1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2023 Intel Corporation
*/
#include <drm/drm_managed.h>
#include "xe_force_wake.h"
#include "xe_device.h"
#include "xe_gt.h"
#include "xe_gt_idle.h"
#include "xe_gt_sysfs.h"
#include "xe_guc_pc.h"
#include "regs/xe_gt_regs.h"
#include "xe_macros.h"
#include "xe_mmio.h"
#include "xe_pm.h"
#include "xe_sriov.h"
/**
* DOC: Xe GT Idle
*
* Contains functions that init GT idle features like C6
*
* device/gt#/gtidle/name - name of the state
* device/gt#/gtidle/idle_residency_ms - Provides residency of the idle state in ms
* device/gt#/gtidle/idle_status - Provides current idle state
*/
static struct xe_gt_idle *dev_to_gtidle(struct device *dev)
{
struct kobject *kobj = &dev->kobj;
return &kobj_to_gt(kobj->parent)->gtidle;
}
static struct xe_gt *gtidle_to_gt(struct xe_gt_idle *gtidle)
{
return container_of(gtidle, struct xe_gt, gtidle);
}
static struct xe_guc_pc *gtidle_to_pc(struct xe_gt_idle *gtidle)
{
return >idle_to_gt(gtidle)->uc.guc.pc;
}
static struct xe_device *
pc_to_xe(struct xe_guc_pc *pc)
{
struct xe_guc *guc = container_of(pc, struct xe_guc, pc);
struct xe_gt *gt = container_of(guc, struct xe_gt, uc.guc);
return gt_to_xe(gt);
}
static const char *gt_idle_state_to_string(enum xe_gt_idle_state state)
{
switch (state) {
case GT_IDLE_C0:
return "gt-c0";
case GT_IDLE_C6:
return "gt-c6";
default:
return "unknown";
}
}
static u64 get_residency_ms(struct xe_gt_idle *gtidle, u64 cur_residency)
{
u64 delta, overflow_residency, prev_residency;
lockdep_assert_held(>idle->lock);
overflow_residency = BIT_ULL(32);
/*
* Counter wrap handling
* Store previous hw counter values for counter wrap-around handling
* Relying on sufficient frequency of queries otherwise counters can still wrap.
*/
prev_residency = gtidle->prev_residency;
gtidle->prev_residency = cur_residency;
/* delta */
if (cur_residency >= prev_residency)
delta = cur_residency - prev_residency;
else
delta = cur_residency + (overflow_residency - prev_residency);
/* Add delta to extended raw driver copy of idle residency */
cur_residency = gtidle->cur_residency + delta;
gtidle->cur_residency = cur_residency;
/* residency multiplier in ns, convert to ms */
cur_residency = mul_u64_u32_div(cur_residency, gtidle->residency_multiplier, 1e6);
return cur_residency;
}
void xe_gt_idle_enable_pg(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
struct xe_gt_idle *gtidle = >->gtidle;
struct xe_mmio *mmio = >->mmio;
u32 vcs_mask, vecs_mask;
unsigned int fw_ref;
int i, j;
if (IS_SRIOV_VF(xe))
return;
/* Disable CPG for PVC */
if (xe->info.platform == XE_PVC)
return;
xe_device_assert_mem_access(gt_to_xe(gt));
vcs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_VIDEO_DECODE);
vecs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_VIDEO_ENHANCE);
if (vcs_mask || vecs_mask)
gtidle->powergate_enable = MEDIA_POWERGATE_ENABLE;
if (xe_gt_is_main_type(gt))
gtidle->powergate_enable |= RENDER_POWERGATE_ENABLE;
if (MEDIA_VERx100(xe) >= 1100 && MEDIA_VERx100(xe) < 1255)
gtidle->powergate_enable |= MEDIA_SAMPLERS_POWERGATE_ENABLE;
if (xe->info.platform != XE_DG1) {
for (i = XE_HW_ENGINE_VCS0, j = 0; i <= XE_HW_ENGINE_VCS7; ++i, ++j) {
if ((gt->info.engine_mask & BIT(i)))
gtidle->powergate_enable |= (VDN_HCP_POWERGATE_ENABLE(j) |
VDN_MFXVDENC_POWERGATE_ENABLE(j));
}
}
fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (xe->info.skip_guc_pc) {
/*
* GuC sets the hysteresis value when GuC PC is enabled
* else set it to 25 (25 * 1.28us)
*/
xe_mmio_write32(mmio, MEDIA_POWERGATE_IDLE_HYSTERESIS, 25);
xe_mmio_write32(mmio, RENDER_POWERGATE_IDLE_HYSTERESIS, 25);
}
xe_mmio_write32(mmio, POWERGATE_ENABLE, gtidle->powergate_enable);
xe_force_wake_put(gt_to_fw(gt), fw_ref);
}
void xe_gt_idle_disable_pg(struct xe_gt *gt)
{
struct xe_gt_idle *gtidle = >->gtidle;
unsigned int fw_ref;
if (IS_SRIOV_VF(gt_to_xe(gt)))
return;
xe_device_assert_mem_access(gt_to_xe(gt));
gtidle->powergate_enable = 0;
fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
xe_mmio_write32(>->mmio, POWERGATE_ENABLE, gtidle->powergate_enable);
xe_force_wake_put(gt_to_fw(gt), fw_ref);
}
/**
* xe_gt_idle_pg_print - Xe powergating info
* @gt: GT object
* @p: drm_printer.
*
* This function prints the powergating information
*
* Return: 0 on success, negative error code otherwise
*/
int xe_gt_idle_pg_print(struct xe_gt *gt, struct drm_printer *p)
{
struct xe_gt_idle *gtidle = >->gtidle;
struct xe_device *xe = gt_to_xe(gt);
enum xe_gt_idle_state state;
u32 pg_enabled, pg_status = 0;
u32 vcs_mask, vecs_mask;
unsigned int fw_ref;
int n;
/*
* Media Slices
*
* Slice 0: VCS0, VCS1, VECS0
* Slice 1: VCS2, VCS3, VECS1
* Slice 2: VCS4, VCS5, VECS2
* Slice 3: VCS6, VCS7, VECS3
*/
static const struct {
u64 engines;
u32 status_bit;
} media_slices[] = {
{(BIT(XE_HW_ENGINE_VCS0) | BIT(XE_HW_ENGINE_VCS1) |
BIT(XE_HW_ENGINE_VECS0)), MEDIA_SLICE0_AWAKE_STATUS},
{(BIT(XE_HW_ENGINE_VCS2) | BIT(XE_HW_ENGINE_VCS3) |
BIT(XE_HW_ENGINE_VECS1)), MEDIA_SLICE1_AWAKE_STATUS},
{(BIT(XE_HW_ENGINE_VCS4) | BIT(XE_HW_ENGINE_VCS5) |
BIT(XE_HW_ENGINE_VECS2)), MEDIA_SLICE2_AWAKE_STATUS},
{(BIT(XE_HW_ENGINE_VCS6) | BIT(XE_HW_ENGINE_VCS7) |
BIT(XE_HW_ENGINE_VECS3)), MEDIA_SLICE3_AWAKE_STATUS},
};
if (xe->info.platform == XE_PVC) {
drm_printf(p, "Power Gating not supported\n");
return 0;
}
state = gtidle->idle_status(gtidle_to_pc(gtidle));
pg_enabled = gtidle->powergate_enable;
/* Do not wake the GT to read powergating status */
if (state != GT_IDLE_C6) {
fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (!fw_ref)
return -ETIMEDOUT;
pg_enabled = xe_mmio_read32(>->mmio, POWERGATE_ENABLE);
pg_status = xe_mmio_read32(>->mmio, POWERGATE_DOMAIN_STATUS);
xe_force_wake_put(gt_to_fw(gt), fw_ref);
}
if (gt->info.engine_mask & XE_HW_ENGINE_RCS_MASK) {
drm_printf(p, "Render Power Gating Enabled: %s\n",
str_yes_no(pg_enabled & RENDER_POWERGATE_ENABLE));
drm_printf(p, "Render Power Gate Status: %s\n",
str_up_down(pg_status & RENDER_AWAKE_STATUS));
}
vcs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_VIDEO_DECODE);
vecs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_VIDEO_ENHANCE);
/* Print media CPG status only if media is present */
if (vcs_mask || vecs_mask) {
drm_printf(p, "Media Power Gating Enabled: %s\n",
str_yes_no(pg_enabled & MEDIA_POWERGATE_ENABLE));
for (n = 0; n < ARRAY_SIZE(media_slices); n++)
if (gt->info.engine_mask & media_slices[n].engines)
drm_printf(p, "Media Slice%d Power Gate Status: %s\n", n,
str_up_down(pg_status & media_slices[n].status_bit));
}
if (MEDIA_VERx100(xe) >= 1100 && MEDIA_VERx100(xe) < 1255)
drm_printf(p, "Media Samplers Power Gating Enabled: %s\n",
str_yes_no(pg_enabled & MEDIA_SAMPLERS_POWERGATE_ENABLE));
return 0;
}
static ssize_t name_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buff)
{
struct device *dev = kobj_to_dev(kobj);
struct xe_gt_idle *gtidle = dev_to_gtidle(dev);
struct xe_guc_pc *pc = gtidle_to_pc(gtidle);
ssize_t ret;
xe_pm_runtime_get(pc_to_xe(pc));
ret = sysfs_emit(buff, "%s\n", gtidle->name);
xe_pm_runtime_put(pc_to_xe(pc));
return ret;
}
static struct kobj_attribute name_attr = __ATTR_RO(name);
static ssize_t idle_status_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buff)
{
struct device *dev = kobj_to_dev(kobj);
struct xe_gt_idle *gtidle = dev_to_gtidle(dev);
struct xe_guc_pc *pc = gtidle_to_pc(gtidle);
enum xe_gt_idle_state state;
xe_pm_runtime_get(pc_to_xe(pc));
state = gtidle->idle_status(pc);
xe_pm_runtime_put(pc_to_xe(pc));
return sysfs_emit(buff, "%s\n", gt_idle_state_to_string(state));
}
static struct kobj_attribute idle_status_attr = __ATTR_RO(idle_status);
u64 xe_gt_idle_residency_msec(struct xe_gt_idle *gtidle)
{
struct xe_guc_pc *pc = gtidle_to_pc(gtidle);
u64 residency;
unsigned long flags;
raw_spin_lock_irqsave(>idle->lock, flags);
residency = get_residency_ms(gtidle, gtidle->idle_residency(pc));
raw_spin_unlock_irqrestore(>idle->lock, flags);
return residency;
}
static ssize_t idle_residency_ms_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buff)
{
struct device *dev = kobj_to_dev(kobj);
struct xe_gt_idle *gtidle = dev_to_gtidle(dev);
struct xe_guc_pc *pc = gtidle_to_pc(gtidle);
u64 residency;
xe_pm_runtime_get(pc_to_xe(pc));
residency = xe_gt_idle_residency_msec(gtidle);
xe_pm_runtime_put(pc_to_xe(pc));
return sysfs_emit(buff, "%llu\n", residency);
}
static struct kobj_attribute idle_residency_attr = __ATTR_RO(idle_residency_ms);
static const struct attribute *gt_idle_attrs[] = {
&name_attr.attr,
&idle_status_attr.attr,
&idle_residency_attr.attr,
NULL,
};
static void gt_idle_fini(void *arg)
{
struct kobject *kobj = arg;
struct xe_gt *gt = kobj_to_gt(kobj->parent);
unsigned int fw_ref;
xe_gt_idle_disable_pg(gt);
if (gt_to_xe(gt)->info.skip_guc_pc) {
fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
xe_gt_idle_disable_c6(gt);
xe_force_wake_put(gt_to_fw(gt), fw_ref);
}
sysfs_remove_files(kobj, gt_idle_attrs);
kobject_put(kobj);
}
int xe_gt_idle_init(struct xe_gt_idle *gtidle)
{
struct xe_gt *gt = gtidle_to_gt(gtidle);
struct xe_device *xe = gt_to_xe(gt);
struct kobject *kobj;
int err;
if (IS_SRIOV_VF(xe))
return 0;
kobj = kobject_create_and_add("gtidle", gt->sysfs);
if (!kobj)
return -ENOMEM;
raw_spin_lock_init(>idle->lock);
if (xe_gt_is_media_type(gt)) {
snprintf(gtidle->name, sizeof(gtidle->name), "gt%d-mc", gt->info.id);
gtidle->idle_residency = xe_guc_pc_mc6_residency;
} else {
snprintf(gtidle->name, sizeof(gtidle->name), "gt%d-rc", gt->info.id);
gtidle->idle_residency = xe_guc_pc_rc6_residency;
}
/* Multiplier for Residency counter in units of 1.28us */
gtidle->residency_multiplier = 1280;
gtidle->idle_status = xe_guc_pc_c_status;
err = sysfs_create_files(kobj, gt_idle_attrs);
if (err) {
kobject_put(kobj);
return err;
}
xe_gt_idle_enable_pg(gt);
return devm_add_action_or_reset(xe->drm.dev, gt_idle_fini, kobj);
}
void xe_gt_idle_enable_c6(struct xe_gt *gt)
{
xe_device_assert_mem_access(gt_to_xe(gt));
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
if (IS_SRIOV_VF(gt_to_xe(gt)))
return;
/* Units of 1280 ns for a total of 5s */
xe_mmio_write32(>->mmio, RC_IDLE_HYSTERSIS, 0x3B9ACA);
/* Enable RC6 */
xe_mmio_write32(>->mmio, RC_CONTROL,
RC_CTL_HW_ENABLE | RC_CTL_TO_MODE | RC_CTL_RC6_ENABLE);
}
void xe_gt_idle_disable_c6(struct xe_gt *gt)
{
xe_device_assert_mem_access(gt_to_xe(gt));
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
if (IS_SRIOV_VF(gt_to_xe(gt)))
return;
xe_mmio_write32(>->mmio, RC_CONTROL, 0);
xe_mmio_write32(>->mmio, RC_STATE, 0);
}
|