1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Asynchronous Compression operations
*
* Copyright (c) 2016, Intel Corporation
* Authors: Weigang Li <weigang.li@intel.com>
* Giovanni Cabiddu <giovanni.cabiddu@intel.com>
*/
#include <crypto/internal/acompress.h>
#include <crypto/scatterwalk.h>
#include <linux/cryptouser.h>
#include <linux/cpumask.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/scatterlist.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/workqueue.h>
#include <net/netlink.h>
#include "compress.h"
struct crypto_scomp;
enum {
ACOMP_WALK_SLEEP = 1 << 0,
ACOMP_WALK_SRC_LINEAR = 1 << 1,
ACOMP_WALK_DST_LINEAR = 1 << 2,
};
static const struct crypto_type crypto_acomp_type;
static void acomp_reqchain_done(void *data, int err);
static inline struct acomp_alg *__crypto_acomp_alg(struct crypto_alg *alg)
{
return container_of(alg, struct acomp_alg, calg.base);
}
static inline struct acomp_alg *crypto_acomp_alg(struct crypto_acomp *tfm)
{
return __crypto_acomp_alg(crypto_acomp_tfm(tfm)->__crt_alg);
}
static int __maybe_unused crypto_acomp_report(
struct sk_buff *skb, struct crypto_alg *alg)
{
struct crypto_report_acomp racomp;
memset(&racomp, 0, sizeof(racomp));
strscpy(racomp.type, "acomp", sizeof(racomp.type));
return nla_put(skb, CRYPTOCFGA_REPORT_ACOMP, sizeof(racomp), &racomp);
}
static void crypto_acomp_show(struct seq_file *m, struct crypto_alg *alg)
__maybe_unused;
static void crypto_acomp_show(struct seq_file *m, struct crypto_alg *alg)
{
seq_puts(m, "type : acomp\n");
}
static void crypto_acomp_exit_tfm(struct crypto_tfm *tfm)
{
struct crypto_acomp *acomp = __crypto_acomp_tfm(tfm);
struct acomp_alg *alg = crypto_acomp_alg(acomp);
if (alg->exit)
alg->exit(acomp);
if (acomp_is_async(acomp))
crypto_free_acomp(crypto_acomp_fb(acomp));
}
static int crypto_acomp_init_tfm(struct crypto_tfm *tfm)
{
struct crypto_acomp *acomp = __crypto_acomp_tfm(tfm);
struct acomp_alg *alg = crypto_acomp_alg(acomp);
struct crypto_acomp *fb = NULL;
int err;
if (tfm->__crt_alg->cra_type != &crypto_acomp_type)
return crypto_init_scomp_ops_async(tfm);
if (acomp_is_async(acomp)) {
fb = crypto_alloc_acomp(crypto_acomp_alg_name(acomp), 0,
CRYPTO_ALG_ASYNC);
if (IS_ERR(fb))
return PTR_ERR(fb);
err = -EINVAL;
if (crypto_acomp_reqsize(fb) > MAX_SYNC_COMP_REQSIZE)
goto out_free_fb;
tfm->fb = crypto_acomp_tfm(fb);
}
acomp->compress = alg->compress;
acomp->decompress = alg->decompress;
acomp->reqsize = alg->base.cra_reqsize;
acomp->base.exit = crypto_acomp_exit_tfm;
if (!alg->init)
return 0;
err = alg->init(acomp);
if (err)
goto out_free_fb;
return 0;
out_free_fb:
crypto_free_acomp(fb);
return err;
}
static unsigned int crypto_acomp_extsize(struct crypto_alg *alg)
{
int extsize = crypto_alg_extsize(alg);
if (alg->cra_type != &crypto_acomp_type)
extsize += sizeof(struct crypto_scomp *);
return extsize;
}
static const struct crypto_type crypto_acomp_type = {
.extsize = crypto_acomp_extsize,
.init_tfm = crypto_acomp_init_tfm,
#ifdef CONFIG_PROC_FS
.show = crypto_acomp_show,
#endif
#if IS_ENABLED(CONFIG_CRYPTO_USER)
.report = crypto_acomp_report,
#endif
.maskclear = ~CRYPTO_ALG_TYPE_MASK,
.maskset = CRYPTO_ALG_TYPE_ACOMPRESS_MASK,
.type = CRYPTO_ALG_TYPE_ACOMPRESS,
.tfmsize = offsetof(struct crypto_acomp, base),
.algsize = offsetof(struct acomp_alg, base),
};
struct crypto_acomp *crypto_alloc_acomp(const char *alg_name, u32 type,
u32 mask)
{
return crypto_alloc_tfm(alg_name, &crypto_acomp_type, type, mask);
}
EXPORT_SYMBOL_GPL(crypto_alloc_acomp);
struct crypto_acomp *crypto_alloc_acomp_node(const char *alg_name, u32 type,
u32 mask, int node)
{
return crypto_alloc_tfm_node(alg_name, &crypto_acomp_type, type, mask,
node);
}
EXPORT_SYMBOL_GPL(crypto_alloc_acomp_node);
static void acomp_save_req(struct acomp_req *req, crypto_completion_t cplt)
{
struct acomp_req_chain *state = &req->chain;
state->compl = req->base.complete;
state->data = req->base.data;
req->base.complete = cplt;
req->base.data = state;
}
static void acomp_restore_req(struct acomp_req *req)
{
struct acomp_req_chain *state = req->base.data;
req->base.complete = state->compl;
req->base.data = state->data;
}
static void acomp_reqchain_virt(struct acomp_req *req)
{
struct acomp_req_chain *state = &req->chain;
unsigned int slen = req->slen;
unsigned int dlen = req->dlen;
if (state->flags & CRYPTO_ACOMP_REQ_SRC_VIRT)
acomp_request_set_src_dma(req, state->src, slen);
if (state->flags & CRYPTO_ACOMP_REQ_DST_VIRT)
acomp_request_set_dst_dma(req, state->dst, dlen);
}
static void acomp_virt_to_sg(struct acomp_req *req)
{
struct acomp_req_chain *state = &req->chain;
state->flags = req->base.flags & (CRYPTO_ACOMP_REQ_SRC_VIRT |
CRYPTO_ACOMP_REQ_DST_VIRT);
if (acomp_request_src_isvirt(req)) {
unsigned int slen = req->slen;
const u8 *svirt = req->svirt;
state->src = svirt;
sg_init_one(&state->ssg, svirt, slen);
acomp_request_set_src_sg(req, &state->ssg, slen);
}
if (acomp_request_dst_isvirt(req)) {
unsigned int dlen = req->dlen;
u8 *dvirt = req->dvirt;
state->dst = dvirt;
sg_init_one(&state->dsg, dvirt, dlen);
acomp_request_set_dst_sg(req, &state->dsg, dlen);
}
}
static int acomp_do_nondma(struct acomp_req *req, bool comp)
{
ACOMP_FBREQ_ON_STACK(fbreq, req);
int err;
if (comp)
err = crypto_acomp_compress(fbreq);
else
err = crypto_acomp_decompress(fbreq);
req->dlen = fbreq->dlen;
return err;
}
static int acomp_do_one_req(struct acomp_req *req, bool comp)
{
if (acomp_request_isnondma(req))
return acomp_do_nondma(req, comp);
acomp_virt_to_sg(req);
return comp ? crypto_acomp_reqtfm(req)->compress(req) :
crypto_acomp_reqtfm(req)->decompress(req);
}
static int acomp_reqchain_finish(struct acomp_req *req, int err)
{
acomp_reqchain_virt(req);
acomp_restore_req(req);
return err;
}
static void acomp_reqchain_done(void *data, int err)
{
struct acomp_req *req = data;
crypto_completion_t compl;
compl = req->chain.compl;
data = req->chain.data;
if (err == -EINPROGRESS)
goto notify;
err = acomp_reqchain_finish(req, err);
notify:
compl(data, err);
}
static int acomp_do_req_chain(struct acomp_req *req, bool comp)
{
int err;
acomp_save_req(req, acomp_reqchain_done);
err = acomp_do_one_req(req, comp);
if (err == -EBUSY || err == -EINPROGRESS)
return err;
return acomp_reqchain_finish(req, err);
}
int crypto_acomp_compress(struct acomp_req *req)
{
struct crypto_acomp *tfm = crypto_acomp_reqtfm(req);
if (acomp_req_on_stack(req) && acomp_is_async(tfm))
return -EAGAIN;
if (crypto_acomp_req_virt(tfm) || acomp_request_issg(req))
return crypto_acomp_reqtfm(req)->compress(req);
return acomp_do_req_chain(req, true);
}
EXPORT_SYMBOL_GPL(crypto_acomp_compress);
int crypto_acomp_decompress(struct acomp_req *req)
{
struct crypto_acomp *tfm = crypto_acomp_reqtfm(req);
if (acomp_req_on_stack(req) && acomp_is_async(tfm))
return -EAGAIN;
if (crypto_acomp_req_virt(tfm) || acomp_request_issg(req))
return crypto_acomp_reqtfm(req)->decompress(req);
return acomp_do_req_chain(req, false);
}
EXPORT_SYMBOL_GPL(crypto_acomp_decompress);
void comp_prepare_alg(struct comp_alg_common *alg)
{
struct crypto_alg *base = &alg->base;
base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
}
int crypto_register_acomp(struct acomp_alg *alg)
{
struct crypto_alg *base = &alg->calg.base;
comp_prepare_alg(&alg->calg);
base->cra_type = &crypto_acomp_type;
base->cra_flags |= CRYPTO_ALG_TYPE_ACOMPRESS;
return crypto_register_alg(base);
}
EXPORT_SYMBOL_GPL(crypto_register_acomp);
void crypto_unregister_acomp(struct acomp_alg *alg)
{
crypto_unregister_alg(&alg->base);
}
EXPORT_SYMBOL_GPL(crypto_unregister_acomp);
int crypto_register_acomps(struct acomp_alg *algs, int count)
{
int i, ret;
for (i = 0; i < count; i++) {
ret = crypto_register_acomp(&algs[i]);
if (ret)
goto err;
}
return 0;
err:
for (--i; i >= 0; --i)
crypto_unregister_acomp(&algs[i]);
return ret;
}
EXPORT_SYMBOL_GPL(crypto_register_acomps);
void crypto_unregister_acomps(struct acomp_alg *algs, int count)
{
int i;
for (i = count - 1; i >= 0; --i)
crypto_unregister_acomp(&algs[i]);
}
EXPORT_SYMBOL_GPL(crypto_unregister_acomps);
static void acomp_stream_workfn(struct work_struct *work)
{
struct crypto_acomp_streams *s =
container_of(work, struct crypto_acomp_streams, stream_work);
struct crypto_acomp_stream __percpu *streams = s->streams;
int cpu;
for_each_cpu(cpu, &s->stream_want) {
struct crypto_acomp_stream *ps;
void *ctx;
ps = per_cpu_ptr(streams, cpu);
if (ps->ctx)
continue;
ctx = s->alloc_ctx();
if (IS_ERR(ctx))
break;
spin_lock_bh(&ps->lock);
ps->ctx = ctx;
spin_unlock_bh(&ps->lock);
cpumask_clear_cpu(cpu, &s->stream_want);
}
}
void crypto_acomp_free_streams(struct crypto_acomp_streams *s)
{
struct crypto_acomp_stream __percpu *streams = s->streams;
void (*free_ctx)(void *);
int i;
s->streams = NULL;
if (!streams)
return;
cancel_work_sync(&s->stream_work);
free_ctx = s->free_ctx;
for_each_possible_cpu(i) {
struct crypto_acomp_stream *ps = per_cpu_ptr(streams, i);
if (!ps->ctx)
continue;
free_ctx(ps->ctx);
}
free_percpu(streams);
}
EXPORT_SYMBOL_GPL(crypto_acomp_free_streams);
int crypto_acomp_alloc_streams(struct crypto_acomp_streams *s)
{
struct crypto_acomp_stream __percpu *streams;
struct crypto_acomp_stream *ps;
unsigned int i;
void *ctx;
if (s->streams)
return 0;
streams = alloc_percpu(struct crypto_acomp_stream);
if (!streams)
return -ENOMEM;
ctx = s->alloc_ctx();
if (IS_ERR(ctx)) {
free_percpu(streams);
return PTR_ERR(ctx);
}
i = cpumask_first(cpu_possible_mask);
ps = per_cpu_ptr(streams, i);
ps->ctx = ctx;
for_each_possible_cpu(i) {
ps = per_cpu_ptr(streams, i);
spin_lock_init(&ps->lock);
}
s->streams = streams;
INIT_WORK(&s->stream_work, acomp_stream_workfn);
return 0;
}
EXPORT_SYMBOL_GPL(crypto_acomp_alloc_streams);
struct crypto_acomp_stream *crypto_acomp_lock_stream_bh(
struct crypto_acomp_streams *s) __acquires(stream)
{
struct crypto_acomp_stream __percpu *streams = s->streams;
int cpu = raw_smp_processor_id();
struct crypto_acomp_stream *ps;
ps = per_cpu_ptr(streams, cpu);
spin_lock_bh(&ps->lock);
if (likely(ps->ctx))
return ps;
spin_unlock(&ps->lock);
cpumask_set_cpu(cpu, &s->stream_want);
schedule_work(&s->stream_work);
ps = per_cpu_ptr(streams, cpumask_first(cpu_possible_mask));
spin_lock(&ps->lock);
return ps;
}
EXPORT_SYMBOL_GPL(crypto_acomp_lock_stream_bh);
void acomp_walk_done_src(struct acomp_walk *walk, int used)
{
walk->slen -= used;
if ((walk->flags & ACOMP_WALK_SRC_LINEAR))
scatterwalk_advance(&walk->in, used);
else
scatterwalk_done_src(&walk->in, used);
if ((walk->flags & ACOMP_WALK_SLEEP))
cond_resched();
}
EXPORT_SYMBOL_GPL(acomp_walk_done_src);
void acomp_walk_done_dst(struct acomp_walk *walk, int used)
{
walk->dlen -= used;
if ((walk->flags & ACOMP_WALK_DST_LINEAR))
scatterwalk_advance(&walk->out, used);
else
scatterwalk_done_dst(&walk->out, used);
if ((walk->flags & ACOMP_WALK_SLEEP))
cond_resched();
}
EXPORT_SYMBOL_GPL(acomp_walk_done_dst);
int acomp_walk_next_src(struct acomp_walk *walk)
{
unsigned int slen = walk->slen;
unsigned int max = UINT_MAX;
if (!preempt_model_preemptible() && (walk->flags & ACOMP_WALK_SLEEP))
max = PAGE_SIZE;
if ((walk->flags & ACOMP_WALK_SRC_LINEAR)) {
walk->in.__addr = (void *)(((u8 *)walk->in.sg) +
walk->in.offset);
return min(slen, max);
}
return slen ? scatterwalk_next(&walk->in, slen) : 0;
}
EXPORT_SYMBOL_GPL(acomp_walk_next_src);
int acomp_walk_next_dst(struct acomp_walk *walk)
{
unsigned int dlen = walk->dlen;
unsigned int max = UINT_MAX;
if (!preempt_model_preemptible() && (walk->flags & ACOMP_WALK_SLEEP))
max = PAGE_SIZE;
if ((walk->flags & ACOMP_WALK_DST_LINEAR)) {
walk->out.__addr = (void *)(((u8 *)walk->out.sg) +
walk->out.offset);
return min(dlen, max);
}
return dlen ? scatterwalk_next(&walk->out, dlen) : 0;
}
EXPORT_SYMBOL_GPL(acomp_walk_next_dst);
int acomp_walk_virt(struct acomp_walk *__restrict walk,
struct acomp_req *__restrict req, bool atomic)
{
struct scatterlist *src = req->src;
struct scatterlist *dst = req->dst;
walk->slen = req->slen;
walk->dlen = req->dlen;
if (!walk->slen || !walk->dlen)
return -EINVAL;
walk->flags = 0;
if ((req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) && !atomic)
walk->flags |= ACOMP_WALK_SLEEP;
if ((req->base.flags & CRYPTO_ACOMP_REQ_SRC_VIRT))
walk->flags |= ACOMP_WALK_SRC_LINEAR;
if ((req->base.flags & CRYPTO_ACOMP_REQ_DST_VIRT))
walk->flags |= ACOMP_WALK_DST_LINEAR;
if ((walk->flags & ACOMP_WALK_SRC_LINEAR)) {
walk->in.sg = (void *)req->svirt;
walk->in.offset = 0;
} else
scatterwalk_start(&walk->in, src);
if ((walk->flags & ACOMP_WALK_DST_LINEAR)) {
walk->out.sg = (void *)req->dvirt;
walk->out.offset = 0;
} else
scatterwalk_start(&walk->out, dst);
return 0;
}
EXPORT_SYMBOL_GPL(acomp_walk_virt);
struct acomp_req *acomp_request_clone(struct acomp_req *req,
size_t total, gfp_t gfp)
{
struct acomp_req *nreq;
nreq = container_of(crypto_request_clone(&req->base, total, gfp),
struct acomp_req, base);
if (nreq == req)
return req;
if (req->src == &req->chain.ssg)
nreq->src = &nreq->chain.ssg;
if (req->dst == &req->chain.dsg)
nreq->dst = &nreq->chain.dsg;
return nreq;
}
EXPORT_SYMBOL_GPL(acomp_request_clone);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Asynchronous compression type");
|