1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "xe_guc_pc.h"
#include <linux/cleanup.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/ktime.h>
#include <linux/wait_bit.h>
#include <drm/drm_managed.h>
#include <drm/drm_print.h>
#include <generated/xe_wa_oob.h>
#include "abi/guc_actions_slpc_abi.h"
#include "regs/xe_gt_regs.h"
#include "regs/xe_regs.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_force_wake.h"
#include "xe_gt.h"
#include "xe_gt_idle.h"
#include "xe_gt_printk.h"
#include "xe_gt_throttle.h"
#include "xe_gt_types.h"
#include "xe_guc.h"
#include "xe_guc_ct.h"
#include "xe_map.h"
#include "xe_mmio.h"
#include "xe_pcode.h"
#include "xe_pm.h"
#include "xe_sriov.h"
#include "xe_wa.h"
#define MCHBAR_MIRROR_BASE_SNB 0x140000
#define RP_STATE_CAP XE_REG(MCHBAR_MIRROR_BASE_SNB + 0x5998)
#define RP0_MASK REG_GENMASK(7, 0)
#define RP1_MASK REG_GENMASK(15, 8)
#define RPN_MASK REG_GENMASK(23, 16)
#define FREQ_INFO_REC XE_REG(MCHBAR_MIRROR_BASE_SNB + 0x5ef0)
#define RPE_MASK REG_GENMASK(15, 8)
#define RPA_MASK REG_GENMASK(31, 16)
#define GT_PERF_STATUS XE_REG(0x1381b4)
#define CAGF_MASK REG_GENMASK(19, 11)
#define GT_FREQUENCY_MULTIPLIER 50
#define GT_FREQUENCY_SCALER 3
#define LNL_MERT_FREQ_CAP 800
#define BMG_MERT_FREQ_CAP 2133
#define BMG_MIN_FREQ 1200
#define BMG_MERT_FLUSH_FREQ_CAP 2600
#define SLPC_RESET_TIMEOUT_MS 5 /* roughly 5ms, but no need for precision */
#define SLPC_RESET_EXTENDED_TIMEOUT_MS 1000 /* To be used only at pc_start */
#define SLPC_ACT_FREQ_TIMEOUT_MS 100
/**
* DOC: GuC Power Conservation (PC)
*
* GuC Power Conservation (PC) supports multiple features for the most
* efficient and performing use of the GT when GuC submission is enabled,
* including frequency management, Render-C states management, and various
* algorithms for power balancing.
*
* Single Loop Power Conservation (SLPC) is the name given to the suite of
* connected power conservation features in the GuC firmware. The firmware
* exposes a programming interface to the host for the control of SLPC.
*
* Frequency management:
* =====================
*
* Xe driver enables SLPC with all of its defaults features and frequency
* selection, which varies per platform.
*
* Render-C States:
* ================
*
* Render-C states is also a GuC PC feature that is now enabled in Xe for
* all platforms.
*
*/
static struct xe_guc *pc_to_guc(struct xe_guc_pc *pc)
{
return container_of(pc, struct xe_guc, pc);
}
static struct xe_guc_ct *pc_to_ct(struct xe_guc_pc *pc)
{
return &pc_to_guc(pc)->ct;
}
static struct xe_gt *pc_to_gt(struct xe_guc_pc *pc)
{
return guc_to_gt(pc_to_guc(pc));
}
static struct xe_device *pc_to_xe(struct xe_guc_pc *pc)
{
return guc_to_xe(pc_to_guc(pc));
}
static struct iosys_map *pc_to_maps(struct xe_guc_pc *pc)
{
return &pc->bo->vmap;
}
#define slpc_shared_data_read(pc_, field_) \
xe_map_rd_field(pc_to_xe(pc_), pc_to_maps(pc_), 0, \
struct slpc_shared_data, field_)
#define slpc_shared_data_write(pc_, field_, val_) \
xe_map_wr_field(pc_to_xe(pc_), pc_to_maps(pc_), 0, \
struct slpc_shared_data, field_, val_)
#define SLPC_EVENT(id, count) \
(FIELD_PREP(HOST2GUC_PC_SLPC_REQUEST_MSG_1_EVENT_ID, id) | \
FIELD_PREP(HOST2GUC_PC_SLPC_REQUEST_MSG_1_EVENT_ARGC, count))
static int wait_for_pc_state(struct xe_guc_pc *pc,
enum slpc_global_state state,
int timeout_ms)
{
int timeout_us = 1000 * timeout_ms;
int slept, wait = 10;
xe_device_assert_mem_access(pc_to_xe(pc));
for (slept = 0; slept < timeout_us;) {
if (slpc_shared_data_read(pc, header.global_state) == state)
return 0;
usleep_range(wait, wait << 1);
slept += wait;
wait <<= 1;
if (slept + wait > timeout_us)
wait = timeout_us - slept;
}
return -ETIMEDOUT;
}
static int wait_for_flush_complete(struct xe_guc_pc *pc)
{
const unsigned long timeout = msecs_to_jiffies(30);
if (!wait_var_event_timeout(&pc->flush_freq_limit,
!atomic_read(&pc->flush_freq_limit),
timeout))
return -ETIMEDOUT;
return 0;
}
static int wait_for_act_freq_limit(struct xe_guc_pc *pc, u32 freq)
{
int timeout_us = SLPC_ACT_FREQ_TIMEOUT_MS * USEC_PER_MSEC;
int slept, wait = 10;
for (slept = 0; slept < timeout_us;) {
if (xe_guc_pc_get_act_freq(pc) <= freq)
return 0;
usleep_range(wait, wait << 1);
slept += wait;
wait <<= 1;
if (slept + wait > timeout_us)
wait = timeout_us - slept;
}
return -ETIMEDOUT;
}
static int pc_action_reset(struct xe_guc_pc *pc)
{
struct xe_guc_ct *ct = pc_to_ct(pc);
u32 action[] = {
GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
SLPC_EVENT(SLPC_EVENT_RESET, 2),
xe_bo_ggtt_addr(pc->bo),
0,
};
int ret;
ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
if (ret && !(xe_device_wedged(pc_to_xe(pc)) && ret == -ECANCELED))
xe_gt_err(pc_to_gt(pc), "GuC PC reset failed: %pe\n",
ERR_PTR(ret));
return ret;
}
static int pc_action_query_task_state(struct xe_guc_pc *pc)
{
struct xe_guc_ct *ct = pc_to_ct(pc);
u32 action[] = {
GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
SLPC_EVENT(SLPC_EVENT_QUERY_TASK_STATE, 2),
xe_bo_ggtt_addr(pc->bo),
0,
};
int ret;
if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING,
SLPC_RESET_TIMEOUT_MS))
return -EAGAIN;
/* Blocking here to ensure the results are ready before reading them */
ret = xe_guc_ct_send_block(ct, action, ARRAY_SIZE(action));
if (ret && !(xe_device_wedged(pc_to_xe(pc)) && ret == -ECANCELED))
xe_gt_err(pc_to_gt(pc), "GuC PC query task state failed: %pe\n",
ERR_PTR(ret));
return ret;
}
static int pc_action_set_param(struct xe_guc_pc *pc, u8 id, u32 value)
{
struct xe_guc_ct *ct = pc_to_ct(pc);
u32 action[] = {
GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
SLPC_EVENT(SLPC_EVENT_PARAMETER_SET, 2),
id,
value,
};
int ret;
if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING,
SLPC_RESET_TIMEOUT_MS))
return -EAGAIN;
ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
if (ret && !(xe_device_wedged(pc_to_xe(pc)) && ret == -ECANCELED))
xe_gt_err(pc_to_gt(pc), "GuC PC set param[%u]=%u failed: %pe\n",
id, value, ERR_PTR(ret));
return ret;
}
static int pc_action_unset_param(struct xe_guc_pc *pc, u8 id)
{
u32 action[] = {
GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
SLPC_EVENT(SLPC_EVENT_PARAMETER_UNSET, 1),
id,
};
struct xe_guc_ct *ct = &pc_to_guc(pc)->ct;
int ret;
if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING,
SLPC_RESET_TIMEOUT_MS))
return -EAGAIN;
ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
if (ret && !(xe_device_wedged(pc_to_xe(pc)) && ret == -ECANCELED))
xe_gt_err(pc_to_gt(pc), "GuC PC unset param failed: %pe",
ERR_PTR(ret));
return ret;
}
static int pc_action_setup_gucrc(struct xe_guc_pc *pc, u32 mode)
{
struct xe_guc_ct *ct = pc_to_ct(pc);
u32 action[] = {
GUC_ACTION_HOST2GUC_SETUP_PC_GUCRC,
mode,
};
int ret;
ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
if (ret && !(xe_device_wedged(pc_to_xe(pc)) && ret == -ECANCELED))
xe_gt_err(pc_to_gt(pc), "GuC RC enable mode=%u failed: %pe\n",
mode, ERR_PTR(ret));
return ret;
}
static u32 decode_freq(u32 raw)
{
return DIV_ROUND_CLOSEST(raw * GT_FREQUENCY_MULTIPLIER,
GT_FREQUENCY_SCALER);
}
static u32 encode_freq(u32 freq)
{
return DIV_ROUND_CLOSEST(freq * GT_FREQUENCY_SCALER,
GT_FREQUENCY_MULTIPLIER);
}
static u32 pc_get_min_freq(struct xe_guc_pc *pc)
{
u32 freq;
freq = FIELD_GET(SLPC_MIN_UNSLICE_FREQ_MASK,
slpc_shared_data_read(pc, task_state_data.freq));
return decode_freq(freq);
}
static void pc_set_manual_rp_ctrl(struct xe_guc_pc *pc, bool enable)
{
struct xe_gt *gt = pc_to_gt(pc);
u32 state = enable ? RPSWCTL_ENABLE : RPSWCTL_DISABLE;
/* Allow/Disallow punit to process software freq requests */
xe_mmio_write32(>->mmio, RP_CONTROL, state);
}
static void pc_set_cur_freq(struct xe_guc_pc *pc, u32 freq)
{
struct xe_gt *gt = pc_to_gt(pc);
u32 rpnswreq;
pc_set_manual_rp_ctrl(pc, true);
/* Req freq is in units of 16.66 Mhz */
rpnswreq = REG_FIELD_PREP(REQ_RATIO_MASK, encode_freq(freq));
xe_mmio_write32(>->mmio, RPNSWREQ, rpnswreq);
/* Sleep for a small time to allow pcode to respond */
usleep_range(100, 300);
pc_set_manual_rp_ctrl(pc, false);
}
static int pc_set_min_freq(struct xe_guc_pc *pc, u32 freq)
{
/*
* Let's only check for the rpn-rp0 range. If max < min,
* min becomes a fixed request.
*/
if (freq < pc->rpn_freq || freq > pc->rp0_freq)
return -EINVAL;
/*
* GuC policy is to elevate minimum frequency to the efficient levels
* Our goal is to have the admin choices respected.
*/
pc_action_set_param(pc, SLPC_PARAM_IGNORE_EFFICIENT_FREQUENCY,
freq < pc->rpe_freq);
return pc_action_set_param(pc,
SLPC_PARAM_GLOBAL_MIN_GT_UNSLICE_FREQ_MHZ,
freq);
}
static int pc_get_max_freq(struct xe_guc_pc *pc)
{
u32 freq;
freq = FIELD_GET(SLPC_MAX_UNSLICE_FREQ_MASK,
slpc_shared_data_read(pc, task_state_data.freq));
return decode_freq(freq);
}
static int pc_set_max_freq(struct xe_guc_pc *pc, u32 freq)
{
/*
* Let's only check for the rpn-rp0 range. If max < min,
* min becomes a fixed request.
* Also, overclocking is not supported.
*/
if (freq < pc->rpn_freq || freq > pc->rp0_freq)
return -EINVAL;
return pc_action_set_param(pc,
SLPC_PARAM_GLOBAL_MAX_GT_UNSLICE_FREQ_MHZ,
freq);
}
static void mtl_update_rpa_value(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
u32 reg;
if (xe_gt_is_media_type(gt))
reg = xe_mmio_read32(>->mmio, MTL_MPA_FREQUENCY);
else
reg = xe_mmio_read32(>->mmio, MTL_GT_RPA_FREQUENCY);
pc->rpa_freq = decode_freq(REG_FIELD_GET(MTL_RPA_MASK, reg));
}
static void mtl_update_rpe_value(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
u32 reg;
if (xe_gt_is_media_type(gt))
reg = xe_mmio_read32(>->mmio, MTL_MPE_FREQUENCY);
else
reg = xe_mmio_read32(>->mmio, MTL_GT_RPE_FREQUENCY);
pc->rpe_freq = decode_freq(REG_FIELD_GET(MTL_RPE_MASK, reg));
}
static void tgl_update_rpa_value(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
struct xe_device *xe = gt_to_xe(gt);
u32 reg;
/*
* For PVC we still need to use fused RP0 as the approximation for RPa
* For other platforms than PVC we get the resolved RPa directly from
* PCODE at a different register
*/
if (xe->info.platform == XE_PVC) {
reg = xe_mmio_read32(>->mmio, PVC_RP_STATE_CAP);
pc->rpa_freq = REG_FIELD_GET(RP0_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
} else {
reg = xe_mmio_read32(>->mmio, FREQ_INFO_REC);
pc->rpa_freq = REG_FIELD_GET(RPA_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
}
}
static void tgl_update_rpe_value(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
struct xe_device *xe = gt_to_xe(gt);
u32 reg;
/*
* For PVC we still need to use fused RP1 as the approximation for RPe
* For other platforms than PVC we get the resolved RPe directly from
* PCODE at a different register
*/
if (xe->info.platform == XE_PVC) {
reg = xe_mmio_read32(>->mmio, PVC_RP_STATE_CAP);
pc->rpe_freq = REG_FIELD_GET(RP1_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
} else {
reg = xe_mmio_read32(>->mmio, FREQ_INFO_REC);
pc->rpe_freq = REG_FIELD_GET(RPE_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
}
}
static void pc_update_rp_values(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
struct xe_device *xe = gt_to_xe(gt);
if (GRAPHICS_VERx100(xe) >= 1270) {
mtl_update_rpa_value(pc);
mtl_update_rpe_value(pc);
} else {
tgl_update_rpa_value(pc);
tgl_update_rpe_value(pc);
}
/*
* RPe is decided at runtime by PCODE. In the rare case where that's
* smaller than the fused min, we will trust the PCODE and use that
* as our minimum one.
*/
pc->rpn_freq = min(pc->rpn_freq, pc->rpe_freq);
}
/**
* xe_guc_pc_get_act_freq - Get Actual running frequency
* @pc: The GuC PC
*
* Returns: The Actual running frequency. Which might be 0 if GT is in Render-C sleep state (RC6).
*/
u32 xe_guc_pc_get_act_freq(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
struct xe_device *xe = gt_to_xe(gt);
u32 freq;
/* When in RC6, actual frequency reported will be 0. */
if (GRAPHICS_VERx100(xe) >= 1270) {
freq = xe_mmio_read32(>->mmio, MTL_MIRROR_TARGET_WP1);
freq = REG_FIELD_GET(MTL_CAGF_MASK, freq);
} else {
freq = xe_mmio_read32(>->mmio, GT_PERF_STATUS);
freq = REG_FIELD_GET(CAGF_MASK, freq);
}
freq = decode_freq(freq);
return freq;
}
static u32 get_cur_freq(struct xe_gt *gt)
{
u32 freq;
freq = xe_mmio_read32(>->mmio, RPNSWREQ);
freq = REG_FIELD_GET(REQ_RATIO_MASK, freq);
return decode_freq(freq);
}
/**
* xe_guc_pc_get_cur_freq_fw - With fw held, get requested frequency
* @pc: The GuC PC
*
* Returns: the requested frequency for that GT instance
*/
u32 xe_guc_pc_get_cur_freq_fw(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
return get_cur_freq(gt);
}
/**
* xe_guc_pc_get_cur_freq - Get Current requested frequency
* @pc: The GuC PC
* @freq: A pointer to a u32 where the freq value will be returned
*
* Returns: 0 on success,
* -EAGAIN if GuC PC not ready (likely in middle of a reset).
*/
int xe_guc_pc_get_cur_freq(struct xe_guc_pc *pc, u32 *freq)
{
struct xe_gt *gt = pc_to_gt(pc);
unsigned int fw_ref;
/*
* GuC SLPC plays with cur freq request when GuCRC is enabled
* Block RC6 for a more reliable read.
*/
fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (!xe_force_wake_ref_has_domain(fw_ref, XE_FW_GT)) {
xe_force_wake_put(gt_to_fw(gt), fw_ref);
return -ETIMEDOUT;
}
*freq = get_cur_freq(gt);
xe_force_wake_put(gt_to_fw(gt), fw_ref);
return 0;
}
/**
* xe_guc_pc_get_rp0_freq - Get the RP0 freq
* @pc: The GuC PC
*
* Returns: RP0 freq.
*/
u32 xe_guc_pc_get_rp0_freq(struct xe_guc_pc *pc)
{
return pc->rp0_freq;
}
/**
* xe_guc_pc_get_rpa_freq - Get the RPa freq
* @pc: The GuC PC
*
* Returns: RPa freq.
*/
u32 xe_guc_pc_get_rpa_freq(struct xe_guc_pc *pc)
{
pc_update_rp_values(pc);
return pc->rpa_freq;
}
/**
* xe_guc_pc_get_rpe_freq - Get the RPe freq
* @pc: The GuC PC
*
* Returns: RPe freq.
*/
u32 xe_guc_pc_get_rpe_freq(struct xe_guc_pc *pc)
{
pc_update_rp_values(pc);
return pc->rpe_freq;
}
/**
* xe_guc_pc_get_rpn_freq - Get the RPn freq
* @pc: The GuC PC
*
* Returns: RPn freq.
*/
u32 xe_guc_pc_get_rpn_freq(struct xe_guc_pc *pc)
{
return pc->rpn_freq;
}
static int xe_guc_pc_get_min_freq_locked(struct xe_guc_pc *pc, u32 *freq)
{
int ret;
lockdep_assert_held(&pc->freq_lock);
/* Might be in the middle of a gt reset */
if (!pc->freq_ready)
return -EAGAIN;
ret = pc_action_query_task_state(pc);
if (ret)
return ret;
*freq = pc_get_min_freq(pc);
return 0;
}
/**
* xe_guc_pc_get_min_freq - Get the min operational frequency
* @pc: The GuC PC
* @freq: A pointer to a u32 where the freq value will be returned
*
* Returns: 0 on success,
* -EAGAIN if GuC PC not ready (likely in middle of a reset).
*/
int xe_guc_pc_get_min_freq(struct xe_guc_pc *pc, u32 *freq)
{
guard(mutex)(&pc->freq_lock);
return xe_guc_pc_get_min_freq_locked(pc, freq);
}
static int xe_guc_pc_set_min_freq_locked(struct xe_guc_pc *pc, u32 freq)
{
int ret;
lockdep_assert_held(&pc->freq_lock);
/* Might be in the middle of a gt reset */
if (!pc->freq_ready)
return -EAGAIN;
ret = pc_set_min_freq(pc, freq);
if (ret)
return ret;
pc->user_requested_min = freq;
return 0;
}
/**
* xe_guc_pc_set_min_freq - Set the minimal operational frequency
* @pc: The GuC PC
* @freq: The selected minimal frequency
*
* Returns: 0 on success,
* -EAGAIN if GuC PC not ready (likely in middle of a reset),
* -EINVAL if value out of bounds.
*/
int xe_guc_pc_set_min_freq(struct xe_guc_pc *pc, u32 freq)
{
guard(mutex)(&pc->freq_lock);
return xe_guc_pc_set_min_freq_locked(pc, freq);
}
static int xe_guc_pc_get_max_freq_locked(struct xe_guc_pc *pc, u32 *freq)
{
int ret;
lockdep_assert_held(&pc->freq_lock);
/* Might be in the middle of a gt reset */
if (!pc->freq_ready)
return -EAGAIN;
ret = pc_action_query_task_state(pc);
if (ret)
return ret;
*freq = pc_get_max_freq(pc);
return 0;
}
/**
* xe_guc_pc_get_max_freq - Get Maximum operational frequency
* @pc: The GuC PC
* @freq: A pointer to a u32 where the freq value will be returned
*
* Returns: 0 on success,
* -EAGAIN if GuC PC not ready (likely in middle of a reset).
*/
int xe_guc_pc_get_max_freq(struct xe_guc_pc *pc, u32 *freq)
{
guard(mutex)(&pc->freq_lock);
return xe_guc_pc_get_max_freq_locked(pc, freq);
}
static int xe_guc_pc_set_max_freq_locked(struct xe_guc_pc *pc, u32 freq)
{
int ret;
lockdep_assert_held(&pc->freq_lock);
/* Might be in the middle of a gt reset */
if (!pc->freq_ready)
return -EAGAIN;
ret = pc_set_max_freq(pc, freq);
if (ret)
return ret;
pc->user_requested_max = freq;
return 0;
}
/**
* xe_guc_pc_set_max_freq - Set the maximum operational frequency
* @pc: The GuC PC
* @freq: The selected maximum frequency value
*
* Returns: 0 on success,
* -EAGAIN if GuC PC not ready (likely in middle of a reset),
* -EINVAL if value out of bounds.
*/
int xe_guc_pc_set_max_freq(struct xe_guc_pc *pc, u32 freq)
{
if (XE_WA(pc_to_gt(pc), 22019338487)) {
if (wait_for_flush_complete(pc) != 0)
return -EAGAIN;
}
guard(mutex)(&pc->freq_lock);
return xe_guc_pc_set_max_freq_locked(pc, freq);
}
/**
* xe_guc_pc_c_status - get the current GT C state
* @pc: XE_GuC_PC instance
*/
enum xe_gt_idle_state xe_guc_pc_c_status(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
u32 reg, gt_c_state;
if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
reg = xe_mmio_read32(>->mmio, MTL_MIRROR_TARGET_WP1);
gt_c_state = REG_FIELD_GET(MTL_CC_MASK, reg);
} else {
reg = xe_mmio_read32(>->mmio, GT_CORE_STATUS);
gt_c_state = REG_FIELD_GET(RCN_MASK, reg);
}
switch (gt_c_state) {
case GT_C6:
return GT_IDLE_C6;
case GT_C0:
return GT_IDLE_C0;
default:
return GT_IDLE_UNKNOWN;
}
}
/**
* xe_guc_pc_rc6_residency - rc6 residency counter
* @pc: Xe_GuC_PC instance
*/
u64 xe_guc_pc_rc6_residency(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
u32 reg;
reg = xe_mmio_read32(>->mmio, GT_GFX_RC6);
return reg;
}
/**
* xe_guc_pc_mc6_residency - mc6 residency counter
* @pc: Xe_GuC_PC instance
*/
u64 xe_guc_pc_mc6_residency(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
u64 reg;
reg = xe_mmio_read32(>->mmio, MTL_MEDIA_MC6);
return reg;
}
static void mtl_init_fused_rp_values(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
u32 reg;
xe_device_assert_mem_access(pc_to_xe(pc));
if (xe_gt_is_media_type(gt))
reg = xe_mmio_read32(>->mmio, MTL_MEDIAP_STATE_CAP);
else
reg = xe_mmio_read32(>->mmio, MTL_RP_STATE_CAP);
pc->rp0_freq = decode_freq(REG_FIELD_GET(MTL_RP0_CAP_MASK, reg));
pc->rpn_freq = decode_freq(REG_FIELD_GET(MTL_RPN_CAP_MASK, reg));
}
static void tgl_init_fused_rp_values(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
struct xe_device *xe = gt_to_xe(gt);
u32 reg;
xe_device_assert_mem_access(pc_to_xe(pc));
if (xe->info.platform == XE_PVC)
reg = xe_mmio_read32(>->mmio, PVC_RP_STATE_CAP);
else
reg = xe_mmio_read32(>->mmio, RP_STATE_CAP);
pc->rp0_freq = REG_FIELD_GET(RP0_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
pc->rpn_freq = REG_FIELD_GET(RPN_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
}
static void pc_init_fused_rp_values(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
struct xe_device *xe = gt_to_xe(gt);
if (GRAPHICS_VERx100(xe) >= 1270)
mtl_init_fused_rp_values(pc);
else
tgl_init_fused_rp_values(pc);
}
static u32 pc_max_freq_cap(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
if (XE_WA(gt, 22019338487)) {
if (xe_gt_is_media_type(gt))
return min(LNL_MERT_FREQ_CAP, pc->rp0_freq);
else
return min(BMG_MERT_FREQ_CAP, pc->rp0_freq);
} else {
return pc->rp0_freq;
}
}
/**
* xe_guc_pc_raise_unslice - Initialize RPx values and request a higher GT
* frequency to allow faster GuC load times
* @pc: Xe_GuC_PC instance
*/
void xe_guc_pc_raise_unslice(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
pc_set_cur_freq(pc, pc_max_freq_cap(pc));
}
/**
* xe_guc_pc_init_early - Initialize RPx values
* @pc: Xe_GuC_PC instance
*/
void xe_guc_pc_init_early(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
pc_init_fused_rp_values(pc);
}
static int pc_adjust_freq_bounds(struct xe_guc_pc *pc)
{
struct xe_tile *tile = gt_to_tile(pc_to_gt(pc));
int ret;
lockdep_assert_held(&pc->freq_lock);
ret = pc_action_query_task_state(pc);
if (ret)
goto out;
/*
* GuC defaults to some RPmax that is not actually achievable without
* overclocking. Let's adjust it to the Hardware RP0, which is the
* regular maximum
*/
if (pc_get_max_freq(pc) > pc->rp0_freq) {
ret = pc_set_max_freq(pc, pc->rp0_freq);
if (ret)
goto out;
}
/*
* Same thing happens for Server platforms where min is listed as
* RPMax
*/
if (pc_get_min_freq(pc) > pc->rp0_freq)
ret = pc_set_min_freq(pc, pc->rp0_freq);
if (XE_WA(tile->primary_gt, 14022085890))
ret = pc_set_min_freq(pc, max(BMG_MIN_FREQ, pc_get_min_freq(pc)));
out:
return ret;
}
static int pc_adjust_requested_freq(struct xe_guc_pc *pc)
{
int ret = 0;
lockdep_assert_held(&pc->freq_lock);
if (pc->user_requested_min != 0) {
ret = pc_set_min_freq(pc, pc->user_requested_min);
if (ret)
return ret;
}
if (pc->user_requested_max != 0) {
ret = pc_set_max_freq(pc, pc->user_requested_max);
if (ret)
return ret;
}
return ret;
}
static bool needs_flush_freq_limit(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
return XE_WA(gt, 22019338487) &&
pc->rp0_freq > BMG_MERT_FLUSH_FREQ_CAP;
}
/**
* xe_guc_pc_apply_flush_freq_limit() - Limit max GT freq during L2 flush
* @pc: the xe_guc_pc object
*
* As per the WA, reduce max GT frequency during L2 cache flush
*/
void xe_guc_pc_apply_flush_freq_limit(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
u32 max_freq;
int ret;
if (!needs_flush_freq_limit(pc))
return;
guard(mutex)(&pc->freq_lock);
ret = xe_guc_pc_get_max_freq_locked(pc, &max_freq);
if (!ret && max_freq > BMG_MERT_FLUSH_FREQ_CAP) {
ret = pc_set_max_freq(pc, BMG_MERT_FLUSH_FREQ_CAP);
if (ret) {
xe_gt_err_once(gt, "Failed to cap max freq on flush to %u, %pe\n",
BMG_MERT_FLUSH_FREQ_CAP, ERR_PTR(ret));
return;
}
atomic_set(&pc->flush_freq_limit, 1);
/*
* If user has previously changed max freq, stash that value to
* restore later, otherwise use the current max. New user
* requests wait on flush.
*/
if (pc->user_requested_max != 0)
pc->stashed_max_freq = pc->user_requested_max;
else
pc->stashed_max_freq = max_freq;
}
/*
* Wait for actual freq to go below the flush cap: even if the previous
* max was below cap, the current one might still be above it
*/
ret = wait_for_act_freq_limit(pc, BMG_MERT_FLUSH_FREQ_CAP);
if (ret)
xe_gt_err_once(gt, "Actual freq did not reduce to %u, %pe\n",
BMG_MERT_FLUSH_FREQ_CAP, ERR_PTR(ret));
}
/**
* xe_guc_pc_remove_flush_freq_limit() - Remove max GT freq limit after L2 flush completes.
* @pc: the xe_guc_pc object
*
* Retrieve the previous GT max frequency value.
*/
void xe_guc_pc_remove_flush_freq_limit(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
int ret = 0;
if (!needs_flush_freq_limit(pc))
return;
if (!atomic_read(&pc->flush_freq_limit))
return;
mutex_lock(&pc->freq_lock);
ret = pc_set_max_freq(>->uc.guc.pc, pc->stashed_max_freq);
if (ret)
xe_gt_err_once(gt, "Failed to restore max freq %u:%d",
pc->stashed_max_freq, ret);
atomic_set(&pc->flush_freq_limit, 0);
mutex_unlock(&pc->freq_lock);
wake_up_var(&pc->flush_freq_limit);
}
static int pc_set_mert_freq_cap(struct xe_guc_pc *pc)
{
int ret;
if (!XE_WA(pc_to_gt(pc), 22019338487))
return 0;
guard(mutex)(&pc->freq_lock);
/*
* Get updated min/max and stash them.
*/
ret = xe_guc_pc_get_min_freq_locked(pc, &pc->stashed_min_freq);
if (!ret)
ret = xe_guc_pc_get_max_freq_locked(pc, &pc->stashed_max_freq);
if (ret)
return ret;
/*
* Ensure min and max are bound by MERT_FREQ_CAP until driver loads.
*/
ret = pc_set_min_freq(pc, min(pc->rpe_freq, pc_max_freq_cap(pc)));
if (!ret)
ret = pc_set_max_freq(pc, min(pc->rp0_freq, pc_max_freq_cap(pc)));
return ret;
}
/**
* xe_guc_pc_restore_stashed_freq - Set min/max back to stashed values
* @pc: The GuC PC
*
* Returns: 0 on success,
* error code on failure
*/
int xe_guc_pc_restore_stashed_freq(struct xe_guc_pc *pc)
{
int ret = 0;
if (IS_SRIOV_VF(pc_to_xe(pc)) || pc_to_xe(pc)->info.skip_guc_pc)
return 0;
mutex_lock(&pc->freq_lock);
ret = pc_set_max_freq(pc, pc->stashed_max_freq);
if (!ret)
ret = pc_set_min_freq(pc, pc->stashed_min_freq);
mutex_unlock(&pc->freq_lock);
return ret;
}
/**
* xe_guc_pc_gucrc_disable - Disable GuC RC
* @pc: Xe_GuC_PC instance
*
* Disables GuC RC by taking control of RC6 back from GuC.
*
* Return: 0 on success, negative error code on error.
*/
int xe_guc_pc_gucrc_disable(struct xe_guc_pc *pc)
{
struct xe_device *xe = pc_to_xe(pc);
struct xe_gt *gt = pc_to_gt(pc);
unsigned int fw_ref;
int ret = 0;
if (xe->info.skip_guc_pc)
return 0;
ret = pc_action_setup_gucrc(pc, GUCRC_HOST_CONTROL);
if (ret)
return ret;
fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL)) {
xe_force_wake_put(gt_to_fw(gt), fw_ref);
return -ETIMEDOUT;
}
xe_gt_idle_disable_c6(gt);
xe_force_wake_put(gt_to_fw(gt), fw_ref);
return 0;
}
/**
* xe_guc_pc_override_gucrc_mode - override GUCRC mode
* @pc: Xe_GuC_PC instance
* @mode: new value of the mode.
*
* Return: 0 on success, negative error code on error
*/
int xe_guc_pc_override_gucrc_mode(struct xe_guc_pc *pc, enum slpc_gucrc_mode mode)
{
int ret;
xe_pm_runtime_get(pc_to_xe(pc));
ret = pc_action_set_param(pc, SLPC_PARAM_PWRGATE_RC_MODE, mode);
xe_pm_runtime_put(pc_to_xe(pc));
return ret;
}
/**
* xe_guc_pc_unset_gucrc_mode - unset GUCRC mode override
* @pc: Xe_GuC_PC instance
*
* Return: 0 on success, negative error code on error
*/
int xe_guc_pc_unset_gucrc_mode(struct xe_guc_pc *pc)
{
int ret;
xe_pm_runtime_get(pc_to_xe(pc));
ret = pc_action_unset_param(pc, SLPC_PARAM_PWRGATE_RC_MODE);
xe_pm_runtime_put(pc_to_xe(pc));
return ret;
}
static void pc_init_pcode_freq(struct xe_guc_pc *pc)
{
u32 min = DIV_ROUND_CLOSEST(pc->rpn_freq, GT_FREQUENCY_MULTIPLIER);
u32 max = DIV_ROUND_CLOSEST(pc->rp0_freq, GT_FREQUENCY_MULTIPLIER);
XE_WARN_ON(xe_pcode_init_min_freq_table(gt_to_tile(pc_to_gt(pc)), min, max));
}
static int pc_init_freqs(struct xe_guc_pc *pc)
{
int ret;
mutex_lock(&pc->freq_lock);
ret = pc_adjust_freq_bounds(pc);
if (ret)
goto out;
ret = pc_adjust_requested_freq(pc);
if (ret)
goto out;
pc_update_rp_values(pc);
pc_init_pcode_freq(pc);
/*
* The frequencies are really ready for use only after the user
* requested ones got restored.
*/
pc->freq_ready = true;
out:
mutex_unlock(&pc->freq_lock);
return ret;
}
static int pc_action_set_strategy(struct xe_guc_pc *pc, u32 val)
{
int ret = 0;
ret = pc_action_set_param(pc,
SLPC_PARAM_STRATEGIES,
val);
return ret;
}
/**
* xe_guc_pc_start - Start GuC's Power Conservation component
* @pc: Xe_GuC_PC instance
*/
int xe_guc_pc_start(struct xe_guc_pc *pc)
{
struct xe_device *xe = pc_to_xe(pc);
struct xe_gt *gt = pc_to_gt(pc);
u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data));
unsigned int fw_ref;
ktime_t earlier;
int ret;
xe_gt_assert(gt, xe_device_uc_enabled(xe));
fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (!xe_force_wake_ref_has_domain(fw_ref, XE_FW_GT)) {
xe_force_wake_put(gt_to_fw(gt), fw_ref);
return -ETIMEDOUT;
}
if (xe->info.skip_guc_pc) {
if (xe->info.platform != XE_PVC)
xe_gt_idle_enable_c6(gt);
/* Request max possible since dynamic freq mgmt is not enabled */
pc_set_cur_freq(pc, UINT_MAX);
ret = 0;
goto out;
}
xe_map_memset(xe, &pc->bo->vmap, 0, 0, size);
slpc_shared_data_write(pc, header.size, size);
earlier = ktime_get();
ret = pc_action_reset(pc);
if (ret)
goto out;
if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING,
SLPC_RESET_TIMEOUT_MS)) {
xe_gt_warn(gt, "GuC PC start taking longer than normal [freq = %dMHz (req = %dMHz), perf_limit_reasons = 0x%08X]\n",
xe_guc_pc_get_act_freq(pc), get_cur_freq(gt),
xe_gt_throttle_get_limit_reasons(gt));
if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING,
SLPC_RESET_EXTENDED_TIMEOUT_MS)) {
xe_gt_err(gt, "GuC PC Start failed: Dynamic GT frequency control and GT sleep states are now disabled.\n");
ret = -EIO;
goto out;
}
xe_gt_warn(gt, "GuC PC excessive start time: %lldms",
ktime_ms_delta(ktime_get(), earlier));
}
ret = pc_init_freqs(pc);
if (ret)
goto out;
ret = pc_set_mert_freq_cap(pc);
if (ret)
goto out;
if (xe->info.platform == XE_PVC) {
xe_guc_pc_gucrc_disable(pc);
ret = 0;
goto out;
}
ret = pc_action_setup_gucrc(pc, GUCRC_FIRMWARE_CONTROL);
if (ret)
goto out;
/* Enable SLPC Optimized Strategy for compute */
ret = pc_action_set_strategy(pc, SLPC_OPTIMIZED_STRATEGY_COMPUTE);
out:
xe_force_wake_put(gt_to_fw(gt), fw_ref);
return ret;
}
/**
* xe_guc_pc_stop - Stop GuC's Power Conservation component
* @pc: Xe_GuC_PC instance
*/
int xe_guc_pc_stop(struct xe_guc_pc *pc)
{
struct xe_device *xe = pc_to_xe(pc);
if (xe->info.skip_guc_pc) {
xe_gt_idle_disable_c6(pc_to_gt(pc));
return 0;
}
mutex_lock(&pc->freq_lock);
pc->freq_ready = false;
mutex_unlock(&pc->freq_lock);
return 0;
}
/**
* xe_guc_pc_fini_hw - Finalize GuC's Power Conservation component
* @arg: opaque pointer that should point to Xe_GuC_PC instance
*/
static void xe_guc_pc_fini_hw(void *arg)
{
struct xe_guc_pc *pc = arg;
struct xe_device *xe = pc_to_xe(pc);
unsigned int fw_ref;
if (xe_device_wedged(xe))
return;
fw_ref = xe_force_wake_get(gt_to_fw(pc_to_gt(pc)), XE_FORCEWAKE_ALL);
xe_guc_pc_gucrc_disable(pc);
XE_WARN_ON(xe_guc_pc_stop(pc));
/* Bind requested freq to mert_freq_cap before unload */
pc_set_cur_freq(pc, min(pc_max_freq_cap(pc), pc->rpe_freq));
xe_force_wake_put(gt_to_fw(pc_to_gt(pc)), fw_ref);
}
/**
* xe_guc_pc_init - Initialize GuC's Power Conservation component
* @pc: Xe_GuC_PC instance
*/
int xe_guc_pc_init(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
struct xe_tile *tile = gt_to_tile(gt);
struct xe_device *xe = gt_to_xe(gt);
struct xe_bo *bo;
u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data));
int err;
if (xe->info.skip_guc_pc)
return 0;
err = drmm_mutex_init(&xe->drm, &pc->freq_lock);
if (err)
return err;
bo = xe_managed_bo_create_pin_map(xe, tile, size,
XE_BO_FLAG_VRAM_IF_DGFX(tile) |
XE_BO_FLAG_GGTT |
XE_BO_FLAG_GGTT_INVALIDATE |
XE_BO_FLAG_PINNED_NORESTORE);
if (IS_ERR(bo))
return PTR_ERR(bo);
pc->bo = bo;
return devm_add_action_or_reset(xe->drm.dev, xe_guc_pc_fini_hw, pc);
}
static const char *pc_get_state_string(struct xe_guc_pc *pc)
{
switch (slpc_shared_data_read(pc, header.global_state)) {
case SLPC_GLOBAL_STATE_NOT_RUNNING:
return "not running";
case SLPC_GLOBAL_STATE_INITIALIZING:
return "initializing";
case SLPC_GLOBAL_STATE_RESETTING:
return "resetting";
case SLPC_GLOBAL_STATE_RUNNING:
return "running";
case SLPC_GLOBAL_STATE_SHUTTING_DOWN:
return "shutting down";
case SLPC_GLOBAL_STATE_ERROR:
return "error";
default:
return "unknown";
}
}
/**
* xe_guc_pc_print - Print GuC's Power Conservation information for debug
* @pc: Xe_GuC_PC instance
* @p: drm_printer
*/
void xe_guc_pc_print(struct xe_guc_pc *pc, struct drm_printer *p)
{
drm_printf(p, "SLPC Shared Data Header:\n");
drm_printf(p, "\tSize: %x\n", slpc_shared_data_read(pc, header.size));
drm_printf(p, "\tGlobal State: %s\n", pc_get_state_string(pc));
if (pc_action_query_task_state(pc))
return;
drm_printf(p, "\nSLPC Tasks Status:\n");
drm_printf(p, "\tGTPERF enabled: %s\n",
str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
SLPC_GTPERF_TASK_ENABLED));
drm_printf(p, "\tDCC enabled: %s\n",
str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
SLPC_DCC_TASK_ENABLED));
drm_printf(p, "\tDCC in use: %s\n",
str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
SLPC_IN_DCC));
drm_printf(p, "\tBalancer enabled: %s\n",
str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
SLPC_BALANCER_ENABLED));
drm_printf(p, "\tIBC enabled: %s\n",
str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
SLPC_IBC_TASK_ENABLED));
drm_printf(p, "\tBalancer IA LMT enabled: %s\n",
str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
SLPC_BALANCER_IA_LMT_ENABLED));
drm_printf(p, "\tBalancer IA LMT active: %s\n",
str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
SLPC_BALANCER_IA_LMT_ACTIVE));
}
|