1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
// SPDX-License-Identifier: GPL-2.0
/*
* Deferred user space unwinding
*/
#include <linux/sched/task_stack.h>
#include <linux/unwind_deferred.h>
#include <linux/sched/clock.h>
#include <linux/task_work.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/mm.h>
/*
* For requesting a deferred user space stack trace from NMI context
* the architecture must support a safe cmpxchg in NMI context.
* For those architectures that do not have that, then it cannot ask
* for a deferred user space stack trace from an NMI context. If it
* does, then it will get -EINVAL.
*/
#if defined(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG)
# define CAN_USE_IN_NMI 1
static inline bool try_assign_cnt(struct unwind_task_info *info, u32 cnt)
{
u32 old = 0;
return try_cmpxchg(&info->id.cnt, &old, cnt);
}
#else
# define CAN_USE_IN_NMI 0
/* When NMIs are not allowed, this always succeeds */
static inline bool try_assign_cnt(struct unwind_task_info *info, u32 cnt)
{
info->id.cnt = cnt;
return true;
}
#endif
/* Make the cache fit in a 4K page */
#define UNWIND_MAX_ENTRIES \
((SZ_4K - sizeof(struct unwind_cache)) / sizeof(long))
/* Guards adding to or removing from the list of callbacks */
static DEFINE_MUTEX(callback_mutex);
static LIST_HEAD(callbacks);
#define RESERVED_BITS (UNWIND_PENDING | UNWIND_USED)
/* Zero'd bits are available for assigning callback users */
static unsigned long unwind_mask = RESERVED_BITS;
DEFINE_STATIC_SRCU(unwind_srcu);
static inline bool unwind_pending(struct unwind_task_info *info)
{
return test_bit(UNWIND_PENDING_BIT, &info->unwind_mask);
}
/*
* This is a unique percpu identifier for a given task entry context.
* Conceptually, it's incremented every time the CPU enters the kernel from
* user space, so that each "entry context" on the CPU gets a unique ID. In
* reality, as an optimization, it's only incremented on demand for the first
* deferred unwind request after a given entry-from-user.
*
* It's combined with the CPU id to make a systemwide-unique "context cookie".
*/
static DEFINE_PER_CPU(u32, unwind_ctx_ctr);
/*
* The context cookie is a unique identifier that is assigned to a user
* space stacktrace. As the user space stacktrace remains the same while
* the task is in the kernel, the cookie is an identifier for the stacktrace.
* Although it is possible for the stacktrace to get another cookie if another
* request is made after the cookie was cleared and before reentering user
* space.
*/
static u64 get_cookie(struct unwind_task_info *info)
{
u32 cnt = 1;
if (info->id.cpu)
return info->id.id;
/* LSB is always set to ensure 0 is an invalid value */
cnt |= __this_cpu_read(unwind_ctx_ctr) + 2;
if (try_assign_cnt(info, cnt)) {
/* Update the per cpu counter */
__this_cpu_write(unwind_ctx_ctr, cnt);
}
/* Interrupts are disabled, the CPU will always be same */
info->id.cpu = smp_processor_id() + 1; /* Must be non zero */
return info->id.id;
}
/**
* unwind_user_faultable - Produce a user stacktrace in faultable context
* @trace: The descriptor that will store the user stacktrace
*
* This must be called in a known faultable context (usually when entering
* or exiting user space). Depending on the available implementations
* the @trace will be loaded with the addresses of the user space stacktrace
* if it can be found.
*
* Return: 0 on success and negative on error
* On success @trace will contain the user space stacktrace
*/
int unwind_user_faultable(struct unwind_stacktrace *trace)
{
struct unwind_task_info *info = ¤t->unwind_info;
struct unwind_cache *cache;
/* Should always be called from faultable context */
might_fault();
if (!current->mm)
return -EINVAL;
if (!info->cache) {
info->cache = kzalloc(struct_size(cache, entries, UNWIND_MAX_ENTRIES),
GFP_KERNEL);
if (!info->cache)
return -ENOMEM;
}
cache = info->cache;
trace->entries = cache->entries;
if (cache->nr_entries) {
/*
* The user stack has already been previously unwound in this
* entry context. Skip the unwind and use the cache.
*/
trace->nr = cache->nr_entries;
return 0;
}
trace->nr = 0;
unwind_user(trace, UNWIND_MAX_ENTRIES);
cache->nr_entries = trace->nr;
/* Clear nr_entries on way back to user space */
set_bit(UNWIND_USED_BIT, &info->unwind_mask);
return 0;
}
static void process_unwind_deferred(struct task_struct *task)
{
struct unwind_task_info *info = &task->unwind_info;
struct unwind_stacktrace trace;
struct unwind_work *work;
unsigned long bits;
u64 cookie;
if (WARN_ON_ONCE(!unwind_pending(info)))
return;
/* Clear pending bit but make sure to have the current bits */
bits = atomic_long_fetch_andnot(UNWIND_PENDING,
(atomic_long_t *)&info->unwind_mask);
/*
* From here on out, the callback must always be called, even if it's
* just an empty trace.
*/
trace.nr = 0;
trace.entries = NULL;
unwind_user_faultable(&trace);
if (info->cache)
bits &= ~(info->cache->unwind_completed);
cookie = info->id.id;
guard(srcu)(&unwind_srcu);
list_for_each_entry_srcu(work, &callbacks, list,
srcu_read_lock_held(&unwind_srcu)) {
if (test_bit(work->bit, &bits)) {
work->func(work, &trace, cookie);
if (info->cache)
info->cache->unwind_completed |= BIT(work->bit);
}
}
}
static void unwind_deferred_task_work(struct callback_head *head)
{
process_unwind_deferred(current);
}
void unwind_deferred_task_exit(struct task_struct *task)
{
struct unwind_task_info *info = ¤t->unwind_info;
if (!unwind_pending(info))
return;
process_unwind_deferred(task);
task_work_cancel(task, &info->work);
}
/**
* unwind_deferred_request - Request a user stacktrace on task kernel exit
* @work: Unwind descriptor requesting the trace
* @cookie: The cookie of the first request made for this task
*
* Schedule a user space unwind to be done in task work before exiting the
* kernel.
*
* The returned @cookie output is the generated cookie of the very first
* request for a user space stacktrace for this task since it entered the
* kernel. It can be from a request by any caller of this infrastructure.
* Its value will also be passed to the callback function. It can be
* used to stitch kernel and user stack traces together in post-processing.
*
* It's valid to call this function multiple times for the same @work within
* the same task entry context. Each call will return the same cookie
* while the task hasn't left the kernel. If the callback is not pending
* because it has already been previously called for the same entry context,
* it will be called again with the same stack trace and cookie.
*
* Return: 0 if the callback successfully was queued.
* 1 if the callback is pending or was already executed.
* Negative if there's an error.
* @cookie holds the cookie of the first request by any user
*/
int unwind_deferred_request(struct unwind_work *work, u64 *cookie)
{
struct unwind_task_info *info = ¤t->unwind_info;
unsigned long old, bits;
unsigned long bit;
int ret;
*cookie = 0;
if ((current->flags & (PF_KTHREAD | PF_EXITING)) ||
!user_mode(task_pt_regs(current)))
return -EINVAL;
/*
* NMI requires having safe cmpxchg operations.
* Trigger a warning to make it obvious that an architecture
* is using this in NMI when it should not be.
*/
if (WARN_ON_ONCE(!CAN_USE_IN_NMI && in_nmi()))
return -EINVAL;
/* Do not allow cancelled works to request again */
bit = READ_ONCE(work->bit);
if (WARN_ON_ONCE(bit < 0))
return -EINVAL;
/* Only need the mask now */
bit = BIT(bit);
guard(irqsave)();
*cookie = get_cookie(info);
old = READ_ONCE(info->unwind_mask);
/* Is this already queued or executed */
if (old & bit)
return 1;
/*
* This work's bit hasn't been set yet. Now set it with the PENDING
* bit and fetch the current value of unwind_mask. If ether the
* work's bit or PENDING was already set, then this is already queued
* to have a callback.
*/
bits = UNWIND_PENDING | bit;
old = atomic_long_fetch_or(bits, (atomic_long_t *)&info->unwind_mask);
if (old & bits) {
/*
* If the work's bit was set, whatever set it had better
* have also set pending and queued a callback.
*/
WARN_ON_ONCE(!(old & UNWIND_PENDING));
return old & bit;
}
/* The work has been claimed, now schedule it. */
ret = task_work_add(current, &info->work, TWA_RESUME);
if (WARN_ON_ONCE(ret))
WRITE_ONCE(info->unwind_mask, 0);
return ret;
}
void unwind_deferred_cancel(struct unwind_work *work)
{
struct task_struct *g, *t;
int bit;
if (!work)
return;
bit = work->bit;
/* No work should be using a reserved bit */
if (WARN_ON_ONCE(BIT(bit) & RESERVED_BITS))
return;
guard(mutex)(&callback_mutex);
list_del_rcu(&work->list);
/* Do not allow any more requests and prevent callbacks */
work->bit = -1;
__clear_bit(bit, &unwind_mask);
synchronize_srcu(&unwind_srcu);
guard(rcu)();
/* Clear this bit from all threads */
for_each_process_thread(g, t) {
clear_bit(bit, &t->unwind_info.unwind_mask);
if (t->unwind_info.cache)
clear_bit(bit, &t->unwind_info.cache->unwind_completed);
}
}
int unwind_deferred_init(struct unwind_work *work, unwind_callback_t func)
{
memset(work, 0, sizeof(*work));
guard(mutex)(&callback_mutex);
/* See if there's a bit in the mask available */
if (unwind_mask == ~0UL)
return -EBUSY;
work->bit = ffz(unwind_mask);
__set_bit(work->bit, &unwind_mask);
list_add_rcu(&work->list, &callbacks);
work->func = func;
return 0;
}
void unwind_task_init(struct task_struct *task)
{
struct unwind_task_info *info = &task->unwind_info;
memset(info, 0, sizeof(*info));
init_task_work(&info->work, unwind_deferred_task_work);
info->unwind_mask = 0;
}
void unwind_task_free(struct task_struct *task)
{
struct unwind_task_info *info = &task->unwind_info;
kfree(info->cache);
task_work_cancel(task, &info->work);
}
|