1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "xe_gt_pagefault.h"
#include <linux/bitfield.h>
#include <linux/circ_buf.h>
#include <drm/drm_exec.h>
#include <drm/drm_managed.h>
#include "abi/guc_actions_abi.h"
#include "xe_bo.h"
#include "xe_gt.h"
#include "xe_gt_printk.h"
#include "xe_gt_stats.h"
#include "xe_gt_tlb_invalidation.h"
#include "xe_guc.h"
#include "xe_guc_ct.h"
#include "xe_migrate.h"
#include "xe_svm.h"
#include "xe_trace_bo.h"
#include "xe_vm.h"
#include "xe_vram_types.h"
struct pagefault {
u64 page_addr;
u32 asid;
u16 pdata;
u8 vfid;
u8 access_type;
u8 fault_type;
u8 fault_level;
u8 engine_class;
u8 engine_instance;
u8 fault_unsuccessful;
bool trva_fault;
};
enum access_type {
ACCESS_TYPE_READ = 0,
ACCESS_TYPE_WRITE = 1,
ACCESS_TYPE_ATOMIC = 2,
ACCESS_TYPE_RESERVED = 3,
};
enum fault_type {
NOT_PRESENT = 0,
WRITE_ACCESS_VIOLATION = 1,
ATOMIC_ACCESS_VIOLATION = 2,
};
struct acc {
u64 va_range_base;
u32 asid;
u32 sub_granularity;
u8 granularity;
u8 vfid;
u8 access_type;
u8 engine_class;
u8 engine_instance;
};
static bool access_is_atomic(enum access_type access_type)
{
return access_type == ACCESS_TYPE_ATOMIC;
}
static bool vma_is_valid(struct xe_tile *tile, struct xe_vma *vma)
{
return xe_vm_has_valid_gpu_mapping(tile, vma->tile_present,
vma->tile_invalidated);
}
static int xe_pf_begin(struct drm_exec *exec, struct xe_vma *vma,
bool atomic, struct xe_vram_region *vram)
{
struct xe_bo *bo = xe_vma_bo(vma);
struct xe_vm *vm = xe_vma_vm(vma);
int err;
err = xe_vm_lock_vma(exec, vma);
if (err)
return err;
if (atomic && vram) {
xe_assert(vm->xe, IS_DGFX(vm->xe));
if (xe_vma_is_userptr(vma)) {
err = -EACCES;
return err;
}
/* Migrate to VRAM, move should invalidate the VMA first */
err = xe_bo_migrate(bo, vram->placement);
if (err)
return err;
} else if (bo) {
/* Create backing store if needed */
err = xe_bo_validate(bo, vm, true);
if (err)
return err;
}
return 0;
}
static int handle_vma_pagefault(struct xe_gt *gt, struct xe_vma *vma,
bool atomic)
{
struct xe_vm *vm = xe_vma_vm(vma);
struct xe_tile *tile = gt_to_tile(gt);
struct drm_exec exec;
struct dma_fence *fence;
ktime_t end = 0;
int err;
lockdep_assert_held_write(&vm->lock);
xe_gt_stats_incr(gt, XE_GT_STATS_ID_VMA_PAGEFAULT_COUNT, 1);
xe_gt_stats_incr(gt, XE_GT_STATS_ID_VMA_PAGEFAULT_KB, xe_vma_size(vma) / 1024);
trace_xe_vma_pagefault(vma);
/* Check if VMA is valid, opportunistic check only */
if (vma_is_valid(tile, vma) && !atomic)
return 0;
retry_userptr:
if (xe_vma_is_userptr(vma) &&
xe_vma_userptr_check_repin(to_userptr_vma(vma))) {
struct xe_userptr_vma *uvma = to_userptr_vma(vma);
err = xe_vma_userptr_pin_pages(uvma);
if (err)
return err;
}
/* Lock VM and BOs dma-resv */
drm_exec_init(&exec, 0, 0);
drm_exec_until_all_locked(&exec) {
err = xe_pf_begin(&exec, vma, atomic, tile->mem.vram);
drm_exec_retry_on_contention(&exec);
if (xe_vm_validate_should_retry(&exec, err, &end))
err = -EAGAIN;
if (err)
goto unlock_dma_resv;
/* Bind VMA only to the GT that has faulted */
trace_xe_vma_pf_bind(vma);
fence = xe_vma_rebind(vm, vma, BIT(tile->id));
if (IS_ERR(fence)) {
err = PTR_ERR(fence);
if (xe_vm_validate_should_retry(&exec, err, &end))
err = -EAGAIN;
goto unlock_dma_resv;
}
}
dma_fence_wait(fence, false);
dma_fence_put(fence);
unlock_dma_resv:
drm_exec_fini(&exec);
if (err == -EAGAIN)
goto retry_userptr;
return err;
}
static struct xe_vm *asid_to_vm(struct xe_device *xe, u32 asid)
{
struct xe_vm *vm;
down_read(&xe->usm.lock);
vm = xa_load(&xe->usm.asid_to_vm, asid);
if (vm && xe_vm_in_fault_mode(vm))
xe_vm_get(vm);
else
vm = ERR_PTR(-EINVAL);
up_read(&xe->usm.lock);
return vm;
}
static int handle_pagefault(struct xe_gt *gt, struct pagefault *pf)
{
struct xe_device *xe = gt_to_xe(gt);
struct xe_vm *vm;
struct xe_vma *vma = NULL;
int err;
bool atomic;
/* SW isn't expected to handle TRTT faults */
if (pf->trva_fault)
return -EFAULT;
vm = asid_to_vm(xe, pf->asid);
if (IS_ERR(vm))
return PTR_ERR(vm);
/*
* TODO: Change to read lock? Using write lock for simplicity.
*/
down_write(&vm->lock);
if (xe_vm_is_closed(vm)) {
err = -ENOENT;
goto unlock_vm;
}
vma = xe_vm_find_vma_by_addr(vm, pf->page_addr);
if (!vma) {
err = -EINVAL;
goto unlock_vm;
}
atomic = access_is_atomic(pf->access_type);
if (xe_vma_is_cpu_addr_mirror(vma))
err = xe_svm_handle_pagefault(vm, vma, gt,
pf->page_addr, atomic);
else
err = handle_vma_pagefault(gt, vma, atomic);
unlock_vm:
if (!err)
vm->usm.last_fault_vma = vma;
up_write(&vm->lock);
xe_vm_put(vm);
return err;
}
static int send_pagefault_reply(struct xe_guc *guc,
struct xe_guc_pagefault_reply *reply)
{
u32 action[] = {
XE_GUC_ACTION_PAGE_FAULT_RES_DESC,
reply->dw0,
reply->dw1,
};
return xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
}
static void print_pagefault(struct xe_gt *gt, struct pagefault *pf)
{
xe_gt_dbg(gt, "\n\tASID: %d\n"
"\tVFID: %d\n"
"\tPDATA: 0x%04x\n"
"\tFaulted Address: 0x%08x%08x\n"
"\tFaultType: %d\n"
"\tAccessType: %d\n"
"\tFaultLevel: %d\n"
"\tEngineClass: %d %s\n"
"\tEngineInstance: %d\n",
pf->asid, pf->vfid, pf->pdata, upper_32_bits(pf->page_addr),
lower_32_bits(pf->page_addr),
pf->fault_type, pf->access_type, pf->fault_level,
pf->engine_class, xe_hw_engine_class_to_str(pf->engine_class),
pf->engine_instance);
}
#define PF_MSG_LEN_DW 4
static bool get_pagefault(struct pf_queue *pf_queue, struct pagefault *pf)
{
const struct xe_guc_pagefault_desc *desc;
bool ret = false;
spin_lock_irq(&pf_queue->lock);
if (pf_queue->tail != pf_queue->head) {
desc = (const struct xe_guc_pagefault_desc *)
(pf_queue->data + pf_queue->tail);
pf->fault_level = FIELD_GET(PFD_FAULT_LEVEL, desc->dw0);
pf->trva_fault = FIELD_GET(XE2_PFD_TRVA_FAULT, desc->dw0);
pf->engine_class = FIELD_GET(PFD_ENG_CLASS, desc->dw0);
pf->engine_instance = FIELD_GET(PFD_ENG_INSTANCE, desc->dw0);
pf->pdata = FIELD_GET(PFD_PDATA_HI, desc->dw1) <<
PFD_PDATA_HI_SHIFT;
pf->pdata |= FIELD_GET(PFD_PDATA_LO, desc->dw0);
pf->asid = FIELD_GET(PFD_ASID, desc->dw1);
pf->vfid = FIELD_GET(PFD_VFID, desc->dw2);
pf->access_type = FIELD_GET(PFD_ACCESS_TYPE, desc->dw2);
pf->fault_type = FIELD_GET(PFD_FAULT_TYPE, desc->dw2);
pf->page_addr = (u64)(FIELD_GET(PFD_VIRTUAL_ADDR_HI, desc->dw3)) <<
PFD_VIRTUAL_ADDR_HI_SHIFT;
pf->page_addr |= FIELD_GET(PFD_VIRTUAL_ADDR_LO, desc->dw2) <<
PFD_VIRTUAL_ADDR_LO_SHIFT;
pf_queue->tail = (pf_queue->tail + PF_MSG_LEN_DW) %
pf_queue->num_dw;
ret = true;
}
spin_unlock_irq(&pf_queue->lock);
return ret;
}
static bool pf_queue_full(struct pf_queue *pf_queue)
{
lockdep_assert_held(&pf_queue->lock);
return CIRC_SPACE(pf_queue->head, pf_queue->tail,
pf_queue->num_dw) <=
PF_MSG_LEN_DW;
}
int xe_guc_pagefault_handler(struct xe_guc *guc, u32 *msg, u32 len)
{
struct xe_gt *gt = guc_to_gt(guc);
struct pf_queue *pf_queue;
unsigned long flags;
u32 asid;
bool full;
if (unlikely(len != PF_MSG_LEN_DW))
return -EPROTO;
asid = FIELD_GET(PFD_ASID, msg[1]);
pf_queue = gt->usm.pf_queue + (asid % NUM_PF_QUEUE);
/*
* The below logic doesn't work unless PF_QUEUE_NUM_DW % PF_MSG_LEN_DW == 0
*/
xe_gt_assert(gt, !(pf_queue->num_dw % PF_MSG_LEN_DW));
spin_lock_irqsave(&pf_queue->lock, flags);
full = pf_queue_full(pf_queue);
if (!full) {
memcpy(pf_queue->data + pf_queue->head, msg, len * sizeof(u32));
pf_queue->head = (pf_queue->head + len) %
pf_queue->num_dw;
queue_work(gt->usm.pf_wq, &pf_queue->worker);
} else {
xe_gt_warn(gt, "PageFault Queue full, shouldn't be possible\n");
}
spin_unlock_irqrestore(&pf_queue->lock, flags);
return full ? -ENOSPC : 0;
}
#define USM_QUEUE_MAX_RUNTIME_MS 20
static void pf_queue_work_func(struct work_struct *w)
{
struct pf_queue *pf_queue = container_of(w, struct pf_queue, worker);
struct xe_gt *gt = pf_queue->gt;
struct xe_guc_pagefault_reply reply = {};
struct pagefault pf = {};
unsigned long threshold;
int ret;
threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS);
while (get_pagefault(pf_queue, &pf)) {
ret = handle_pagefault(gt, &pf);
if (unlikely(ret)) {
print_pagefault(gt, &pf);
pf.fault_unsuccessful = 1;
xe_gt_dbg(gt, "Fault response: Unsuccessful %pe\n", ERR_PTR(ret));
}
reply.dw0 = FIELD_PREP(PFR_VALID, 1) |
FIELD_PREP(PFR_SUCCESS, pf.fault_unsuccessful) |
FIELD_PREP(PFR_REPLY, PFR_ACCESS) |
FIELD_PREP(PFR_DESC_TYPE, FAULT_RESPONSE_DESC) |
FIELD_PREP(PFR_ASID, pf.asid);
reply.dw1 = FIELD_PREP(PFR_VFID, pf.vfid) |
FIELD_PREP(PFR_ENG_INSTANCE, pf.engine_instance) |
FIELD_PREP(PFR_ENG_CLASS, pf.engine_class) |
FIELD_PREP(PFR_PDATA, pf.pdata);
send_pagefault_reply(>->uc.guc, &reply);
if (time_after(jiffies, threshold) &&
pf_queue->tail != pf_queue->head) {
queue_work(gt->usm.pf_wq, w);
break;
}
}
}
static void acc_queue_work_func(struct work_struct *w);
static void pagefault_fini(void *arg)
{
struct xe_gt *gt = arg;
struct xe_device *xe = gt_to_xe(gt);
if (!xe->info.has_usm)
return;
destroy_workqueue(gt->usm.acc_wq);
destroy_workqueue(gt->usm.pf_wq);
}
static int xe_alloc_pf_queue(struct xe_gt *gt, struct pf_queue *pf_queue)
{
struct xe_device *xe = gt_to_xe(gt);
xe_dss_mask_t all_dss;
int num_dss, num_eus;
bitmap_or(all_dss, gt->fuse_topo.g_dss_mask, gt->fuse_topo.c_dss_mask,
XE_MAX_DSS_FUSE_BITS);
num_dss = bitmap_weight(all_dss, XE_MAX_DSS_FUSE_BITS);
num_eus = bitmap_weight(gt->fuse_topo.eu_mask_per_dss,
XE_MAX_EU_FUSE_BITS) * num_dss;
/*
* user can issue separate page faults per EU and per CS
*
* XXX: Multiplier required as compute UMD are getting PF queue errors
* without it. Follow on why this multiplier is required.
*/
#define PF_MULTIPLIER 8
pf_queue->num_dw =
(num_eus + XE_NUM_HW_ENGINES) * PF_MSG_LEN_DW * PF_MULTIPLIER;
pf_queue->num_dw = roundup_pow_of_two(pf_queue->num_dw);
#undef PF_MULTIPLIER
pf_queue->gt = gt;
pf_queue->data = devm_kcalloc(xe->drm.dev, pf_queue->num_dw,
sizeof(u32), GFP_KERNEL);
if (!pf_queue->data)
return -ENOMEM;
spin_lock_init(&pf_queue->lock);
INIT_WORK(&pf_queue->worker, pf_queue_work_func);
return 0;
}
int xe_gt_pagefault_init(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
int i, ret = 0;
if (!xe->info.has_usm)
return 0;
for (i = 0; i < NUM_PF_QUEUE; ++i) {
ret = xe_alloc_pf_queue(gt, >->usm.pf_queue[i]);
if (ret)
return ret;
}
for (i = 0; i < NUM_ACC_QUEUE; ++i) {
gt->usm.acc_queue[i].gt = gt;
spin_lock_init(>->usm.acc_queue[i].lock);
INIT_WORK(>->usm.acc_queue[i].worker, acc_queue_work_func);
}
gt->usm.pf_wq = alloc_workqueue("xe_gt_page_fault_work_queue",
WQ_UNBOUND | WQ_HIGHPRI, NUM_PF_QUEUE);
if (!gt->usm.pf_wq)
return -ENOMEM;
gt->usm.acc_wq = alloc_workqueue("xe_gt_access_counter_work_queue",
WQ_UNBOUND | WQ_HIGHPRI,
NUM_ACC_QUEUE);
if (!gt->usm.acc_wq) {
destroy_workqueue(gt->usm.pf_wq);
return -ENOMEM;
}
return devm_add_action_or_reset(xe->drm.dev, pagefault_fini, gt);
}
void xe_gt_pagefault_reset(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
int i;
if (!xe->info.has_usm)
return;
for (i = 0; i < NUM_PF_QUEUE; ++i) {
spin_lock_irq(>->usm.pf_queue[i].lock);
gt->usm.pf_queue[i].head = 0;
gt->usm.pf_queue[i].tail = 0;
spin_unlock_irq(>->usm.pf_queue[i].lock);
}
for (i = 0; i < NUM_ACC_QUEUE; ++i) {
spin_lock(>->usm.acc_queue[i].lock);
gt->usm.acc_queue[i].head = 0;
gt->usm.acc_queue[i].tail = 0;
spin_unlock(>->usm.acc_queue[i].lock);
}
}
static int granularity_in_byte(int val)
{
switch (val) {
case 0:
return SZ_128K;
case 1:
return SZ_2M;
case 2:
return SZ_16M;
case 3:
return SZ_64M;
default:
return 0;
}
}
static int sub_granularity_in_byte(int val)
{
return (granularity_in_byte(val) / 32);
}
static void print_acc(struct xe_gt *gt, struct acc *acc)
{
xe_gt_warn(gt, "Access counter request:\n"
"\tType: %s\n"
"\tASID: %d\n"
"\tVFID: %d\n"
"\tEngine: %d:%d\n"
"\tGranularity: 0x%x KB Region/ %d KB sub-granularity\n"
"\tSub_Granularity Vector: 0x%08x\n"
"\tVA Range base: 0x%016llx\n",
acc->access_type ? "AC_NTFY_VAL" : "AC_TRIG_VAL",
acc->asid, acc->vfid, acc->engine_class, acc->engine_instance,
granularity_in_byte(acc->granularity) / SZ_1K,
sub_granularity_in_byte(acc->granularity) / SZ_1K,
acc->sub_granularity, acc->va_range_base);
}
static struct xe_vma *get_acc_vma(struct xe_vm *vm, struct acc *acc)
{
u64 page_va = acc->va_range_base + (ffs(acc->sub_granularity) - 1) *
sub_granularity_in_byte(acc->granularity);
return xe_vm_find_overlapping_vma(vm, page_va, SZ_4K);
}
static int handle_acc(struct xe_gt *gt, struct acc *acc)
{
struct xe_device *xe = gt_to_xe(gt);
struct xe_tile *tile = gt_to_tile(gt);
struct drm_exec exec;
struct xe_vm *vm;
struct xe_vma *vma;
int ret = 0;
/* We only support ACC_TRIGGER at the moment */
if (acc->access_type != ACC_TRIGGER)
return -EINVAL;
vm = asid_to_vm(xe, acc->asid);
if (IS_ERR(vm))
return PTR_ERR(vm);
down_read(&vm->lock);
/* Lookup VMA */
vma = get_acc_vma(vm, acc);
if (!vma) {
ret = -EINVAL;
goto unlock_vm;
}
trace_xe_vma_acc(vma);
/* Userptr or null can't be migrated, nothing to do */
if (xe_vma_has_no_bo(vma))
goto unlock_vm;
/* Lock VM and BOs dma-resv */
drm_exec_init(&exec, 0, 0);
drm_exec_until_all_locked(&exec) {
ret = xe_pf_begin(&exec, vma, true, tile->mem.vram);
drm_exec_retry_on_contention(&exec);
if (ret)
break;
}
drm_exec_fini(&exec);
unlock_vm:
up_read(&vm->lock);
xe_vm_put(vm);
return ret;
}
#define make_u64(hi__, low__) ((u64)(hi__) << 32 | (u64)(low__))
#define ACC_MSG_LEN_DW 4
static bool get_acc(struct acc_queue *acc_queue, struct acc *acc)
{
const struct xe_guc_acc_desc *desc;
bool ret = false;
spin_lock(&acc_queue->lock);
if (acc_queue->tail != acc_queue->head) {
desc = (const struct xe_guc_acc_desc *)
(acc_queue->data + acc_queue->tail);
acc->granularity = FIELD_GET(ACC_GRANULARITY, desc->dw2);
acc->sub_granularity = FIELD_GET(ACC_SUBG_HI, desc->dw1) << 31 |
FIELD_GET(ACC_SUBG_LO, desc->dw0);
acc->engine_class = FIELD_GET(ACC_ENG_CLASS, desc->dw1);
acc->engine_instance = FIELD_GET(ACC_ENG_INSTANCE, desc->dw1);
acc->asid = FIELD_GET(ACC_ASID, desc->dw1);
acc->vfid = FIELD_GET(ACC_VFID, desc->dw2);
acc->access_type = FIELD_GET(ACC_TYPE, desc->dw0);
acc->va_range_base = make_u64(desc->dw3 & ACC_VIRTUAL_ADDR_RANGE_HI,
desc->dw2 & ACC_VIRTUAL_ADDR_RANGE_LO);
acc_queue->tail = (acc_queue->tail + ACC_MSG_LEN_DW) %
ACC_QUEUE_NUM_DW;
ret = true;
}
spin_unlock(&acc_queue->lock);
return ret;
}
static void acc_queue_work_func(struct work_struct *w)
{
struct acc_queue *acc_queue = container_of(w, struct acc_queue, worker);
struct xe_gt *gt = acc_queue->gt;
struct acc acc = {};
unsigned long threshold;
int ret;
threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS);
while (get_acc(acc_queue, &acc)) {
ret = handle_acc(gt, &acc);
if (unlikely(ret)) {
print_acc(gt, &acc);
xe_gt_warn(gt, "ACC: Unsuccessful %pe\n", ERR_PTR(ret));
}
if (time_after(jiffies, threshold) &&
acc_queue->tail != acc_queue->head) {
queue_work(gt->usm.acc_wq, w);
break;
}
}
}
static bool acc_queue_full(struct acc_queue *acc_queue)
{
lockdep_assert_held(&acc_queue->lock);
return CIRC_SPACE(acc_queue->head, acc_queue->tail, ACC_QUEUE_NUM_DW) <=
ACC_MSG_LEN_DW;
}
int xe_guc_access_counter_notify_handler(struct xe_guc *guc, u32 *msg, u32 len)
{
struct xe_gt *gt = guc_to_gt(guc);
struct acc_queue *acc_queue;
u32 asid;
bool full;
/*
* The below logic doesn't work unless ACC_QUEUE_NUM_DW % ACC_MSG_LEN_DW == 0
*/
BUILD_BUG_ON(ACC_QUEUE_NUM_DW % ACC_MSG_LEN_DW);
if (unlikely(len != ACC_MSG_LEN_DW))
return -EPROTO;
asid = FIELD_GET(ACC_ASID, msg[1]);
acc_queue = >->usm.acc_queue[asid % NUM_ACC_QUEUE];
spin_lock(&acc_queue->lock);
full = acc_queue_full(acc_queue);
if (!full) {
memcpy(acc_queue->data + acc_queue->head, msg,
len * sizeof(u32));
acc_queue->head = (acc_queue->head + len) % ACC_QUEUE_NUM_DW;
queue_work(gt->usm.acc_wq, &acc_queue->worker);
} else {
xe_gt_warn(gt, "ACC Queue full, dropping ACC\n");
}
spin_unlock(&acc_queue->lock);
return full ? -ENOSPC : 0;
}
|