1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Contiguous Memory Allocator
*
* Copyright (c) 2010-2011 by Samsung Electronics.
* Copyright IBM Corporation, 2013
* Copyright LG Electronics Inc., 2014
* Written by:
* Marek Szyprowski <m.szyprowski@samsung.com>
* Michal Nazarewicz <mina86@mina86.com>
* Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
* Joonsoo Kim <iamjoonsoo.kim@lge.com>
*/
#define pr_fmt(fmt) "cma: " fmt
#define CREATE_TRACE_POINTS
#include <linux/memblock.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/string_choices.h>
#include <linux/log2.h>
#include <linux/cma.h>
#include <linux/highmem.h>
#include <linux/io.h>
#include <linux/kmemleak.h>
#include <trace/events/cma.h>
#include "internal.h"
#include "cma.h"
struct cma cma_areas[MAX_CMA_AREAS];
unsigned int cma_area_count;
phys_addr_t cma_get_base(const struct cma *cma)
{
WARN_ON_ONCE(cma->nranges != 1);
return PFN_PHYS(cma->ranges[0].base_pfn);
}
unsigned long cma_get_size(const struct cma *cma)
{
return cma->count << PAGE_SHIFT;
}
const char *cma_get_name(const struct cma *cma)
{
return cma->name;
}
static unsigned long cma_bitmap_aligned_mask(const struct cma *cma,
unsigned int align_order)
{
if (align_order <= cma->order_per_bit)
return 0;
return (1UL << (align_order - cma->order_per_bit)) - 1;
}
/*
* Find the offset of the base PFN from the specified align_order.
* The value returned is represented in order_per_bits.
*/
static unsigned long cma_bitmap_aligned_offset(const struct cma *cma,
const struct cma_memrange *cmr,
unsigned int align_order)
{
return (cmr->base_pfn & ((1UL << align_order) - 1))
>> cma->order_per_bit;
}
static unsigned long cma_bitmap_pages_to_bits(const struct cma *cma,
unsigned long pages)
{
return ALIGN(pages, 1UL << cma->order_per_bit) >> cma->order_per_bit;
}
static void cma_clear_bitmap(struct cma *cma, const struct cma_memrange *cmr,
unsigned long pfn, unsigned long count)
{
unsigned long bitmap_no, bitmap_count;
unsigned long flags;
bitmap_no = (pfn - cmr->base_pfn) >> cma->order_per_bit;
bitmap_count = cma_bitmap_pages_to_bits(cma, count);
spin_lock_irqsave(&cma->lock, flags);
bitmap_clear(cmr->bitmap, bitmap_no, bitmap_count);
cma->available_count += count;
spin_unlock_irqrestore(&cma->lock, flags);
}
/*
* Check if a CMA area contains no ranges that intersect with
* multiple zones. Store the result in the flags in case
* this gets called more than once.
*/
bool cma_validate_zones(struct cma *cma)
{
int r;
unsigned long base_pfn;
struct cma_memrange *cmr;
bool valid_bit_set;
/*
* If already validated, return result of previous check.
* Either the valid or invalid bit will be set if this
* check has already been done. If neither is set, the
* check has not been performed yet.
*/
valid_bit_set = test_bit(CMA_ZONES_VALID, &cma->flags);
if (valid_bit_set || test_bit(CMA_ZONES_INVALID, &cma->flags))
return valid_bit_set;
for (r = 0; r < cma->nranges; r++) {
cmr = &cma->ranges[r];
base_pfn = cmr->base_pfn;
/*
* alloc_contig_range() requires the pfn range specified
* to be in the same zone. Simplify by forcing the entire
* CMA resv range to be in the same zone.
*/
WARN_ON_ONCE(!pfn_valid(base_pfn));
if (pfn_range_intersects_zones(cma->nid, base_pfn, cmr->count)) {
set_bit(CMA_ZONES_INVALID, &cma->flags);
return false;
}
}
set_bit(CMA_ZONES_VALID, &cma->flags);
return true;
}
static void __init cma_activate_area(struct cma *cma)
{
unsigned long pfn, end_pfn, early_pfn[CMA_MAX_RANGES];
int allocrange, r;
struct cma_memrange *cmr;
unsigned long bitmap_count, count;
for (allocrange = 0; allocrange < cma->nranges; allocrange++) {
cmr = &cma->ranges[allocrange];
early_pfn[allocrange] = cmr->early_pfn;
cmr->bitmap = bitmap_zalloc(cma_bitmap_maxno(cma, cmr),
GFP_KERNEL);
if (!cmr->bitmap)
goto cleanup;
}
if (!cma_validate_zones(cma))
goto cleanup;
for (r = 0; r < cma->nranges; r++) {
cmr = &cma->ranges[r];
if (early_pfn[r] != cmr->base_pfn) {
count = early_pfn[r] - cmr->base_pfn;
bitmap_count = cma_bitmap_pages_to_bits(cma, count);
bitmap_set(cmr->bitmap, 0, bitmap_count);
}
for (pfn = early_pfn[r]; pfn < cmr->base_pfn + cmr->count;
pfn += pageblock_nr_pages)
init_cma_reserved_pageblock(pfn_to_page(pfn));
}
spin_lock_init(&cma->lock);
mutex_init(&cma->alloc_mutex);
#ifdef CONFIG_CMA_DEBUGFS
INIT_HLIST_HEAD(&cma->mem_head);
spin_lock_init(&cma->mem_head_lock);
#endif
set_bit(CMA_ACTIVATED, &cma->flags);
return;
cleanup:
for (r = 0; r < allocrange; r++)
bitmap_free(cma->ranges[r].bitmap);
/* Expose all pages to the buddy, they are useless for CMA. */
if (!test_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags)) {
for (r = 0; r < allocrange; r++) {
cmr = &cma->ranges[r];
end_pfn = cmr->base_pfn + cmr->count;
for (pfn = early_pfn[r]; pfn < end_pfn; pfn++)
free_reserved_page(pfn_to_page(pfn));
}
}
totalcma_pages -= cma->count;
cma->available_count = cma->count = 0;
pr_err("CMA area %s could not be activated\n", cma->name);
}
static int __init cma_init_reserved_areas(void)
{
int i;
for (i = 0; i < cma_area_count; i++)
cma_activate_area(&cma_areas[i]);
return 0;
}
core_initcall(cma_init_reserved_areas);
void __init cma_reserve_pages_on_error(struct cma *cma)
{
set_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags);
}
static int __init cma_new_area(const char *name, phys_addr_t size,
unsigned int order_per_bit,
struct cma **res_cma)
{
struct cma *cma;
if (cma_area_count == ARRAY_SIZE(cma_areas)) {
pr_err("Not enough slots for CMA reserved regions!\n");
return -ENOSPC;
}
/*
* Each reserved area must be initialised later, when more kernel
* subsystems (like slab allocator) are available.
*/
cma = &cma_areas[cma_area_count];
cma_area_count++;
if (name)
snprintf(cma->name, CMA_MAX_NAME, "%s", name);
else
snprintf(cma->name, CMA_MAX_NAME, "cma%d\n", cma_area_count);
cma->available_count = cma->count = size >> PAGE_SHIFT;
cma->order_per_bit = order_per_bit;
*res_cma = cma;
totalcma_pages += cma->count;
return 0;
}
static void __init cma_drop_area(struct cma *cma)
{
totalcma_pages -= cma->count;
cma_area_count--;
}
/**
* cma_init_reserved_mem() - create custom contiguous area from reserved memory
* @base: Base address of the reserved area
* @size: Size of the reserved area (in bytes),
* @order_per_bit: Order of pages represented by one bit on bitmap.
* @name: The name of the area. If this parameter is NULL, the name of
* the area will be set to "cmaN", where N is a running counter of
* used areas.
* @res_cma: Pointer to store the created cma region.
*
* This function creates custom contiguous area from already reserved memory.
*/
int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size,
unsigned int order_per_bit,
const char *name,
struct cma **res_cma)
{
struct cma *cma;
int ret;
/* Sanity checks */
if (!size || !memblock_is_region_reserved(base, size))
return -EINVAL;
/*
* CMA uses CMA_MIN_ALIGNMENT_BYTES as alignment requirement which
* needs pageblock_order to be initialized. Let's enforce it.
*/
if (!pageblock_order) {
pr_err("pageblock_order not yet initialized. Called during early boot?\n");
return -EINVAL;
}
/* ensure minimal alignment required by mm core */
if (!IS_ALIGNED(base | size, CMA_MIN_ALIGNMENT_BYTES))
return -EINVAL;
ret = cma_new_area(name, size, order_per_bit, &cma);
if (ret != 0)
return ret;
cma->ranges[0].base_pfn = PFN_DOWN(base);
cma->ranges[0].early_pfn = PFN_DOWN(base);
cma->ranges[0].count = cma->count;
cma->nranges = 1;
cma->nid = NUMA_NO_NODE;
*res_cma = cma;
return 0;
}
/*
* Structure used while walking physical memory ranges and finding out
* which one(s) to use for a CMA area.
*/
struct cma_init_memrange {
phys_addr_t base;
phys_addr_t size;
struct list_head list;
};
/*
* Work array used during CMA initialization.
*/
static struct cma_init_memrange memranges[CMA_MAX_RANGES] __initdata;
static bool __init revsizecmp(struct cma_init_memrange *mlp,
struct cma_init_memrange *mrp)
{
return mlp->size > mrp->size;
}
static bool __init basecmp(struct cma_init_memrange *mlp,
struct cma_init_memrange *mrp)
{
return mlp->base < mrp->base;
}
/*
* Helper function to create sorted lists.
*/
static void __init list_insert_sorted(
struct list_head *ranges,
struct cma_init_memrange *mrp,
bool (*cmp)(struct cma_init_memrange *lh, struct cma_init_memrange *rh))
{
struct list_head *mp;
struct cma_init_memrange *mlp;
if (list_empty(ranges))
list_add(&mrp->list, ranges);
else {
list_for_each(mp, ranges) {
mlp = list_entry(mp, struct cma_init_memrange, list);
if (cmp(mlp, mrp))
break;
}
__list_add(&mrp->list, mlp->list.prev, &mlp->list);
}
}
static int __init cma_fixed_reserve(phys_addr_t base, phys_addr_t size)
{
if (IS_ENABLED(CONFIG_HIGHMEM)) {
phys_addr_t highmem_start = __pa(high_memory - 1) + 1;
/*
* If allocating at a fixed base the request region must not
* cross the low/high memory boundary.
*/
if (base < highmem_start && base + size > highmem_start) {
pr_err("Region at %pa defined on low/high memory boundary (%pa)\n",
&base, &highmem_start);
return -EINVAL;
}
}
if (memblock_is_region_reserved(base, size) ||
memblock_reserve(base, size) < 0) {
return -EBUSY;
}
return 0;
}
static phys_addr_t __init cma_alloc_mem(phys_addr_t base, phys_addr_t size,
phys_addr_t align, phys_addr_t limit, int nid)
{
phys_addr_t addr = 0;
/*
* If there is enough memory, try a bottom-up allocation first.
* It will place the new cma area close to the start of the node
* and guarantee that the compaction is moving pages out of the
* cma area and not into it.
* Avoid using first 4GB to not interfere with constrained zones
* like DMA/DMA32.
*/
#ifdef CONFIG_PHYS_ADDR_T_64BIT
if (!memblock_bottom_up() && limit >= SZ_4G + size) {
memblock_set_bottom_up(true);
addr = memblock_alloc_range_nid(size, align, SZ_4G, limit,
nid, true);
memblock_set_bottom_up(false);
}
#endif
/*
* On systems with HIGHMEM try allocating from there before consuming
* memory in lower zones.
*/
if (!addr && IS_ENABLED(CONFIG_HIGHMEM)) {
phys_addr_t highmem = __pa(high_memory - 1) + 1;
/*
* All pages in the reserved area must come from the same zone.
* If the requested region crosses the low/high memory boundary,
* try allocating from high memory first and fall back to low
* memory in case of failure.
*/
if (base < highmem && limit > highmem) {
addr = memblock_alloc_range_nid(size, align, highmem,
limit, nid, true);
limit = highmem;
}
}
if (!addr)
addr = memblock_alloc_range_nid(size, align, base, limit, nid,
true);
return addr;
}
static int __init __cma_declare_contiguous_nid(phys_addr_t *basep,
phys_addr_t size, phys_addr_t limit,
phys_addr_t alignment, unsigned int order_per_bit,
bool fixed, const char *name, struct cma **res_cma,
int nid)
{
phys_addr_t memblock_end = memblock_end_of_DRAM();
phys_addr_t base = *basep;
int ret;
pr_debug("%s(size %pa, base %pa, limit %pa alignment %pa)\n",
__func__, &size, &base, &limit, &alignment);
if (cma_area_count == ARRAY_SIZE(cma_areas)) {
pr_err("Not enough slots for CMA reserved regions!\n");
return -ENOSPC;
}
if (!size)
return -EINVAL;
if (alignment && !is_power_of_2(alignment))
return -EINVAL;
if (!IS_ENABLED(CONFIG_NUMA))
nid = NUMA_NO_NODE;
/* Sanitise input arguments. */
alignment = max_t(phys_addr_t, alignment, CMA_MIN_ALIGNMENT_BYTES);
if (fixed && base & (alignment - 1)) {
pr_err("Region at %pa must be aligned to %pa bytes\n",
&base, &alignment);
return -EINVAL;
}
base = ALIGN(base, alignment);
size = ALIGN(size, alignment);
limit &= ~(alignment - 1);
if (!base)
fixed = false;
/* size should be aligned with order_per_bit */
if (!IS_ALIGNED(size >> PAGE_SHIFT, 1 << order_per_bit))
return -EINVAL;
/*
* If the limit is unspecified or above the memblock end, its effective
* value will be the memblock end. Set it explicitly to simplify further
* checks.
*/
if (limit == 0 || limit > memblock_end)
limit = memblock_end;
if (base + size > limit) {
pr_err("Size (%pa) of region at %pa exceeds limit (%pa)\n",
&size, &base, &limit);
return -EINVAL;
}
/* Reserve memory */
if (fixed) {
ret = cma_fixed_reserve(base, size);
if (ret)
return ret;
} else {
base = cma_alloc_mem(base, size, alignment, limit, nid);
if (!base)
return -ENOMEM;
/*
* kmemleak scans/reads tracked objects for pointers to other
* objects but this address isn't mapped and accessible
*/
kmemleak_ignore_phys(base);
}
ret = cma_init_reserved_mem(base, size, order_per_bit, name, res_cma);
if (ret) {
memblock_phys_free(base, size);
return ret;
}
(*res_cma)->nid = nid;
*basep = base;
return 0;
}
/*
* Create CMA areas with a total size of @total_size. A normal allocation
* for one area is tried first. If that fails, the biggest memblock
* ranges above 4G are selected, and allocated bottom up.
*
* The complexity here is not great, but this function will only be
* called during boot, and the lists operated on have fewer than
* CMA_MAX_RANGES elements (default value: 8).
*/
int __init cma_declare_contiguous_multi(phys_addr_t total_size,
phys_addr_t align, unsigned int order_per_bit,
const char *name, struct cma **res_cma, int nid)
{
phys_addr_t start = 0, end;
phys_addr_t size, sizesum, sizeleft;
struct cma_init_memrange *mrp, *mlp, *failed;
struct cma_memrange *cmrp;
LIST_HEAD(ranges);
LIST_HEAD(final_ranges);
struct list_head *mp, *next;
int ret, nr = 1;
u64 i;
struct cma *cma;
/*
* First, try it the normal way, producing just one range.
*/
ret = __cma_declare_contiguous_nid(&start, total_size, 0, align,
order_per_bit, false, name, res_cma, nid);
if (ret != -ENOMEM)
goto out;
/*
* Couldn't find one range that fits our needs, so try multiple
* ranges.
*
* No need to do the alignment checks here, the call to
* cma_declare_contiguous_nid above would have caught
* any issues. With the checks, we know that:
*
* - @align is a power of 2
* - @align is >= pageblock alignment
* - @size is aligned to @align and to @order_per_bit
*
* So, as long as we create ranges that have a base
* aligned to @align, and a size that is aligned to
* both @align and @order_to_bit, things will work out.
*/
nr = 0;
sizesum = 0;
failed = NULL;
ret = cma_new_area(name, total_size, order_per_bit, &cma);
if (ret != 0)
goto out;
align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
/*
* Create a list of ranges above 4G, largest range first.
*/
for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &start, &end, NULL) {
if (upper_32_bits(start) == 0)
continue;
start = ALIGN(start, align);
if (start >= end)
continue;
end = ALIGN_DOWN(end, align);
if (end <= start)
continue;
size = end - start;
size = ALIGN_DOWN(size, (PAGE_SIZE << order_per_bit));
if (!size)
continue;
sizesum += size;
pr_debug("consider %016llx - %016llx\n", (u64)start, (u64)end);
/*
* If we don't yet have used the maximum number of
* areas, grab a new one.
*
* If we can't use anymore, see if this range is not
* smaller than the smallest one already recorded. If
* not, re-use the smallest element.
*/
if (nr < CMA_MAX_RANGES)
mrp = &memranges[nr++];
else {
mrp = list_last_entry(&ranges,
struct cma_init_memrange, list);
if (size < mrp->size)
continue;
list_del(&mrp->list);
sizesum -= mrp->size;
pr_debug("deleted %016llx - %016llx from the list\n",
(u64)mrp->base, (u64)mrp->base + size);
}
mrp->base = start;
mrp->size = size;
/*
* Now do a sorted insert.
*/
list_insert_sorted(&ranges, mrp, revsizecmp);
pr_debug("added %016llx - %016llx to the list\n",
(u64)mrp->base, (u64)mrp->base + size);
pr_debug("total size now %llu\n", (u64)sizesum);
}
/*
* There is not enough room in the CMA_MAX_RANGES largest
* ranges, so bail out.
*/
if (sizesum < total_size) {
cma_drop_area(cma);
ret = -ENOMEM;
goto out;
}
/*
* Found ranges that provide enough combined space.
* Now, sorted them by address, smallest first, because we
* want to mimic a bottom-up memblock allocation.
*/
sizesum = 0;
list_for_each_safe(mp, next, &ranges) {
mlp = list_entry(mp, struct cma_init_memrange, list);
list_del(mp);
list_insert_sorted(&final_ranges, mlp, basecmp);
sizesum += mlp->size;
if (sizesum >= total_size)
break;
}
/*
* Walk the final list, and add a CMA range for
* each range, possibly not using the last one fully.
*/
nr = 0;
sizeleft = total_size;
list_for_each(mp, &final_ranges) {
mlp = list_entry(mp, struct cma_init_memrange, list);
size = min(sizeleft, mlp->size);
if (memblock_reserve(mlp->base, size)) {
/*
* Unexpected error. Could go on to
* the next one, but just abort to
* be safe.
*/
failed = mlp;
break;
}
pr_debug("created region %d: %016llx - %016llx\n",
nr, (u64)mlp->base, (u64)mlp->base + size);
cmrp = &cma->ranges[nr++];
cmrp->base_pfn = PHYS_PFN(mlp->base);
cmrp->early_pfn = cmrp->base_pfn;
cmrp->count = size >> PAGE_SHIFT;
sizeleft -= size;
if (sizeleft == 0)
break;
}
if (failed) {
list_for_each(mp, &final_ranges) {
mlp = list_entry(mp, struct cma_init_memrange, list);
if (mlp == failed)
break;
memblock_phys_free(mlp->base, mlp->size);
}
cma_drop_area(cma);
ret = -ENOMEM;
goto out;
}
cma->nranges = nr;
cma->nid = nid;
*res_cma = cma;
out:
if (ret != 0)
pr_err("Failed to reserve %lu MiB\n",
(unsigned long)total_size / SZ_1M);
else
pr_info("Reserved %lu MiB in %d range%s\n",
(unsigned long)total_size / SZ_1M, nr, str_plural(nr));
return ret;
}
/**
* cma_declare_contiguous_nid() - reserve custom contiguous area
* @base: Base address of the reserved area optional, use 0 for any
* @size: Size of the reserved area (in bytes),
* @limit: End address of the reserved memory (optional, 0 for any).
* @alignment: Alignment for the CMA area, should be power of 2 or zero
* @order_per_bit: Order of pages represented by one bit on bitmap.
* @fixed: hint about where to place the reserved area
* @name: The name of the area. See function cma_init_reserved_mem()
* @res_cma: Pointer to store the created cma region.
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
*
* This function reserves memory from early allocator. It should be
* called by arch specific code once the early allocator (memblock or bootmem)
* has been activated and all other subsystems have already allocated/reserved
* memory. This function allows to create custom reserved areas.
*
* If @fixed is true, reserve contiguous area at exactly @base. If false,
* reserve in range from @base to @limit.
*/
int __init cma_declare_contiguous_nid(phys_addr_t base,
phys_addr_t size, phys_addr_t limit,
phys_addr_t alignment, unsigned int order_per_bit,
bool fixed, const char *name, struct cma **res_cma,
int nid)
{
int ret;
ret = __cma_declare_contiguous_nid(&base, size, limit, alignment,
order_per_bit, fixed, name, res_cma, nid);
if (ret != 0)
pr_err("Failed to reserve %ld MiB\n",
(unsigned long)size / SZ_1M);
else
pr_info("Reserved %ld MiB at %pa\n",
(unsigned long)size / SZ_1M, &base);
return ret;
}
static void cma_debug_show_areas(struct cma *cma)
{
unsigned long start, end;
unsigned long nr_part;
unsigned long nbits;
int r;
struct cma_memrange *cmr;
spin_lock_irq(&cma->lock);
pr_info("number of available pages: ");
for (r = 0; r < cma->nranges; r++) {
cmr = &cma->ranges[r];
nbits = cma_bitmap_maxno(cma, cmr);
pr_info("range %d: ", r);
for_each_clear_bitrange(start, end, cmr->bitmap, nbits) {
nr_part = (end - start) << cma->order_per_bit;
pr_cont("%s%lu@%lu", start ? "+" : "", nr_part, start);
}
pr_info("\n");
}
pr_cont("=> %lu free of %lu total pages\n", cma->available_count,
cma->count);
spin_unlock_irq(&cma->lock);
}
static int cma_range_alloc(struct cma *cma, struct cma_memrange *cmr,
unsigned long count, unsigned int align,
struct page **pagep, gfp_t gfp)
{
unsigned long mask, offset;
unsigned long pfn = -1;
unsigned long start = 0;
unsigned long bitmap_maxno, bitmap_no, bitmap_count;
int ret = -EBUSY;
struct page *page = NULL;
mask = cma_bitmap_aligned_mask(cma, align);
offset = cma_bitmap_aligned_offset(cma, cmr, align);
bitmap_maxno = cma_bitmap_maxno(cma, cmr);
bitmap_count = cma_bitmap_pages_to_bits(cma, count);
if (bitmap_count > bitmap_maxno)
goto out;
for (;;) {
spin_lock_irq(&cma->lock);
/*
* If the request is larger than the available number
* of pages, stop right away.
*/
if (count > cma->available_count) {
spin_unlock_irq(&cma->lock);
break;
}
bitmap_no = bitmap_find_next_zero_area_off(cmr->bitmap,
bitmap_maxno, start, bitmap_count, mask,
offset);
if (bitmap_no >= bitmap_maxno) {
spin_unlock_irq(&cma->lock);
break;
}
bitmap_set(cmr->bitmap, bitmap_no, bitmap_count);
cma->available_count -= count;
/*
* It's safe to drop the lock here. We've marked this region for
* our exclusive use. If the migration fails we will take the
* lock again and unmark it.
*/
spin_unlock_irq(&cma->lock);
pfn = cmr->base_pfn + (bitmap_no << cma->order_per_bit);
mutex_lock(&cma->alloc_mutex);
ret = alloc_contig_range(pfn, pfn + count, ACR_FLAGS_CMA, gfp);
mutex_unlock(&cma->alloc_mutex);
if (ret == 0) {
page = pfn_to_page(pfn);
break;
}
cma_clear_bitmap(cma, cmr, pfn, count);
if (ret != -EBUSY)
break;
pr_debug("%s(): memory range at pfn 0x%lx %p is busy, retrying\n",
__func__, pfn, pfn_to_page(pfn));
trace_cma_alloc_busy_retry(cma->name, pfn, pfn_to_page(pfn),
count, align);
/* try again with a bit different memory target */
start = bitmap_no + mask + 1;
}
out:
*pagep = page;
return ret;
}
static struct page *__cma_alloc(struct cma *cma, unsigned long count,
unsigned int align, gfp_t gfp)
{
struct page *page = NULL;
int ret = -ENOMEM, r;
unsigned long i;
const char *name = cma ? cma->name : NULL;
if (!cma || !cma->count)
return page;
pr_debug("%s(cma %p, name: %s, count %lu, align %d)\n", __func__,
(void *)cma, cma->name, count, align);
if (!count)
return page;
trace_cma_alloc_start(name, count, align);
for (r = 0; r < cma->nranges; r++) {
page = NULL;
ret = cma_range_alloc(cma, &cma->ranges[r], count, align,
&page, gfp);
if (ret != -EBUSY || page)
break;
}
/*
* CMA can allocate multiple page blocks, which results in different
* blocks being marked with different tags. Reset the tags to ignore
* those page blocks.
*/
if (page) {
for (i = 0; i < count; i++)
page_kasan_tag_reset(nth_page(page, i));
}
if (ret && !(gfp & __GFP_NOWARN)) {
pr_err_ratelimited("%s: %s: alloc failed, req-size: %lu pages, ret: %d\n",
__func__, cma->name, count, ret);
cma_debug_show_areas(cma);
}
pr_debug("%s(): returned %p\n", __func__, page);
trace_cma_alloc_finish(name, page ? page_to_pfn(page) : 0,
page, count, align, ret);
if (page) {
count_vm_event(CMA_ALLOC_SUCCESS);
cma_sysfs_account_success_pages(cma, count);
} else {
count_vm_event(CMA_ALLOC_FAIL);
cma_sysfs_account_fail_pages(cma, count);
}
return page;
}
/**
* cma_alloc() - allocate pages from contiguous area
* @cma: Contiguous memory region for which the allocation is performed.
* @count: Requested number of pages.
* @align: Requested alignment of pages (in PAGE_SIZE order).
* @no_warn: Avoid printing message about failed allocation
*
* This function allocates part of contiguous memory on specific
* contiguous memory area.
*/
struct page *cma_alloc(struct cma *cma, unsigned long count,
unsigned int align, bool no_warn)
{
return __cma_alloc(cma, count, align, GFP_KERNEL | (no_warn ? __GFP_NOWARN : 0));
}
struct folio *cma_alloc_folio(struct cma *cma, int order, gfp_t gfp)
{
struct page *page;
if (WARN_ON(!order || !(gfp & __GFP_COMP)))
return NULL;
page = __cma_alloc(cma, 1 << order, order, gfp);
return page ? page_folio(page) : NULL;
}
bool cma_pages_valid(struct cma *cma, const struct page *pages,
unsigned long count)
{
unsigned long pfn, end;
int r;
struct cma_memrange *cmr;
bool ret;
if (!cma || !pages || count > cma->count)
return false;
pfn = page_to_pfn(pages);
ret = false;
for (r = 0; r < cma->nranges; r++) {
cmr = &cma->ranges[r];
end = cmr->base_pfn + cmr->count;
if (pfn >= cmr->base_pfn && pfn < end) {
ret = pfn + count <= end;
break;
}
}
if (!ret)
pr_debug("%s(page %p, count %lu)\n",
__func__, (void *)pages, count);
return ret;
}
/**
* cma_release() - release allocated pages
* @cma: Contiguous memory region for which the allocation is performed.
* @pages: Allocated pages.
* @count: Number of allocated pages.
*
* This function releases memory allocated by cma_alloc().
* It returns false when provided pages do not belong to contiguous area and
* true otherwise.
*/
bool cma_release(struct cma *cma, const struct page *pages,
unsigned long count)
{
struct cma_memrange *cmr;
unsigned long pfn, end_pfn;
int r;
pr_debug("%s(page %p, count %lu)\n", __func__, (void *)pages, count);
if (!cma_pages_valid(cma, pages, count))
return false;
pfn = page_to_pfn(pages);
end_pfn = pfn + count;
for (r = 0; r < cma->nranges; r++) {
cmr = &cma->ranges[r];
if (pfn >= cmr->base_pfn &&
pfn < (cmr->base_pfn + cmr->count)) {
VM_BUG_ON(end_pfn > cmr->base_pfn + cmr->count);
break;
}
}
if (r == cma->nranges)
return false;
free_contig_range(pfn, count);
cma_clear_bitmap(cma, cmr, pfn, count);
cma_sysfs_account_release_pages(cma, count);
trace_cma_release(cma->name, pfn, pages, count);
return true;
}
bool cma_free_folio(struct cma *cma, const struct folio *folio)
{
if (WARN_ON(!folio_test_large(folio)))
return false;
return cma_release(cma, &folio->page, folio_nr_pages(folio));
}
int cma_for_each_area(int (*it)(struct cma *cma, void *data), void *data)
{
int i;
for (i = 0; i < cma_area_count; i++) {
int ret = it(&cma_areas[i], data);
if (ret)
return ret;
}
return 0;
}
bool cma_intersects(struct cma *cma, unsigned long start, unsigned long end)
{
int r;
struct cma_memrange *cmr;
unsigned long rstart, rend;
for (r = 0; r < cma->nranges; r++) {
cmr = &cma->ranges[r];
rstart = PFN_PHYS(cmr->base_pfn);
rend = PFN_PHYS(cmr->base_pfn + cmr->count);
if (end < rstart)
continue;
if (start >= rend)
continue;
return true;
}
return false;
}
/*
* Very basic function to reserve memory from a CMA area that has not
* yet been activated. This is expected to be called early, when the
* system is single-threaded, so there is no locking. The alignment
* checking is restrictive - only pageblock-aligned areas
* (CMA_MIN_ALIGNMENT_BYTES) may be reserved through this function.
* This keeps things simple, and is enough for the current use case.
*
* The CMA bitmaps have not yet been allocated, so just start
* reserving from the bottom up, using a PFN to keep track
* of what has been reserved. Unreserving is not possible.
*
* The caller is responsible for initializing the page structures
* in the area properly, since this just points to memblock-allocated
* memory. The caller should subsequently use init_cma_pageblock to
* set the migrate type and CMA stats the pageblocks that were reserved.
*
* If the CMA area fails to activate later, memory obtained through
* this interface is not handed to the page allocator, this is
* the responsibility of the caller (e.g. like normal memblock-allocated
* memory).
*/
void __init *cma_reserve_early(struct cma *cma, unsigned long size)
{
int r;
struct cma_memrange *cmr;
unsigned long available;
void *ret = NULL;
if (!cma || !cma->count)
return NULL;
/*
* Can only be called early in init.
*/
if (test_bit(CMA_ACTIVATED, &cma->flags))
return NULL;
if (!IS_ALIGNED(size, CMA_MIN_ALIGNMENT_BYTES))
return NULL;
if (!IS_ALIGNED(size, (PAGE_SIZE << cma->order_per_bit)))
return NULL;
size >>= PAGE_SHIFT;
if (size > cma->available_count)
return NULL;
for (r = 0; r < cma->nranges; r++) {
cmr = &cma->ranges[r];
available = cmr->count - (cmr->early_pfn - cmr->base_pfn);
if (size <= available) {
ret = phys_to_virt(PFN_PHYS(cmr->early_pfn));
cmr->early_pfn += size;
cma->available_count -= size;
return ret;
}
}
return ret;
}
|