1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2021-2023 Intel Corporation
*/
#include "xe_mmio.h"
#include <linux/delay.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/minmax.h>
#include <linux/pci.h>
#include <drm/drm_managed.h>
#include <drm/drm_print.h>
#include "regs/xe_bars.h"
#include "regs/xe_regs.h"
#include "xe_device.h"
#include "xe_gt.h"
#include "xe_gt_printk.h"
#include "xe_gt_sriov_vf.h"
#include "xe_macros.h"
#include "xe_sriov.h"
#include "xe_trace.h"
#include "xe_wa.h"
#include "generated/xe_device_wa_oob.h"
static void tiles_fini(void *arg)
{
struct xe_device *xe = arg;
struct xe_tile *tile;
int id;
for_each_remote_tile(tile, xe, id)
tile->mmio.regs = NULL;
}
/*
* On multi-tile devices, partition the BAR space for MMIO on each tile,
* possibly accounting for register override on the number of tiles available.
* tile_mmio_size contains both the tile's 4MB register space, as well as
* additional space for the GTT and other (possibly unused) regions).
* Resulting memory layout is like below:
*
* .----------------------. <- tile_count * tile_mmio_size
* | .... |
* |----------------------| <- 2 * tile_mmio_size
* | tile1 GTT + other |
* |----------------------| <- 1 * tile_mmio_size + 4MB
* | tile1->mmio.regs |
* |----------------------| <- 1 * tile_mmio_size
* | tile0 GTT + other |
* |----------------------| <- 4MB
* | tile0->mmio.regs |
* '----------------------' <- 0MB
*/
static void mmio_multi_tile_setup(struct xe_device *xe, size_t tile_mmio_size)
{
struct xe_tile *tile;
struct xe_gt *gt;
u8 id;
/*
* Nothing to be done as tile 0 has already been setup earlier with the
* entire BAR mapped - see xe_mmio_probe_early()
*/
if (xe->info.tile_count == 1)
return;
/* Possibly override number of tile based on configuration register */
if (!xe->info.skip_mtcfg) {
struct xe_mmio *mmio = xe_root_tile_mmio(xe);
u8 tile_count, gt_count;
u32 mtcfg;
/*
* Although the per-tile mmio regs are not yet initialized, this
* is fine as it's going to the root tile's mmio, that's
* guaranteed to be initialized earlier in xe_mmio_probe_early()
*/
mtcfg = xe_mmio_read32(mmio, XEHP_MTCFG_ADDR);
tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1;
if (tile_count < xe->info.tile_count) {
drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n",
xe->info.tile_count, tile_count);
xe->info.tile_count = tile_count;
/*
* We've already setup gt_count according to the full
* tile count. Re-calculate it to only include the GTs
* that belong to the remaining tile(s).
*/
gt_count = 0;
for_each_gt(gt, xe, id)
if (gt->info.id < tile_count * xe->info.max_gt_per_tile)
gt_count++;
xe->info.gt_count = gt_count;
}
}
for_each_remote_tile(tile, xe, id)
xe_mmio_init(&tile->mmio, tile, xe->mmio.regs + id * tile_mmio_size, SZ_4M);
}
int xe_mmio_probe_tiles(struct xe_device *xe)
{
size_t tile_mmio_size = SZ_16M;
mmio_multi_tile_setup(xe, tile_mmio_size);
return devm_add_action_or_reset(xe->drm.dev, tiles_fini, xe);
}
static void mmio_fini(void *arg)
{
struct xe_device *xe = arg;
struct xe_tile *root_tile = xe_device_get_root_tile(xe);
pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs);
xe->mmio.regs = NULL;
root_tile->mmio.regs = NULL;
}
int xe_mmio_probe_early(struct xe_device *xe)
{
struct xe_tile *root_tile = xe_device_get_root_tile(xe);
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
/*
* Map the entire BAR.
* The first 16MB of the BAR, belong to the root tile, and include:
* registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB).
*/
xe->mmio.size = pci_resource_len(pdev, GTTMMADR_BAR);
xe->mmio.regs = pci_iomap(pdev, GTTMMADR_BAR, 0);
if (!xe->mmio.regs) {
drm_err(&xe->drm, "failed to map registers\n");
return -EIO;
}
/* Setup first tile; other tiles (if present) will be setup later. */
xe_mmio_init(&root_tile->mmio, root_tile, xe->mmio.regs, SZ_4M);
return devm_add_action_or_reset(xe->drm.dev, mmio_fini, xe);
}
ALLOW_ERROR_INJECTION(xe_mmio_probe_early, ERRNO); /* See xe_pci_probe() */
/**
* xe_mmio_init() - Initialize an MMIO instance
* @mmio: Pointer to the MMIO instance to initialize
* @tile: The tile to which the MMIO region belongs
* @ptr: Pointer to the start of the MMIO region
* @size: The size of the MMIO region in bytes
*
* This is a convenience function for minimal initialization of struct xe_mmio.
*/
void xe_mmio_init(struct xe_mmio *mmio, struct xe_tile *tile, void __iomem *ptr, u32 size)
{
xe_tile_assert(tile, size <= XE_REG_ADDR_MAX);
mmio->regs = ptr;
mmio->regs_size = size;
mmio->tile = tile;
}
static void mmio_flush_pending_writes(struct xe_mmio *mmio)
{
#define DUMMY_REG_OFFSET 0x130030
int i;
if (!XE_DEVICE_WA(mmio->tile->xe, 15015404425))
return;
/* 4 dummy writes */
for (i = 0; i < 4; i++)
writel(0, mmio->regs + DUMMY_REG_OFFSET);
}
u8 xe_mmio_read8(struct xe_mmio *mmio, struct xe_reg reg)
{
u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
u8 val;
mmio_flush_pending_writes(mmio);
val = readb(mmio->regs + addr);
trace_xe_reg_rw(mmio, false, addr, val, sizeof(val));
return val;
}
u16 xe_mmio_read16(struct xe_mmio *mmio, struct xe_reg reg)
{
u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
u16 val;
mmio_flush_pending_writes(mmio);
val = readw(mmio->regs + addr);
trace_xe_reg_rw(mmio, false, addr, val, sizeof(val));
return val;
}
void xe_mmio_write32(struct xe_mmio *mmio, struct xe_reg reg, u32 val)
{
u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
trace_xe_reg_rw(mmio, true, addr, val, sizeof(val));
if (!reg.vf && IS_SRIOV_VF(mmio->tile->xe))
xe_gt_sriov_vf_write32(mmio->sriov_vf_gt ?:
mmio->tile->primary_gt, reg, val);
else
writel(val, mmio->regs + addr);
}
u32 xe_mmio_read32(struct xe_mmio *mmio, struct xe_reg reg)
{
u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
u32 val;
mmio_flush_pending_writes(mmio);
if (!reg.vf && IS_SRIOV_VF(mmio->tile->xe))
val = xe_gt_sriov_vf_read32(mmio->sriov_vf_gt ?:
mmio->tile->primary_gt, reg);
else
val = readl(mmio->regs + addr);
trace_xe_reg_rw(mmio, false, addr, val, sizeof(val));
return val;
}
u32 xe_mmio_rmw32(struct xe_mmio *mmio, struct xe_reg reg, u32 clr, u32 set)
{
u32 old, reg_val;
old = xe_mmio_read32(mmio, reg);
reg_val = (old & ~clr) | set;
xe_mmio_write32(mmio, reg, reg_val);
return old;
}
int xe_mmio_write32_and_verify(struct xe_mmio *mmio,
struct xe_reg reg, u32 val, u32 mask, u32 eval)
{
u32 reg_val;
xe_mmio_write32(mmio, reg, val);
reg_val = xe_mmio_read32(mmio, reg);
return (reg_val & mask) != eval ? -EINVAL : 0;
}
bool xe_mmio_in_range(const struct xe_mmio *mmio,
const struct xe_mmio_range *range,
struct xe_reg reg)
{
u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
return range && addr >= range->start && addr <= range->end;
}
/**
* xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads
* @mmio: MMIO target
* @reg: register to read value from
*
* Although Intel GPUs have some 64-bit registers, the hardware officially
* only supports GTTMMADR register reads of 32 bits or smaller. Even if
* a readq operation may return a reasonable value, that violation of the
* spec shouldn't be relied upon and all 64-bit register reads should be
* performed as two 32-bit reads of the upper and lower dwords.
*
* When reading registers that may be changing (such as
* counters), a rollover of the lower dword between the two 32-bit reads
* can be problematic. This function attempts to ensure the upper dword has
* stabilized before returning the 64-bit value.
*
* Note that because this function may re-read the register multiple times
* while waiting for the value to stabilize it should not be used to read
* any registers where read operations have side effects.
*
* Returns the value of the 64-bit register.
*/
u64 xe_mmio_read64_2x32(struct xe_mmio *mmio, struct xe_reg reg)
{
struct xe_reg reg_udw = { .addr = reg.addr + 0x4 };
u32 ldw, udw, oldudw, retries;
reg.addr = xe_mmio_adjusted_addr(mmio, reg.addr);
reg_udw.addr = xe_mmio_adjusted_addr(mmio, reg_udw.addr);
/* we shouldn't adjust just one register address */
xe_tile_assert(mmio->tile, reg_udw.addr == reg.addr + 0x4);
oldudw = xe_mmio_read32(mmio, reg_udw);
for (retries = 5; retries; --retries) {
ldw = xe_mmio_read32(mmio, reg);
udw = xe_mmio_read32(mmio, reg_udw);
if (udw == oldudw)
break;
oldudw = udw;
}
drm_WARN(&mmio->tile->xe->drm, retries == 0,
"64-bit read of %#x did not stabilize\n", reg.addr);
return (u64)udw << 32 | ldw;
}
static int __xe_mmio_wait32(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val,
u32 timeout_us, u32 *out_val, bool atomic, bool expect_match)
{
ktime_t cur = ktime_get_raw();
const ktime_t end = ktime_add_us(cur, timeout_us);
int ret = -ETIMEDOUT;
s64 wait = 10;
u32 read;
bool check;
for (;;) {
read = xe_mmio_read32(mmio, reg);
check = (read & mask) == val;
if (!expect_match)
check = !check;
if (check) {
ret = 0;
break;
}
cur = ktime_get_raw();
if (!ktime_before(cur, end))
break;
if (ktime_after(ktime_add_us(cur, wait), end))
wait = ktime_us_delta(end, cur);
if (atomic)
udelay(wait);
else
usleep_range(wait, wait << 1);
wait <<= 1;
}
if (ret != 0) {
read = xe_mmio_read32(mmio, reg);
check = (read & mask) == val;
if (!expect_match)
check = !check;
if (check)
ret = 0;
}
if (out_val)
*out_val = read;
return ret;
}
/**
* xe_mmio_wait32() - Wait for a register to match the desired masked value
* @mmio: MMIO target
* @reg: register to read value from
* @mask: mask to be applied to the value read from the register
* @val: desired value after applying the mask
* @timeout_us: time out after this period of time. Wait logic tries to be
* smart, applying an exponential backoff until @timeout_us is reached.
* @out_val: if not NULL, points where to store the last unmasked value
* @atomic: needs to be true if calling from an atomic context
*
* This function polls for the desired masked value and returns zero on success
* or -ETIMEDOUT if timed out.
*
* Note that @timeout_us represents the minimum amount of time to wait before
* giving up. The actual time taken by this function can be a little more than
* @timeout_us for different reasons, specially in non-atomic contexts. Thus,
* it is possible that this function succeeds even after @timeout_us has passed.
*/
int xe_mmio_wait32(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
u32 *out_val, bool atomic)
{
return __xe_mmio_wait32(mmio, reg, mask, val, timeout_us, out_val, atomic, true);
}
/**
* xe_mmio_wait32_not() - Wait for a register to return anything other than the given masked value
* @mmio: MMIO target
* @reg: register to read value from
* @mask: mask to be applied to the value read from the register
* @val: value not to be matched after applying the mask
* @timeout_us: time out after this period of time
* @out_val: if not NULL, points where to store the last unmasked value
* @atomic: needs to be true if calling from an atomic context
*
* This function works exactly like xe_mmio_wait32() with the exception that
* @val is expected not to be matched.
*/
int xe_mmio_wait32_not(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
u32 *out_val, bool atomic)
{
return __xe_mmio_wait32(mmio, reg, mask, val, timeout_us, out_val, atomic, false);
}
|