1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
|
// SPDX-License-Identifier: GPL-2.0
#include <linux/anon_inodes.h>
#include <linux/exportfs.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/cgroup.h>
#include <linux/magic.h>
#include <linux/mount.h>
#include <linux/pid.h>
#include <linux/pidfs.h>
#include <linux/pid_namespace.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/proc_ns.h>
#include <linux/pseudo_fs.h>
#include <linux/ptrace.h>
#include <linux/seq_file.h>
#include <uapi/linux/pidfd.h>
#include <linux/ipc_namespace.h>
#include <linux/time_namespace.h>
#include <linux/utsname.h>
#include <net/net_namespace.h>
#include <linux/coredump.h>
#include <linux/xattr.h>
#include "internal.h"
#include "mount.h"
#define PIDFS_PID_DEAD ERR_PTR(-ESRCH)
static struct kmem_cache *pidfs_attr_cachep __ro_after_init;
static struct kmem_cache *pidfs_xattr_cachep __ro_after_init;
static struct path pidfs_root_path = {};
void pidfs_get_root(struct path *path)
{
*path = pidfs_root_path;
path_get(path);
}
/*
* Stashes information that userspace needs to access even after the
* process has been reaped.
*/
struct pidfs_exit_info {
__u64 cgroupid;
__s32 exit_code;
__u32 coredump_mask;
};
struct pidfs_attr {
struct simple_xattrs *xattrs;
struct pidfs_exit_info __pei;
struct pidfs_exit_info *exit_info;
};
static struct rb_root pidfs_ino_tree = RB_ROOT;
#if BITS_PER_LONG == 32
static inline unsigned long pidfs_ino(u64 ino)
{
return lower_32_bits(ino);
}
/* On 32 bit the generation number are the upper 32 bits. */
static inline u32 pidfs_gen(u64 ino)
{
return upper_32_bits(ino);
}
#else
/* On 64 bit simply return ino. */
static inline unsigned long pidfs_ino(u64 ino)
{
return ino;
}
/* On 64 bit the generation number is 0. */
static inline u32 pidfs_gen(u64 ino)
{
return 0;
}
#endif
static int pidfs_ino_cmp(struct rb_node *a, const struct rb_node *b)
{
struct pid *pid_a = rb_entry(a, struct pid, pidfs_node);
struct pid *pid_b = rb_entry(b, struct pid, pidfs_node);
u64 pid_ino_a = pid_a->ino;
u64 pid_ino_b = pid_b->ino;
if (pid_ino_a < pid_ino_b)
return -1;
if (pid_ino_a > pid_ino_b)
return 1;
return 0;
}
void pidfs_add_pid(struct pid *pid)
{
static u64 pidfs_ino_nr = 2;
/*
* On 64 bit nothing special happens. The 64bit number assigned
* to struct pid is the inode number.
*
* On 32 bit the 64 bit number assigned to struct pid is split
* into two 32 bit numbers. The lower 32 bits are used as the
* inode number and the upper 32 bits are used as the inode
* generation number.
*
* On 32 bit pidfs_ino() will return the lower 32 bit. When
* pidfs_ino() returns zero a wrap around happened. When a
* wraparound happens the 64 bit number will be incremented by 2
* so inode numbering starts at 2 again.
*
* On 64 bit comparing two pidfds is as simple as comparing
* inode numbers.
*
* When a wraparound happens on 32 bit multiple pidfds with the
* same inode number are likely to exist (This isn't a problem
* since before pidfs pidfds used the anonymous inode meaning
* all pidfds had the same inode number.). Userspace can
* reconstruct the 64 bit identifier by retrieving both the
* inode number and the inode generation number to compare or
* use file handles.
*/
if (pidfs_ino(pidfs_ino_nr) == 0)
pidfs_ino_nr += 2;
pid->ino = pidfs_ino_nr;
pid->stashed = NULL;
pid->attr = NULL;
pidfs_ino_nr++;
write_seqcount_begin(&pidmap_lock_seq);
rb_find_add_rcu(&pid->pidfs_node, &pidfs_ino_tree, pidfs_ino_cmp);
write_seqcount_end(&pidmap_lock_seq);
}
void pidfs_remove_pid(struct pid *pid)
{
write_seqcount_begin(&pidmap_lock_seq);
rb_erase(&pid->pidfs_node, &pidfs_ino_tree);
write_seqcount_end(&pidmap_lock_seq);
}
void pidfs_free_pid(struct pid *pid)
{
struct pidfs_attr *attr __free(kfree) = no_free_ptr(pid->attr);
struct simple_xattrs *xattrs __free(kfree) = NULL;
/*
* Any dentry must've been wiped from the pid by now.
* Otherwise there's a reference count bug.
*/
VFS_WARN_ON_ONCE(pid->stashed);
/*
* This if an error occurred during e.g., task creation that
* causes us to never go through the exit path.
*/
if (unlikely(!attr))
return;
/* This never had a pidfd created. */
if (IS_ERR(attr))
return;
xattrs = no_free_ptr(attr->xattrs);
if (xattrs)
simple_xattrs_free(xattrs, NULL);
}
#ifdef CONFIG_PROC_FS
/**
* pidfd_show_fdinfo - print information about a pidfd
* @m: proc fdinfo file
* @f: file referencing a pidfd
*
* Pid:
* This function will print the pid that a given pidfd refers to in the
* pid namespace of the procfs instance.
* If the pid namespace of the process is not a descendant of the pid
* namespace of the procfs instance 0 will be shown as its pid. This is
* similar to calling getppid() on a process whose parent is outside of
* its pid namespace.
*
* NSpid:
* If pid namespaces are supported then this function will also print
* the pid of a given pidfd refers to for all descendant pid namespaces
* starting from the current pid namespace of the instance, i.e. the
* Pid field and the first entry in the NSpid field will be identical.
* If the pid namespace of the process is not a descendant of the pid
* namespace of the procfs instance 0 will be shown as its first NSpid
* entry and no others will be shown.
* Note that this differs from the Pid and NSpid fields in
* /proc/<pid>/status where Pid and NSpid are always shown relative to
* the pid namespace of the procfs instance. The difference becomes
* obvious when sending around a pidfd between pid namespaces from a
* different branch of the tree, i.e. where no ancestral relation is
* present between the pid namespaces:
* - create two new pid namespaces ns1 and ns2 in the initial pid
* namespace (also take care to create new mount namespaces in the
* new pid namespace and mount procfs)
* - create a process with a pidfd in ns1
* - send pidfd from ns1 to ns2
* - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
* have exactly one entry, which is 0
*/
static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
{
struct pid *pid = pidfd_pid(f);
struct pid_namespace *ns;
pid_t nr = -1;
if (likely(pid_has_task(pid, PIDTYPE_PID))) {
ns = proc_pid_ns(file_inode(m->file)->i_sb);
nr = pid_nr_ns(pid, ns);
}
seq_put_decimal_ll(m, "Pid:\t", nr);
#ifdef CONFIG_PID_NS
seq_put_decimal_ll(m, "\nNSpid:\t", nr);
if (nr > 0) {
int i;
/* If nr is non-zero it means that 'pid' is valid and that
* ns, i.e. the pid namespace associated with the procfs
* instance, is in the pid namespace hierarchy of pid.
* Start at one below the already printed level.
*/
for (i = ns->level + 1; i <= pid->level; i++)
seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
}
#endif
seq_putc(m, '\n');
}
#endif
/*
* Poll support for process exit notification.
*/
static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
{
struct pid *pid = pidfd_pid(file);
struct task_struct *task;
__poll_t poll_flags = 0;
poll_wait(file, &pid->wait_pidfd, pts);
/*
* Don't wake waiters if the thread-group leader exited
* prematurely. They either get notified when the last subthread
* exits or not at all if one of the remaining subthreads execs
* and assumes the struct pid of the old thread-group leader.
*/
guard(rcu)();
task = pid_task(pid, PIDTYPE_PID);
if (!task)
poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP;
else if (task->exit_state && !delay_group_leader(task))
poll_flags = EPOLLIN | EPOLLRDNORM;
return poll_flags;
}
static inline bool pid_in_current_pidns(const struct pid *pid)
{
const struct pid_namespace *ns = task_active_pid_ns(current);
if (ns->level <= pid->level)
return pid->numbers[ns->level].ns == ns;
return false;
}
static __u32 pidfs_coredump_mask(unsigned long mm_flags)
{
switch (__get_dumpable(mm_flags)) {
case SUID_DUMP_USER:
return PIDFD_COREDUMP_USER;
case SUID_DUMP_ROOT:
return PIDFD_COREDUMP_ROOT;
case SUID_DUMP_DISABLE:
return PIDFD_COREDUMP_SKIP;
default:
WARN_ON_ONCE(true);
}
return 0;
}
static long pidfd_info(struct file *file, unsigned int cmd, unsigned long arg)
{
struct pidfd_info __user *uinfo = (struct pidfd_info __user *)arg;
struct task_struct *task __free(put_task) = NULL;
struct pid *pid = pidfd_pid(file);
size_t usize = _IOC_SIZE(cmd);
struct pidfd_info kinfo = {};
struct pidfs_exit_info *exit_info;
struct user_namespace *user_ns;
struct pidfs_attr *attr;
const struct cred *c;
__u64 mask;
if (!uinfo)
return -EINVAL;
if (usize < PIDFD_INFO_SIZE_VER0)
return -EINVAL; /* First version, no smaller struct possible */
if (copy_from_user(&mask, &uinfo->mask, sizeof(mask)))
return -EFAULT;
/*
* Restrict information retrieval to tasks within the caller's pid
* namespace hierarchy.
*/
if (!pid_in_current_pidns(pid))
return -ESRCH;
attr = READ_ONCE(pid->attr);
if (mask & PIDFD_INFO_EXIT) {
exit_info = READ_ONCE(attr->exit_info);
if (exit_info) {
kinfo.mask |= PIDFD_INFO_EXIT;
#ifdef CONFIG_CGROUPS
kinfo.cgroupid = exit_info->cgroupid;
kinfo.mask |= PIDFD_INFO_CGROUPID;
#endif
kinfo.exit_code = exit_info->exit_code;
}
}
if (mask & PIDFD_INFO_COREDUMP) {
kinfo.mask |= PIDFD_INFO_COREDUMP;
kinfo.coredump_mask = READ_ONCE(attr->__pei.coredump_mask);
}
task = get_pid_task(pid, PIDTYPE_PID);
if (!task) {
/*
* If the task has already been reaped, only exit
* information is available
*/
if (!(mask & PIDFD_INFO_EXIT))
return -ESRCH;
goto copy_out;
}
c = get_task_cred(task);
if (!c)
return -ESRCH;
if ((kinfo.mask & PIDFD_INFO_COREDUMP) && !(kinfo.coredump_mask)) {
task_lock(task);
if (task->mm)
kinfo.coredump_mask = pidfs_coredump_mask(task->mm->flags);
task_unlock(task);
}
/* Unconditionally return identifiers and credentials, the rest only on request */
user_ns = current_user_ns();
kinfo.ruid = from_kuid_munged(user_ns, c->uid);
kinfo.rgid = from_kgid_munged(user_ns, c->gid);
kinfo.euid = from_kuid_munged(user_ns, c->euid);
kinfo.egid = from_kgid_munged(user_ns, c->egid);
kinfo.suid = from_kuid_munged(user_ns, c->suid);
kinfo.sgid = from_kgid_munged(user_ns, c->sgid);
kinfo.fsuid = from_kuid_munged(user_ns, c->fsuid);
kinfo.fsgid = from_kgid_munged(user_ns, c->fsgid);
kinfo.mask |= PIDFD_INFO_CREDS;
put_cred(c);
#ifdef CONFIG_CGROUPS
if (!kinfo.cgroupid) {
struct cgroup *cgrp;
rcu_read_lock();
cgrp = task_dfl_cgroup(task);
kinfo.cgroupid = cgroup_id(cgrp);
kinfo.mask |= PIDFD_INFO_CGROUPID;
rcu_read_unlock();
}
#endif
/*
* Copy pid/tgid last, to reduce the chances the information might be
* stale. Note that it is not possible to ensure it will be valid as the
* task might return as soon as the copy_to_user finishes, but that's ok
* and userspace expects that might happen and can act accordingly, so
* this is just best-effort. What we can do however is checking that all
* the fields are set correctly, or return ESRCH to avoid providing
* incomplete information. */
kinfo.ppid = task_ppid_nr_ns(task, NULL);
kinfo.tgid = task_tgid_vnr(task);
kinfo.pid = task_pid_vnr(task);
kinfo.mask |= PIDFD_INFO_PID;
if (kinfo.pid == 0 || kinfo.tgid == 0)
return -ESRCH;
copy_out:
/*
* If userspace and the kernel have the same struct size it can just
* be copied. If userspace provides an older struct, only the bits that
* userspace knows about will be copied. If userspace provides a new
* struct, only the bits that the kernel knows about will be copied.
*/
return copy_struct_to_user(uinfo, usize, &kinfo, sizeof(kinfo), NULL);
}
static bool pidfs_ioctl_valid(unsigned int cmd)
{
switch (cmd) {
case FS_IOC_GETVERSION:
case PIDFD_GET_CGROUP_NAMESPACE:
case PIDFD_GET_IPC_NAMESPACE:
case PIDFD_GET_MNT_NAMESPACE:
case PIDFD_GET_NET_NAMESPACE:
case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
case PIDFD_GET_TIME_NAMESPACE:
case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
case PIDFD_GET_UTS_NAMESPACE:
case PIDFD_GET_USER_NAMESPACE:
case PIDFD_GET_PID_NAMESPACE:
return true;
}
/* Extensible ioctls require some more careful checks. */
switch (_IOC_NR(cmd)) {
case _IOC_NR(PIDFD_GET_INFO):
/*
* Try to prevent performing a pidfd ioctl when someone
* erronously mistook the file descriptor for a pidfd.
* This is not perfect but will catch most cases.
*/
return extensible_ioctl_valid(cmd, PIDFD_GET_INFO, PIDFD_INFO_SIZE_VER0);
}
return false;
}
static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct task_struct *task __free(put_task) = NULL;
struct nsproxy *nsp __free(put_nsproxy) = NULL;
struct ns_common *ns_common = NULL;
struct pid_namespace *pid_ns;
if (!pidfs_ioctl_valid(cmd))
return -ENOIOCTLCMD;
if (cmd == FS_IOC_GETVERSION) {
if (!arg)
return -EINVAL;
__u32 __user *argp = (__u32 __user *)arg;
return put_user(file_inode(file)->i_generation, argp);
}
/* Extensible IOCTL that does not open namespace FDs, take a shortcut */
if (_IOC_NR(cmd) == _IOC_NR(PIDFD_GET_INFO))
return pidfd_info(file, cmd, arg);
task = get_pid_task(pidfd_pid(file), PIDTYPE_PID);
if (!task)
return -ESRCH;
if (arg)
return -EINVAL;
scoped_guard(task_lock, task) {
nsp = task->nsproxy;
if (nsp)
get_nsproxy(nsp);
}
if (!nsp)
return -ESRCH; /* just pretend it didn't exist */
/*
* We're trying to open a file descriptor to the namespace so perform a
* filesystem cred ptrace check. Also, we mirror nsfs behavior.
*/
if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
return -EACCES;
switch (cmd) {
/* Namespaces that hang of nsproxy. */
case PIDFD_GET_CGROUP_NAMESPACE:
if (IS_ENABLED(CONFIG_CGROUPS)) {
get_cgroup_ns(nsp->cgroup_ns);
ns_common = to_ns_common(nsp->cgroup_ns);
}
break;
case PIDFD_GET_IPC_NAMESPACE:
if (IS_ENABLED(CONFIG_IPC_NS)) {
get_ipc_ns(nsp->ipc_ns);
ns_common = to_ns_common(nsp->ipc_ns);
}
break;
case PIDFD_GET_MNT_NAMESPACE:
get_mnt_ns(nsp->mnt_ns);
ns_common = to_ns_common(nsp->mnt_ns);
break;
case PIDFD_GET_NET_NAMESPACE:
if (IS_ENABLED(CONFIG_NET_NS)) {
ns_common = to_ns_common(nsp->net_ns);
get_net_ns(ns_common);
}
break;
case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
if (IS_ENABLED(CONFIG_PID_NS)) {
get_pid_ns(nsp->pid_ns_for_children);
ns_common = to_ns_common(nsp->pid_ns_for_children);
}
break;
case PIDFD_GET_TIME_NAMESPACE:
if (IS_ENABLED(CONFIG_TIME_NS)) {
get_time_ns(nsp->time_ns);
ns_common = to_ns_common(nsp->time_ns);
}
break;
case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
if (IS_ENABLED(CONFIG_TIME_NS)) {
get_time_ns(nsp->time_ns_for_children);
ns_common = to_ns_common(nsp->time_ns_for_children);
}
break;
case PIDFD_GET_UTS_NAMESPACE:
if (IS_ENABLED(CONFIG_UTS_NS)) {
get_uts_ns(nsp->uts_ns);
ns_common = to_ns_common(nsp->uts_ns);
}
break;
/* Namespaces that don't hang of nsproxy. */
case PIDFD_GET_USER_NAMESPACE:
if (IS_ENABLED(CONFIG_USER_NS)) {
rcu_read_lock();
ns_common = to_ns_common(get_user_ns(task_cred_xxx(task, user_ns)));
rcu_read_unlock();
}
break;
case PIDFD_GET_PID_NAMESPACE:
if (IS_ENABLED(CONFIG_PID_NS)) {
rcu_read_lock();
pid_ns = task_active_pid_ns(task);
if (pid_ns)
ns_common = to_ns_common(get_pid_ns(pid_ns));
rcu_read_unlock();
}
break;
default:
return -ENOIOCTLCMD;
}
if (!ns_common)
return -EOPNOTSUPP;
/* open_namespace() unconditionally consumes the reference */
return open_namespace(ns_common);
}
static const struct file_operations pidfs_file_operations = {
.poll = pidfd_poll,
#ifdef CONFIG_PROC_FS
.show_fdinfo = pidfd_show_fdinfo,
#endif
.unlocked_ioctl = pidfd_ioctl,
.compat_ioctl = compat_ptr_ioctl,
};
struct pid *pidfd_pid(const struct file *file)
{
if (file->f_op != &pidfs_file_operations)
return ERR_PTR(-EBADF);
return file_inode(file)->i_private;
}
/*
* We're called from release_task(). We know there's at least one
* reference to struct pid being held that won't be released until the
* task has been reaped which cannot happen until we're out of
* release_task().
*
* If this struct pid has at least once been referred to by a pidfd then
* pid->attr will be allocated. If not we mark the struct pid as dead so
* anyone who is trying to register it with pidfs will fail to do so.
* Otherwise we would hand out pidfs for reaped tasks without having
* exit information available.
*
* Worst case is that we've filled in the info and the pid gets freed
* right away in free_pid() when no one holds a pidfd anymore. Since
* pidfs_exit() currently is placed after exit_task_work() we know that
* it cannot be us aka the exiting task holding a pidfd to itself.
*/
void pidfs_exit(struct task_struct *tsk)
{
struct pid *pid = task_pid(tsk);
struct pidfs_attr *attr;
struct pidfs_exit_info *exit_info;
#ifdef CONFIG_CGROUPS
struct cgroup *cgrp;
#endif
might_sleep();
guard(spinlock_irq)(&pid->wait_pidfd.lock);
attr = pid->attr;
if (!attr) {
/*
* No one ever held a pidfd for this struct pid.
* Mark it as dead so no one can add a pidfs
* entry anymore. We're about to be reaped and
* so no exit information would be available.
*/
pid->attr = PIDFS_PID_DEAD;
return;
}
/*
* If @pid->attr is set someone might still legitimately hold a
* pidfd to @pid or someone might concurrently still be getting
* a reference to an already stashed dentry from @pid->stashed.
* So defer cleaning @pid->attr until the last reference to @pid
* is put
*/
exit_info = &attr->__pei;
#ifdef CONFIG_CGROUPS
rcu_read_lock();
cgrp = task_dfl_cgroup(tsk);
exit_info->cgroupid = cgroup_id(cgrp);
rcu_read_unlock();
#endif
exit_info->exit_code = tsk->exit_code;
/* Ensure that PIDFD_GET_INFO sees either all or nothing. */
smp_store_release(&attr->exit_info, &attr->__pei);
}
#ifdef CONFIG_COREDUMP
void pidfs_coredump(const struct coredump_params *cprm)
{
struct pid *pid = cprm->pid;
struct pidfs_exit_info *exit_info;
struct pidfs_attr *attr;
__u32 coredump_mask = 0;
attr = READ_ONCE(pid->attr);
VFS_WARN_ON_ONCE(!attr);
VFS_WARN_ON_ONCE(attr == PIDFS_PID_DEAD);
exit_info = &attr->__pei;
/* Note how we were coredumped. */
coredump_mask = pidfs_coredump_mask(cprm->mm_flags);
/* Note that we actually did coredump. */
coredump_mask |= PIDFD_COREDUMPED;
/* If coredumping is set to skip we should never end up here. */
VFS_WARN_ON_ONCE(coredump_mask & PIDFD_COREDUMP_SKIP);
smp_store_release(&exit_info->coredump_mask, coredump_mask);
}
#endif
static struct vfsmount *pidfs_mnt __ro_after_init;
/*
* The vfs falls back to simple_setattr() if i_op->setattr() isn't
* implemented. Let's reject it completely until we have a clean
* permission concept for pidfds.
*/
static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
struct iattr *attr)
{
return anon_inode_setattr(idmap, dentry, attr);
}
static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path,
struct kstat *stat, u32 request_mask,
unsigned int query_flags)
{
return anon_inode_getattr(idmap, path, stat, request_mask, query_flags);
}
static ssize_t pidfs_listxattr(struct dentry *dentry, char *buf, size_t size)
{
struct inode *inode = d_inode(dentry);
struct pid *pid = inode->i_private;
struct pidfs_attr *attr = pid->attr;
struct simple_xattrs *xattrs;
xattrs = READ_ONCE(attr->xattrs);
if (!xattrs)
return 0;
return simple_xattr_list(inode, xattrs, buf, size);
}
static const struct inode_operations pidfs_inode_operations = {
.getattr = pidfs_getattr,
.setattr = pidfs_setattr,
.listxattr = pidfs_listxattr,
};
static void pidfs_evict_inode(struct inode *inode)
{
struct pid *pid = inode->i_private;
clear_inode(inode);
put_pid(pid);
}
static const struct super_operations pidfs_sops = {
.drop_inode = generic_delete_inode,
.evict_inode = pidfs_evict_inode,
.statfs = simple_statfs,
};
/*
* 'lsof' has knowledge of out historical anon_inode use, and expects
* the pidfs dentry name to start with 'anon_inode'.
*/
static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen)
{
return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]");
}
const struct dentry_operations pidfs_dentry_operations = {
.d_dname = pidfs_dname,
.d_prune = stashed_dentry_prune,
};
static int pidfs_encode_fh(struct inode *inode, u32 *fh, int *max_len,
struct inode *parent)
{
const struct pid *pid = inode->i_private;
if (*max_len < 2) {
*max_len = 2;
return FILEID_INVALID;
}
*max_len = 2;
*(u64 *)fh = pid->ino;
return FILEID_KERNFS;
}
static int pidfs_ino_find(const void *key, const struct rb_node *node)
{
const u64 pid_ino = *(u64 *)key;
const struct pid *pid = rb_entry(node, struct pid, pidfs_node);
if (pid_ino < pid->ino)
return -1;
if (pid_ino > pid->ino)
return 1;
return 0;
}
/* Find a struct pid based on the inode number. */
static struct pid *pidfs_ino_get_pid(u64 ino)
{
struct pid *pid;
struct rb_node *node;
unsigned int seq;
guard(rcu)();
do {
seq = read_seqcount_begin(&pidmap_lock_seq);
node = rb_find_rcu(&ino, &pidfs_ino_tree, pidfs_ino_find);
if (node)
break;
} while (read_seqcount_retry(&pidmap_lock_seq, seq));
if (!node)
return NULL;
pid = rb_entry(node, struct pid, pidfs_node);
/* Within our pid namespace hierarchy? */
if (pid_vnr(pid) == 0)
return NULL;
return get_pid(pid);
}
static struct dentry *pidfs_fh_to_dentry(struct super_block *sb,
struct fid *fid, int fh_len,
int fh_type)
{
int ret;
u64 pid_ino;
struct path path;
struct pid *pid;
if (fh_len < 2)
return NULL;
switch (fh_type) {
case FILEID_KERNFS:
pid_ino = *(u64 *)fid;
break;
default:
return NULL;
}
pid = pidfs_ino_get_pid(pid_ino);
if (!pid)
return NULL;
ret = path_from_stashed(&pid->stashed, pidfs_mnt, pid, &path);
if (ret < 0)
return ERR_PTR(ret);
VFS_WARN_ON_ONCE(!pid->attr);
mntput(path.mnt);
return path.dentry;
}
/*
* Make sure that we reject any nonsensical flags that users pass via
* open_by_handle_at(). Note that PIDFD_THREAD is defined as O_EXCL, and
* PIDFD_NONBLOCK as O_NONBLOCK.
*/
#define VALID_FILE_HANDLE_OPEN_FLAGS \
(O_RDONLY | O_WRONLY | O_RDWR | O_NONBLOCK | O_CLOEXEC | O_EXCL)
static int pidfs_export_permission(struct handle_to_path_ctx *ctx,
unsigned int oflags)
{
if (oflags & ~(VALID_FILE_HANDLE_OPEN_FLAGS | O_LARGEFILE))
return -EINVAL;
/*
* pidfd_ino_get_pid() will verify that the struct pid is part
* of the caller's pid namespace hierarchy. No further
* permission checks are needed.
*/
return 0;
}
static struct file *pidfs_export_open(struct path *path, unsigned int oflags)
{
/*
* Clear O_LARGEFILE as open_by_handle_at() forces it and raise
* O_RDWR as pidfds always are.
*/
oflags &= ~O_LARGEFILE;
return dentry_open(path, oflags | O_RDWR, current_cred());
}
static const struct export_operations pidfs_export_operations = {
.encode_fh = pidfs_encode_fh,
.fh_to_dentry = pidfs_fh_to_dentry,
.open = pidfs_export_open,
.permission = pidfs_export_permission,
};
static int pidfs_init_inode(struct inode *inode, void *data)
{
const struct pid *pid = data;
inode->i_private = data;
inode->i_flags |= S_PRIVATE | S_ANON_INODE;
/* We allow to set xattrs. */
inode->i_flags &= ~S_IMMUTABLE;
inode->i_mode |= S_IRWXU;
inode->i_op = &pidfs_inode_operations;
inode->i_fop = &pidfs_file_operations;
inode->i_ino = pidfs_ino(pid->ino);
inode->i_generation = pidfs_gen(pid->ino);
return 0;
}
static void pidfs_put_data(void *data)
{
struct pid *pid = data;
put_pid(pid);
}
/**
* pidfs_register_pid - register a struct pid in pidfs
* @pid: pid to pin
*
* Register a struct pid in pidfs.
*
* Return: On success zero, on error a negative error code is returned.
*/
int pidfs_register_pid(struct pid *pid)
{
struct pidfs_attr *new_attr __free(kfree) = NULL;
struct pidfs_attr *attr;
might_sleep();
if (!pid)
return 0;
attr = READ_ONCE(pid->attr);
if (unlikely(attr == PIDFS_PID_DEAD))
return PTR_ERR(PIDFS_PID_DEAD);
if (attr)
return 0;
new_attr = kmem_cache_zalloc(pidfs_attr_cachep, GFP_KERNEL);
if (!new_attr)
return -ENOMEM;
/* Synchronize with pidfs_exit(). */
guard(spinlock_irq)(&pid->wait_pidfd.lock);
attr = pid->attr;
if (unlikely(attr == PIDFS_PID_DEAD))
return PTR_ERR(PIDFS_PID_DEAD);
if (unlikely(attr))
return 0;
pid->attr = no_free_ptr(new_attr);
return 0;
}
static struct dentry *pidfs_stash_dentry(struct dentry **stashed,
struct dentry *dentry)
{
int ret;
struct pid *pid = d_inode(dentry)->i_private;
VFS_WARN_ON_ONCE(stashed != &pid->stashed);
ret = pidfs_register_pid(pid);
if (ret)
return ERR_PTR(ret);
return stash_dentry(stashed, dentry);
}
static const struct stashed_operations pidfs_stashed_ops = {
.stash_dentry = pidfs_stash_dentry,
.init_inode = pidfs_init_inode,
.put_data = pidfs_put_data,
};
static int pidfs_xattr_get(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *suffix, void *value, size_t size)
{
struct pid *pid = inode->i_private;
struct pidfs_attr *attr = pid->attr;
const char *name;
struct simple_xattrs *xattrs;
xattrs = READ_ONCE(attr->xattrs);
if (!xattrs)
return 0;
name = xattr_full_name(handler, suffix);
return simple_xattr_get(xattrs, name, value, size);
}
static int pidfs_xattr_set(const struct xattr_handler *handler,
struct mnt_idmap *idmap, struct dentry *unused,
struct inode *inode, const char *suffix,
const void *value, size_t size, int flags)
{
struct pid *pid = inode->i_private;
struct pidfs_attr *attr = pid->attr;
const char *name;
struct simple_xattrs *xattrs;
struct simple_xattr *old_xattr;
/* Ensure we're the only one to set @attr->xattrs. */
WARN_ON_ONCE(!inode_is_locked(inode));
xattrs = READ_ONCE(attr->xattrs);
if (!xattrs) {
xattrs = kmem_cache_zalloc(pidfs_xattr_cachep, GFP_KERNEL);
if (!xattrs)
return -ENOMEM;
simple_xattrs_init(xattrs);
smp_store_release(&pid->attr->xattrs, xattrs);
}
name = xattr_full_name(handler, suffix);
old_xattr = simple_xattr_set(xattrs, name, value, size, flags);
if (IS_ERR(old_xattr))
return PTR_ERR(old_xattr);
simple_xattr_free(old_xattr);
return 0;
}
static const struct xattr_handler pidfs_trusted_xattr_handler = {
.prefix = XATTR_TRUSTED_PREFIX,
.get = pidfs_xattr_get,
.set = pidfs_xattr_set,
};
static const struct xattr_handler *const pidfs_xattr_handlers[] = {
&pidfs_trusted_xattr_handler,
NULL
};
static int pidfs_init_fs_context(struct fs_context *fc)
{
struct pseudo_fs_context *ctx;
ctx = init_pseudo(fc, PID_FS_MAGIC);
if (!ctx)
return -ENOMEM;
fc->s_iflags |= SB_I_NOEXEC;
fc->s_iflags |= SB_I_NODEV;
ctx->ops = &pidfs_sops;
ctx->eops = &pidfs_export_operations;
ctx->dops = &pidfs_dentry_operations;
ctx->xattr = pidfs_xattr_handlers;
fc->s_fs_info = (void *)&pidfs_stashed_ops;
return 0;
}
static struct file_system_type pidfs_type = {
.name = "pidfs",
.init_fs_context = pidfs_init_fs_context,
.kill_sb = kill_anon_super,
};
struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags)
{
struct file *pidfd_file;
struct path path __free(path_put) = {};
int ret;
/*
* Ensure that PIDFD_STALE can be passed as a flag without
* overloading other uapi pidfd flags.
*/
BUILD_BUG_ON(PIDFD_STALE == PIDFD_THREAD);
BUILD_BUG_ON(PIDFD_STALE == PIDFD_NONBLOCK);
ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path);
if (ret < 0)
return ERR_PTR(ret);
VFS_WARN_ON_ONCE(!pid->attr);
flags &= ~PIDFD_STALE;
flags |= O_RDWR;
pidfd_file = dentry_open(&path, flags, current_cred());
/* Raise PIDFD_THREAD explicitly as do_dentry_open() strips it. */
if (!IS_ERR(pidfd_file))
pidfd_file->f_flags |= (flags & PIDFD_THREAD);
return pidfd_file;
}
void __init pidfs_init(void)
{
pidfs_attr_cachep = kmem_cache_create("pidfs_attr_cache", sizeof(struct pidfs_attr), 0,
(SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT |
SLAB_ACCOUNT | SLAB_PANIC), NULL);
pidfs_xattr_cachep = kmem_cache_create("pidfs_xattr_cache",
sizeof(struct simple_xattrs), 0,
(SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT |
SLAB_ACCOUNT | SLAB_PANIC), NULL);
pidfs_mnt = kern_mount(&pidfs_type);
if (IS_ERR(pidfs_mnt))
panic("Failed to mount pidfs pseudo filesystem");
pidfs_root_path.mnt = pidfs_mnt;
pidfs_root_path.dentry = pidfs_mnt->mnt_root;
}
|