1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2024 Intel Corporation
*/
#include <linux/scatterlist.h>
#include <linux/mmu_notifier.h>
#include <linux/dma-mapping.h>
#include <linux/memremap.h>
#include <linux/swap.h>
#include <linux/hmm.h>
#include <linux/mm.h>
#include "xe_hmm.h"
#include "xe_vm.h"
#include "xe_bo.h"
static u64 xe_npages_in_range(unsigned long start, unsigned long end)
{
return (end - start) >> PAGE_SHIFT;
}
static int xe_alloc_sg(struct xe_device *xe, struct sg_table *st,
struct hmm_range *range, struct rw_semaphore *notifier_sem)
{
unsigned long i, npages, hmm_pfn;
unsigned long num_chunks = 0;
int ret;
/* HMM docs says this is needed. */
ret = down_read_interruptible(notifier_sem);
if (ret)
return ret;
if (mmu_interval_read_retry(range->notifier, range->notifier_seq)) {
up_read(notifier_sem);
return -EAGAIN;
}
npages = xe_npages_in_range(range->start, range->end);
for (i = 0; i < npages;) {
unsigned long len;
hmm_pfn = range->hmm_pfns[i];
xe_assert(xe, hmm_pfn & HMM_PFN_VALID);
len = 1UL << hmm_pfn_to_map_order(hmm_pfn);
/* If order > 0 the page may extend beyond range->start */
len -= (hmm_pfn & ~HMM_PFN_FLAGS) & (len - 1);
i += len;
num_chunks++;
}
up_read(notifier_sem);
return sg_alloc_table(st, num_chunks, GFP_KERNEL);
}
/**
* xe_build_sg() - build a scatter gather table for all the physical pages/pfn
* in a hmm_range. dma-map pages if necessary. dma-address is save in sg table
* and will be used to program GPU page table later.
* @xe: the xe device who will access the dma-address in sg table
* @range: the hmm range that we build the sg table from. range->hmm_pfns[]
* has the pfn numbers of pages that back up this hmm address range.
* @st: pointer to the sg table.
* @notifier_sem: The xe notifier lock.
* @write: whether we write to this range. This decides dma map direction
* for system pages. If write we map it bi-diretional; otherwise
* DMA_TO_DEVICE
*
* All the contiguous pfns will be collapsed into one entry in
* the scatter gather table. This is for the purpose of efficiently
* programming GPU page table.
*
* The dma_address in the sg table will later be used by GPU to
* access memory. So if the memory is system memory, we need to
* do a dma-mapping so it can be accessed by GPU/DMA.
*
* FIXME: This function currently only support pages in system
* memory. If the memory is GPU local memory (of the GPU who
* is going to access memory), we need gpu dpa (device physical
* address), and there is no need of dma-mapping. This is TBD.
*
* FIXME: dma-mapping for peer gpu device to access remote gpu's
* memory. Add this when you support p2p
*
* This function allocates the storage of the sg table. It is
* caller's responsibility to free it calling sg_free_table.
*
* Returns 0 if successful; -ENOMEM if fails to allocate memory
*/
static int xe_build_sg(struct xe_device *xe, struct hmm_range *range,
struct sg_table *st,
struct rw_semaphore *notifier_sem,
bool write)
{
unsigned long npages = xe_npages_in_range(range->start, range->end);
struct device *dev = xe->drm.dev;
struct scatterlist *sgl;
struct page *page;
unsigned long i, j;
lockdep_assert_held(notifier_sem);
i = 0;
for_each_sg(st->sgl, sgl, st->nents, j) {
unsigned long hmm_pfn, size;
hmm_pfn = range->hmm_pfns[i];
page = hmm_pfn_to_page(hmm_pfn);
xe_assert(xe, !is_device_private_page(page));
size = 1UL << hmm_pfn_to_map_order(hmm_pfn);
size -= page_to_pfn(page) & (size - 1);
i += size;
if (unlikely(j == st->nents - 1)) {
xe_assert(xe, i >= npages);
if (i > npages)
size -= (i - npages);
sg_mark_end(sgl);
} else {
xe_assert(xe, i < npages);
}
sg_set_page(sgl, page, size << PAGE_SHIFT, 0);
}
return dma_map_sgtable(dev, st, write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_NO_KERNEL_MAPPING);
}
static void xe_hmm_userptr_set_mapped(struct xe_userptr_vma *uvma)
{
struct xe_userptr *userptr = &uvma->userptr;
struct xe_vm *vm = xe_vma_vm(&uvma->vma);
lockdep_assert_held_write(&vm->lock);
lockdep_assert_held(&vm->userptr.notifier_lock);
mutex_lock(&userptr->unmap_mutex);
xe_assert(vm->xe, !userptr->mapped);
userptr->mapped = true;
mutex_unlock(&userptr->unmap_mutex);
}
void xe_hmm_userptr_unmap(struct xe_userptr_vma *uvma)
{
struct xe_userptr *userptr = &uvma->userptr;
struct xe_vma *vma = &uvma->vma;
bool write = !xe_vma_read_only(vma);
struct xe_vm *vm = xe_vma_vm(vma);
struct xe_device *xe = vm->xe;
if (!lockdep_is_held_type(&vm->userptr.notifier_lock, 0) &&
!lockdep_is_held_type(&vm->lock, 0) &&
!(vma->gpuva.flags & XE_VMA_DESTROYED)) {
/* Don't unmap in exec critical section. */
xe_vm_assert_held(vm);
/* Don't unmap while mapping the sg. */
lockdep_assert_held(&vm->lock);
}
mutex_lock(&userptr->unmap_mutex);
if (userptr->sg && userptr->mapped)
dma_unmap_sgtable(xe->drm.dev, userptr->sg,
write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE, 0);
userptr->mapped = false;
mutex_unlock(&userptr->unmap_mutex);
}
/**
* xe_hmm_userptr_free_sg() - Free the scatter gather table of userptr
* @uvma: the userptr vma which hold the scatter gather table
*
* With function xe_userptr_populate_range, we allocate storage of
* the userptr sg table. This is a helper function to free this
* sg table, and dma unmap the address in the table.
*/
void xe_hmm_userptr_free_sg(struct xe_userptr_vma *uvma)
{
struct xe_userptr *userptr = &uvma->userptr;
xe_assert(xe_vma_vm(&uvma->vma)->xe, userptr->sg);
xe_hmm_userptr_unmap(uvma);
sg_free_table(userptr->sg);
userptr->sg = NULL;
}
/**
* xe_hmm_userptr_populate_range() - Populate physical pages of a virtual
* address range
*
* @uvma: userptr vma which has information of the range to populate.
* @is_mm_mmap_locked: True if mmap_read_lock is already acquired by caller.
*
* This function populate the physical pages of a virtual
* address range. The populated physical pages is saved in
* userptr's sg table. It is similar to get_user_pages but call
* hmm_range_fault.
*
* This function also read mmu notifier sequence # (
* mmu_interval_read_begin), for the purpose of later
* comparison (through mmu_interval_read_retry).
*
* This must be called with mmap read or write lock held.
*
* This function allocates the storage of the userptr sg table.
* It is caller's responsibility to free it calling sg_free_table.
*
* returns: 0 for success; negative error no on failure
*/
int xe_hmm_userptr_populate_range(struct xe_userptr_vma *uvma,
bool is_mm_mmap_locked)
{
unsigned long timeout =
jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
unsigned long *pfns;
struct xe_userptr *userptr;
struct xe_vma *vma = &uvma->vma;
u64 userptr_start = xe_vma_userptr(vma);
u64 userptr_end = userptr_start + xe_vma_size(vma);
struct xe_vm *vm = xe_vma_vm(vma);
struct hmm_range hmm_range = {
.pfn_flags_mask = 0, /* ignore pfns */
.default_flags = HMM_PFN_REQ_FAULT,
.start = userptr_start,
.end = userptr_end,
.notifier = &uvma->userptr.notifier,
.dev_private_owner = vm->xe,
};
bool write = !xe_vma_read_only(vma);
unsigned long notifier_seq;
u64 npages;
int ret;
userptr = &uvma->userptr;
if (is_mm_mmap_locked)
mmap_assert_locked(userptr->notifier.mm);
if (vma->gpuva.flags & XE_VMA_DESTROYED)
return 0;
notifier_seq = mmu_interval_read_begin(&userptr->notifier);
if (notifier_seq == userptr->notifier_seq)
return 0;
if (userptr->sg)
xe_hmm_userptr_free_sg(uvma);
npages = xe_npages_in_range(userptr_start, userptr_end);
pfns = kvmalloc_array(npages, sizeof(*pfns), GFP_KERNEL);
if (unlikely(!pfns))
return -ENOMEM;
if (write)
hmm_range.default_flags |= HMM_PFN_REQ_WRITE;
if (!mmget_not_zero(userptr->notifier.mm)) {
ret = -EFAULT;
goto free_pfns;
}
hmm_range.hmm_pfns = pfns;
while (true) {
hmm_range.notifier_seq = mmu_interval_read_begin(&userptr->notifier);
if (!is_mm_mmap_locked)
mmap_read_lock(userptr->notifier.mm);
ret = hmm_range_fault(&hmm_range);
if (!is_mm_mmap_locked)
mmap_read_unlock(userptr->notifier.mm);
if (ret == -EBUSY) {
if (time_after(jiffies, timeout))
break;
continue;
}
break;
}
mmput(userptr->notifier.mm);
if (ret)
goto free_pfns;
ret = xe_alloc_sg(vm->xe, &userptr->sgt, &hmm_range, &vm->userptr.notifier_lock);
if (ret)
goto free_pfns;
ret = down_read_interruptible(&vm->userptr.notifier_lock);
if (ret)
goto free_st;
if (mmu_interval_read_retry(hmm_range.notifier, hmm_range.notifier_seq)) {
ret = -EAGAIN;
goto out_unlock;
}
ret = xe_build_sg(vm->xe, &hmm_range, &userptr->sgt,
&vm->userptr.notifier_lock, write);
if (ret)
goto out_unlock;
userptr->sg = &userptr->sgt;
xe_hmm_userptr_set_mapped(uvma);
userptr->notifier_seq = hmm_range.notifier_seq;
up_read(&vm->userptr.notifier_lock);
kvfree(pfns);
return 0;
out_unlock:
up_read(&vm->userptr.notifier_lock);
free_st:
sg_free_table(&userptr->sgt);
free_pfns:
kvfree(pfns);
return ret;
}
|