to be spared / out: Adjusted possible spare
*
* Return: size of the largest continuous GGTT region
*/
u64 xe_ggtt_largest_hole(struct xe_ggtt *ggtt, u64 alignment, u64 *spare)
{
const struct drm_mm *mm = &ggtt->mm;
const struct drm_mm_node *entry;
u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile));
u64 hole_start, hole_end, hole_size;
u64 max_hole = 0;
mutex_lock(&ggtt->lock);
drm_mm_for_each_hole(entry, mm, hole_start, hole_end) {
hole_start = max(hole_start, hole_min_start);
hole_start = ALIGN(hole_start, alignment);
hole_end = ALIGN_DOWN(hole_end, alignment);
if (hole_start >= hole_end)
continue;
hole_size = hole_end - hole_start;
if (spare)
*spare -= min3(*spare, hole_size, max_hole);
max_hole = max(max_hole, hole_size);
}
mutex_unlock(&ggtt->lock);
return max_hole;
}
#ifdef CONFIG_PCI_IOV
static u64 xe_encode_vfid_pte(u16 vfid)
{
return FIELD_PREP(GGTT_PTE_VFID, vfid) | XE_PAGE_PRESENT;
}
static void xe_ggtt_assign_locked(struct xe_ggtt *ggtt, const struct drm_mm_node *node, u16 vfid)
{
u64 start = node->start;
u64 size = node->size;
u64 end = start + size - 1;
u64 pte = xe_encode_vfid_pte(vfid);
lockdep_assert_held(&ggtt->lock);
if (!drm_mm_node_allocated(node))
return;
while (start < end) {
ggtt->pt_ops->ggtt_set_pte(ggtt, start, pte);
start += XE_PAGE_SIZE;
}
xe_ggtt_invalidate(ggtt);
}
/**
* xe_ggtt_assign - assign a GGTT region to the VF
* @node: the &xe_ggtt_node to update
* @vfid: the VF identifier
*
* This function is used by the PF driver to assign a GGTT region to the VF.
* In addition to PTE's VFID bits 11:2 also PRESENT bit 0 is set as on some
* platforms VFs can't modify that either.
*/
void xe_ggtt_assign(const struct xe_ggtt_node *node, u16 vfid)
{
mutex_lock(&node->ggtt->lock);
xe_ggtt_assign_locked(node->ggtt, &node->base, vfid);
mutex_unlock(&node->ggtt->lock);
}
#endif
/**
* xe_ggtt_dump - Dump GGTT for debug
* @ggtt: the &xe_ggtt to be dumped
* @p: the &drm_mm_printer helper handle to be used to dump the information
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_ggtt_dump(struct xe_ggtt *ggtt, struct drm_printer *p)
{
int err;
err = mutex_lock_interruptible(&ggtt->lock);
if (err)
return err;
drm_mm_print(&ggtt->mm, p);
mutex_unlock(&ggtt->lock);
return err;
}
/**
* xe_ggtt_print_holes - Print holes
* @ggtt: the &xe_ggtt to be inspected
* @alignment: min alignment
* @p: the &drm_printer
*
* Print GGTT ranges that are available and return total size available.
*
* Return: Total available size.
*/
u64 xe_ggtt_print_holes(struct xe_ggtt *ggtt, u64 alignment, struct drm_printer *p)
{
const struct drm_mm *mm = &ggtt->mm;
const struct drm_mm_node *entry;
u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile));
u64 hole_start, hole_end, hole_size;
u64 total = 0;
char buf[10];
mutex_lock(&ggtt->lock);
drm_mm_for_each_hole(entry, mm, hole_start, hole_end) {
hole_start = max(hole_start, hole_min_start);
hole_start = ALIGN(hole_start, alignment);
hole_end = ALIGN_DOWN(hole_end, alignment);
if (hole_start >= hole_end)
continue;
hole_size = hole_end - hole_start;
total += hole_size;
string_get_size(hole_size, 1, STRING_UNITS_2, buf, sizeof(buf));
drm_printf(p, "range:\t%#llx-%#llx\t(%s)\n",
hole_start, hole_end - 1, buf);
}
mutex_unlock(&ggtt->lock);
return total;
}
/**
* xe_ggtt_encode_pte_flags - Get PTE encoding flags for BO
* @ggtt: &xe_ggtt
* @bo: &xe_bo
* @pat_index: The pat_index for the PTE.
*
* This function returns the pte_flags for a given BO, without address.
* It's used for DPT to fill a GGTT mapped BO with a linear lookup table.
*/
u64 xe_ggtt_encode_pte_flags(struct xe_ggtt *ggtt,
struct xe_bo *bo, u16 pat_index)
{
return ggtt->pt_ops->pte_encode_flags(bo, pat_index);
}
/**
* xe_ggtt_read_pte - Read a PTE from the GGTT
* @ggtt: &xe_ggtt
* @offset: the offset for which the mapping should be read.
*
* Used by testcases, and by display reading out an inherited bios FB.
*/
u64 xe_ggtt_read_pte(struct xe_ggtt *ggtt, u64 offset)
{
return ioread64(ggtt->gsm + (offset / XE_PAGE_SIZE));
}
|