1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
|
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
* Copyright (c) 2022 Tejun Heo <tj@kernel.org>
* Copyright (c) 2022 David Vernet <dvernet@meta.com>
*/
#ifndef __SCX_COMMON_BPF_H
#define __SCX_COMMON_BPF_H
/*
* The generated kfunc prototypes in vmlinux.h are missing address space
* attributes which cause build failures. For now, suppress the generated
* prototypes. See https://github.com/sched-ext/scx/issues/1111.
*/
#define BPF_NO_KFUNC_PROTOTYPES
#ifdef LSP
#define __bpf__
#include "../vmlinux.h"
#else
#include "vmlinux.h"
#endif
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_tracing.h>
#include <asm-generic/errno.h>
#include "user_exit_info.h"
#include "enum_defs.autogen.h"
#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
#define PF_EXITING 0x00000004
#define CLOCK_MONOTONIC 1
extern int LINUX_KERNEL_VERSION __kconfig;
extern const char CONFIG_CC_VERSION_TEXT[64] __kconfig __weak;
extern const char CONFIG_LOCALVERSION[64] __kconfig __weak;
/*
* Earlier versions of clang/pahole lost upper 32bits in 64bit enums which can
* lead to really confusing misbehaviors. Let's trigger a build failure.
*/
static inline void ___vmlinux_h_sanity_check___(void)
{
_Static_assert(SCX_DSQ_FLAG_BUILTIN,
"bpftool generated vmlinux.h is missing high bits for 64bit enums, upgrade clang and pahole");
}
s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) __ksym;
s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, bool *is_idle) __ksym;
s32 scx_bpf_select_cpu_and(struct task_struct *p, s32 prev_cpu, u64 wake_flags,
const struct cpumask *cpus_allowed, u64 flags) __ksym __weak;
void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice, u64 enq_flags) __ksym __weak;
void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, u64 slice, u64 vtime, u64 enq_flags) __ksym __weak;
u32 scx_bpf_dispatch_nr_slots(void) __ksym;
void scx_bpf_dispatch_cancel(void) __ksym;
bool scx_bpf_dsq_move_to_local(u64 dsq_id) __ksym __weak;
void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, u64 slice) __ksym __weak;
void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, u64 vtime) __ksym __weak;
bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, struct task_struct *p, u64 dsq_id, u64 enq_flags) __ksym __weak;
bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, struct task_struct *p, u64 dsq_id, u64 enq_flags) __ksym __weak;
u32 scx_bpf_reenqueue_local(void) __ksym;
void scx_bpf_kick_cpu(s32 cpu, u64 flags) __ksym;
s32 scx_bpf_dsq_nr_queued(u64 dsq_id) __ksym;
void scx_bpf_destroy_dsq(u64 dsq_id) __ksym;
int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, u64 flags) __ksym __weak;
struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) __ksym __weak;
void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) __ksym __weak;
void scx_bpf_exit_bstr(s64 exit_code, char *fmt, unsigned long long *data, u32 data__sz) __ksym __weak;
void scx_bpf_error_bstr(char *fmt, unsigned long long *data, u32 data_len) __ksym;
void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, u32 data_len) __ksym __weak;
u32 scx_bpf_cpuperf_cap(s32 cpu) __ksym __weak;
u32 scx_bpf_cpuperf_cur(s32 cpu) __ksym __weak;
void scx_bpf_cpuperf_set(s32 cpu, u32 perf) __ksym __weak;
u32 scx_bpf_nr_node_ids(void) __ksym __weak;
u32 scx_bpf_nr_cpu_ids(void) __ksym __weak;
int scx_bpf_cpu_node(s32 cpu) __ksym __weak;
const struct cpumask *scx_bpf_get_possible_cpumask(void) __ksym __weak;
const struct cpumask *scx_bpf_get_online_cpumask(void) __ksym __weak;
void scx_bpf_put_cpumask(const struct cpumask *cpumask) __ksym __weak;
const struct cpumask *scx_bpf_get_idle_cpumask_node(int node) __ksym __weak;
const struct cpumask *scx_bpf_get_idle_cpumask(void) __ksym;
const struct cpumask *scx_bpf_get_idle_smtmask_node(int node) __ksym __weak;
const struct cpumask *scx_bpf_get_idle_smtmask(void) __ksym;
void scx_bpf_put_idle_cpumask(const struct cpumask *cpumask) __ksym;
bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) __ksym;
s32 scx_bpf_pick_idle_cpu_node(const cpumask_t *cpus_allowed, int node, u64 flags) __ksym __weak;
s32 scx_bpf_pick_idle_cpu(const cpumask_t *cpus_allowed, u64 flags) __ksym;
s32 scx_bpf_pick_any_cpu_node(const cpumask_t *cpus_allowed, int node, u64 flags) __ksym __weak;
s32 scx_bpf_pick_any_cpu(const cpumask_t *cpus_allowed, u64 flags) __ksym;
bool scx_bpf_task_running(const struct task_struct *p) __ksym;
s32 scx_bpf_task_cpu(const struct task_struct *p) __ksym;
struct rq *scx_bpf_cpu_rq(s32 cpu) __ksym;
struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) __ksym __weak;
u64 scx_bpf_now(void) __ksym __weak;
void scx_bpf_events(struct scx_event_stats *events, size_t events__sz) __ksym __weak;
/*
* Use the following as @it__iter when calling scx_bpf_dsq_move[_vtime]() from
* within bpf_for_each() loops.
*/
#define BPF_FOR_EACH_ITER (&___it)
#define scx_read_event(e, name) \
(bpf_core_field_exists((e)->name) ? (e)->name : 0)
static inline __attribute__((format(printf, 1, 2)))
void ___scx_bpf_bstr_format_checker(const char *fmt, ...) {}
/*
* Helper macro for initializing the fmt and variadic argument inputs to both
* bstr exit kfuncs. Callers to this function should use ___fmt and ___param to
* refer to the initialized list of inputs to the bstr kfunc.
*/
#define scx_bpf_bstr_preamble(fmt, args...) \
static char ___fmt[] = fmt; \
/* \
* Note that __param[] must have at least one \
* element to keep the verifier happy. \
*/ \
unsigned long long ___param[___bpf_narg(args) ?: 1] = {}; \
\
_Pragma("GCC diagnostic push") \
_Pragma("GCC diagnostic ignored \"-Wint-conversion\"") \
___bpf_fill(___param, args); \
_Pragma("GCC diagnostic pop")
/*
* scx_bpf_exit() wraps the scx_bpf_exit_bstr() kfunc with variadic arguments
* instead of an array of u64. Using this macro will cause the scheduler to
* exit cleanly with the specified exit code being passed to user space.
*/
#define scx_bpf_exit(code, fmt, args...) \
({ \
scx_bpf_bstr_preamble(fmt, args) \
scx_bpf_exit_bstr(code, ___fmt, ___param, sizeof(___param)); \
___scx_bpf_bstr_format_checker(fmt, ##args); \
})
/*
* scx_bpf_error() wraps the scx_bpf_error_bstr() kfunc with variadic arguments
* instead of an array of u64. Invoking this macro will cause the scheduler to
* exit in an erroneous state, with diagnostic information being passed to the
* user.
*/
#define scx_bpf_error(fmt, args...) \
({ \
scx_bpf_bstr_preamble(fmt, args) \
scx_bpf_error_bstr(___fmt, ___param, sizeof(___param)); \
___scx_bpf_bstr_format_checker(fmt, ##args); \
})
/*
* scx_bpf_dump() wraps the scx_bpf_dump_bstr() kfunc with variadic arguments
* instead of an array of u64. To be used from ops.dump() and friends.
*/
#define scx_bpf_dump(fmt, args...) \
({ \
scx_bpf_bstr_preamble(fmt, args) \
scx_bpf_dump_bstr(___fmt, ___param, sizeof(___param)); \
___scx_bpf_bstr_format_checker(fmt, ##args); \
})
/*
* scx_bpf_dump_header() is a wrapper around scx_bpf_dump that adds a header
* of system information for debugging.
*/
#define scx_bpf_dump_header() \
({ \
scx_bpf_dump("kernel: %d.%d.%d %s\ncc: %s\n", \
LINUX_KERNEL_VERSION >> 16, \
LINUX_KERNEL_VERSION >> 8 & 0xFF, \
LINUX_KERNEL_VERSION & 0xFF, \
CONFIG_LOCALVERSION, \
CONFIG_CC_VERSION_TEXT); \
})
#define BPF_STRUCT_OPS(name, args...) \
SEC("struct_ops/"#name) \
BPF_PROG(name, ##args)
#define BPF_STRUCT_OPS_SLEEPABLE(name, args...) \
SEC("struct_ops.s/"#name) \
BPF_PROG(name, ##args)
/**
* RESIZABLE_ARRAY - Generates annotations for an array that may be resized
* @elfsec: the data section of the BPF program in which to place the array
* @arr: the name of the array
*
* libbpf has an API for setting map value sizes. Since data sections (i.e.
* bss, data, rodata) themselves are maps, a data section can be resized. If
* a data section has an array as its last element, the BTF info for that
* array will be adjusted so that length of the array is extended to meet the
* new length of the data section. This macro annotates an array to have an
* element count of one with the assumption that this array can be resized
* within the userspace program. It also annotates the section specifier so
* this array exists in a custom sub data section which can be resized
* independently.
*
* See RESIZE_ARRAY() for the userspace convenience macro for resizing an
* array declared with RESIZABLE_ARRAY().
*/
#define RESIZABLE_ARRAY(elfsec, arr) arr[1] SEC("."#elfsec"."#arr)
/**
* MEMBER_VPTR - Obtain the verified pointer to a struct or array member
* @base: struct or array to index
* @member: dereferenced member (e.g. .field, [idx0][idx1], .field[idx0] ...)
*
* The verifier often gets confused by the instruction sequence the compiler
* generates for indexing struct fields or arrays. This macro forces the
* compiler to generate a code sequence which first calculates the byte offset,
* checks it against the struct or array size and add that byte offset to
* generate the pointer to the member to help the verifier.
*
* Ideally, we want to abort if the calculated offset is out-of-bounds. However,
* BPF currently doesn't support abort, so evaluate to %NULL instead. The caller
* must check for %NULL and take appropriate action to appease the verifier. To
* avoid confusing the verifier, it's best to check for %NULL and dereference
* immediately.
*
* vptr = MEMBER_VPTR(my_array, [i][j]);
* if (!vptr)
* return error;
* *vptr = new_value;
*
* sizeof(@base) should encompass the memory area to be accessed and thus can't
* be a pointer to the area. Use `MEMBER_VPTR(*ptr, .member)` instead of
* `MEMBER_VPTR(ptr, ->member)`.
*/
#define MEMBER_VPTR(base, member) (typeof((base) member) *) \
({ \
u64 __base = (u64)&(base); \
u64 __addr = (u64)&((base) member) - __base; \
_Static_assert(sizeof(base) >= sizeof((base) member), \
"@base is smaller than @member, is @base a pointer?"); \
asm volatile ( \
"if %0 <= %[max] goto +2\n" \
"%0 = 0\n" \
"goto +1\n" \
"%0 += %1\n" \
: "+r"(__addr) \
: "r"(__base), \
[max]"i"(sizeof(base) - sizeof((base) member))); \
__addr; \
})
/**
* ARRAY_ELEM_PTR - Obtain the verified pointer to an array element
* @arr: array to index into
* @i: array index
* @n: number of elements in array
*
* Similar to MEMBER_VPTR() but is intended for use with arrays where the
* element count needs to be explicit.
* It can be used in cases where a global array is defined with an initial
* size but is intended to be be resized before loading the BPF program.
* Without this version of the macro, MEMBER_VPTR() will use the compile time
* size of the array to compute the max, which will result in rejection by
* the verifier.
*/
#define ARRAY_ELEM_PTR(arr, i, n) (typeof(arr[i]) *) \
({ \
u64 __base = (u64)arr; \
u64 __addr = (u64)&(arr[i]) - __base; \
asm volatile ( \
"if %0 <= %[max] goto +2\n" \
"%0 = 0\n" \
"goto +1\n" \
"%0 += %1\n" \
: "+r"(__addr) \
: "r"(__base), \
[max]"r"(sizeof(arr[0]) * ((n) - 1))); \
__addr; \
})
/*
* BPF declarations and helpers
*/
/* list and rbtree */
#define __contains(name, node) __attribute__((btf_decl_tag("contains:" #name ":" #node)))
#define private(name) SEC(".data." #name) __hidden __attribute__((aligned(8)))
void *bpf_obj_new_impl(__u64 local_type_id, void *meta) __ksym;
void bpf_obj_drop_impl(void *kptr, void *meta) __ksym;
#define bpf_obj_new(type) ((type *)bpf_obj_new_impl(bpf_core_type_id_local(type), NULL))
#define bpf_obj_drop(kptr) bpf_obj_drop_impl(kptr, NULL)
int bpf_list_push_front_impl(struct bpf_list_head *head,
struct bpf_list_node *node,
void *meta, __u64 off) __ksym;
#define bpf_list_push_front(head, node) bpf_list_push_front_impl(head, node, NULL, 0)
int bpf_list_push_back_impl(struct bpf_list_head *head,
struct bpf_list_node *node,
void *meta, __u64 off) __ksym;
#define bpf_list_push_back(head, node) bpf_list_push_back_impl(head, node, NULL, 0)
struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) __ksym;
struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) __ksym;
struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
struct bpf_rb_node *node) __ksym;
int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
void *meta, __u64 off) __ksym;
#define bpf_rbtree_add(head, node, less) bpf_rbtree_add_impl(head, node, less, NULL, 0)
struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) __ksym;
void *bpf_refcount_acquire_impl(void *kptr, void *meta) __ksym;
#define bpf_refcount_acquire(kptr) bpf_refcount_acquire_impl(kptr, NULL)
/* task */
struct task_struct *bpf_task_from_pid(s32 pid) __ksym;
struct task_struct *bpf_task_acquire(struct task_struct *p) __ksym;
void bpf_task_release(struct task_struct *p) __ksym;
/* cgroup */
struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) __ksym;
void bpf_cgroup_release(struct cgroup *cgrp) __ksym;
struct cgroup *bpf_cgroup_from_id(u64 cgid) __ksym;
/* css iteration */
struct bpf_iter_css;
struct cgroup_subsys_state;
extern int bpf_iter_css_new(struct bpf_iter_css *it,
struct cgroup_subsys_state *start,
unsigned int flags) __weak __ksym;
extern struct cgroup_subsys_state *
bpf_iter_css_next(struct bpf_iter_css *it) __weak __ksym;
extern void bpf_iter_css_destroy(struct bpf_iter_css *it) __weak __ksym;
/* cpumask */
struct bpf_cpumask *bpf_cpumask_create(void) __ksym;
struct bpf_cpumask *bpf_cpumask_acquire(struct bpf_cpumask *cpumask) __ksym;
void bpf_cpumask_release(struct bpf_cpumask *cpumask) __ksym;
u32 bpf_cpumask_first(const struct cpumask *cpumask) __ksym;
u32 bpf_cpumask_first_zero(const struct cpumask *cpumask) __ksym;
void bpf_cpumask_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
void bpf_cpumask_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
bool bpf_cpumask_test_cpu(u32 cpu, const struct cpumask *cpumask) __ksym;
bool bpf_cpumask_test_and_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
bool bpf_cpumask_test_and_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
void bpf_cpumask_setall(struct bpf_cpumask *cpumask) __ksym;
void bpf_cpumask_clear(struct bpf_cpumask *cpumask) __ksym;
bool bpf_cpumask_and(struct bpf_cpumask *dst, const struct cpumask *src1,
const struct cpumask *src2) __ksym;
void bpf_cpumask_or(struct bpf_cpumask *dst, const struct cpumask *src1,
const struct cpumask *src2) __ksym;
void bpf_cpumask_xor(struct bpf_cpumask *dst, const struct cpumask *src1,
const struct cpumask *src2) __ksym;
bool bpf_cpumask_equal(const struct cpumask *src1, const struct cpumask *src2) __ksym;
bool bpf_cpumask_intersects(const struct cpumask *src1, const struct cpumask *src2) __ksym;
bool bpf_cpumask_subset(const struct cpumask *src1, const struct cpumask *src2) __ksym;
bool bpf_cpumask_empty(const struct cpumask *cpumask) __ksym;
bool bpf_cpumask_full(const struct cpumask *cpumask) __ksym;
void bpf_cpumask_copy(struct bpf_cpumask *dst, const struct cpumask *src) __ksym;
u32 bpf_cpumask_any_distribute(const struct cpumask *cpumask) __ksym;
u32 bpf_cpumask_any_and_distribute(const struct cpumask *src1,
const struct cpumask *src2) __ksym;
u32 bpf_cpumask_weight(const struct cpumask *cpumask) __ksym;
int bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words) __ksym;
int *bpf_iter_bits_next(struct bpf_iter_bits *it) __ksym;
void bpf_iter_bits_destroy(struct bpf_iter_bits *it) __ksym;
#define def_iter_struct(name) \
struct bpf_iter_##name { \
struct bpf_iter_bits it; \
const struct cpumask *bitmap; \
};
#define def_iter_new(name) \
static inline int bpf_iter_##name##_new( \
struct bpf_iter_##name *it, const u64 *unsafe_ptr__ign, u32 nr_words) \
{ \
it->bitmap = scx_bpf_get_##name##_cpumask(); \
return bpf_iter_bits_new(&it->it, (const u64 *)it->bitmap, \
sizeof(struct cpumask) / 8); \
}
#define def_iter_next(name) \
static inline int *bpf_iter_##name##_next(struct bpf_iter_##name *it) { \
return bpf_iter_bits_next(&it->it); \
}
#define def_iter_destroy(name) \
static inline void bpf_iter_##name##_destroy(struct bpf_iter_##name *it) { \
scx_bpf_put_cpumask(it->bitmap); \
bpf_iter_bits_destroy(&it->it); \
}
#define def_for_each_cpu(cpu, name) for_each_##name##_cpu(cpu)
/// Provides iterator for possible and online cpus.
///
/// # Example
///
/// ```
/// static inline void example_use() {
/// int *cpu;
///
/// for_each_possible_cpu(cpu){
/// bpf_printk("CPU %d is possible", *cpu);
/// }
///
/// for_each_online_cpu(cpu){
/// bpf_printk("CPU %d is online", *cpu);
/// }
/// }
/// ```
def_iter_struct(possible);
def_iter_new(possible);
def_iter_next(possible);
def_iter_destroy(possible);
#define for_each_possible_cpu(cpu) bpf_for_each(possible, cpu, NULL, 0)
def_iter_struct(online);
def_iter_new(online);
def_iter_next(online);
def_iter_destroy(online);
#define for_each_online_cpu(cpu) bpf_for_each(online, cpu, NULL, 0)
/*
* Access a cpumask in read-only mode (typically to check bits).
*/
static __always_inline const struct cpumask *cast_mask(struct bpf_cpumask *mask)
{
return (const struct cpumask *)mask;
}
/*
* Return true if task @p cannot migrate to a different CPU, false
* otherwise.
*/
static inline bool is_migration_disabled(const struct task_struct *p)
{
if (bpf_core_field_exists(p->migration_disabled))
return p->migration_disabled;
return false;
}
/* rcu */
void bpf_rcu_read_lock(void) __ksym;
void bpf_rcu_read_unlock(void) __ksym;
/*
* Time helpers, most of which are from jiffies.h.
*/
/**
* time_delta - Calculate the delta between new and old time stamp
* @after: first comparable as u64
* @before: second comparable as u64
*
* Return: the time difference, which is >= 0
*/
static inline s64 time_delta(u64 after, u64 before)
{
return (s64)(after - before) > 0 ? (s64)(after - before) : 0;
}
/**
* time_after - returns true if the time a is after time b.
* @a: first comparable as u64
* @b: second comparable as u64
*
* Do this with "<0" and ">=0" to only test the sign of the result. A
* good compiler would generate better code (and a really good compiler
* wouldn't care). Gcc is currently neither.
*
* Return: %true is time a is after time b, otherwise %false.
*/
static inline bool time_after(u64 a, u64 b)
{
return (s64)(b - a) < 0;
}
/**
* time_before - returns true if the time a is before time b.
* @a: first comparable as u64
* @b: second comparable as u64
*
* Return: %true is time a is before time b, otherwise %false.
*/
static inline bool time_before(u64 a, u64 b)
{
return time_after(b, a);
}
/**
* time_after_eq - returns true if the time a is after or the same as time b.
* @a: first comparable as u64
* @b: second comparable as u64
*
* Return: %true is time a is after or the same as time b, otherwise %false.
*/
static inline bool time_after_eq(u64 a, u64 b)
{
return (s64)(a - b) >= 0;
}
/**
* time_before_eq - returns true if the time a is before or the same as time b.
* @a: first comparable as u64
* @b: second comparable as u64
*
* Return: %true is time a is before or the same as time b, otherwise %false.
*/
static inline bool time_before_eq(u64 a, u64 b)
{
return time_after_eq(b, a);
}
/**
* time_in_range - Calculate whether a is in the range of [b, c].
* @a: time to test
* @b: beginning of the range
* @c: end of the range
*
* Return: %true is time a is in the range [b, c], otherwise %false.
*/
static inline bool time_in_range(u64 a, u64 b, u64 c)
{
return time_after_eq(a, b) && time_before_eq(a, c);
}
/**
* time_in_range_open - Calculate whether a is in the range of [b, c).
* @a: time to test
* @b: beginning of the range
* @c: end of the range
*
* Return: %true is time a is in the range [b, c), otherwise %false.
*/
static inline bool time_in_range_open(u64 a, u64 b, u64 c)
{
return time_after_eq(a, b) && time_before(a, c);
}
/*
* Other helpers
*/
/* useful compiler attributes */
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#define __maybe_unused __attribute__((__unused__))
/*
* READ/WRITE_ONCE() are from kernel (include/asm-generic/rwonce.h). They
* prevent compiler from caching, redoing or reordering reads or writes.
*/
typedef __u8 __attribute__((__may_alias__)) __u8_alias_t;
typedef __u16 __attribute__((__may_alias__)) __u16_alias_t;
typedef __u32 __attribute__((__may_alias__)) __u32_alias_t;
typedef __u64 __attribute__((__may_alias__)) __u64_alias_t;
static __always_inline void __read_once_size(const volatile void *p, void *res, int size)
{
switch (size) {
case 1: *(__u8_alias_t *) res = *(volatile __u8_alias_t *) p; break;
case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break;
case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break;
case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break;
default:
barrier();
__builtin_memcpy((void *)res, (const void *)p, size);
barrier();
}
}
static __always_inline void __write_once_size(volatile void *p, void *res, int size)
{
switch (size) {
case 1: *(volatile __u8_alias_t *) p = *(__u8_alias_t *) res; break;
case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break;
case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break;
case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break;
default:
barrier();
__builtin_memcpy((void *)p, (const void *)res, size);
barrier();
}
}
/*
* __unqual_typeof(x) - Declare an unqualified scalar type, leaving
* non-scalar types unchanged,
*
* Prefer C11 _Generic for better compile-times and simpler code. Note: 'char'
* is not type-compatible with 'signed char', and we define a separate case.
*
* This is copied verbatim from kernel's include/linux/compiler_types.h, but
* with default expression (for pointers) changed from (x) to (typeof(x)0).
*
* This is because LLVM has a bug where for lvalue (x), it does not get rid of
* an extra address_space qualifier, but does in case of rvalue (typeof(x)0).
* Hence, for pointers, we need to create an rvalue expression to get the
* desired type. See https://github.com/llvm/llvm-project/issues/53400.
*/
#define __scalar_type_to_expr_cases(type) \
unsigned type : (unsigned type)0, signed type : (signed type)0
#define __unqual_typeof(x) \
typeof(_Generic((x), \
char: (char)0, \
__scalar_type_to_expr_cases(char), \
__scalar_type_to_expr_cases(short), \
__scalar_type_to_expr_cases(int), \
__scalar_type_to_expr_cases(long), \
__scalar_type_to_expr_cases(long long), \
default: (typeof(x))0))
#define READ_ONCE(x) \
({ \
union { __unqual_typeof(x) __val; char __c[1]; } __u = \
{ .__c = { 0 } }; \
__read_once_size((__unqual_typeof(x) *)&(x), __u.__c, sizeof(x)); \
__u.__val; \
})
#define WRITE_ONCE(x, val) \
({ \
union { __unqual_typeof(x) __val; char __c[1]; } __u = \
{ .__val = (val) }; \
__write_once_size((__unqual_typeof(x) *)&(x), __u.__c, sizeof(x)); \
__u.__val; \
})
/*
* log2_u32 - Compute the base 2 logarithm of a 32-bit exponential value.
* @v: The value for which we're computing the base 2 logarithm.
*/
static inline u32 log2_u32(u32 v)
{
u32 r;
u32 shift;
r = (v > 0xFFFF) << 4; v >>= r;
shift = (v > 0xFF) << 3; v >>= shift; r |= shift;
shift = (v > 0xF) << 2; v >>= shift; r |= shift;
shift = (v > 0x3) << 1; v >>= shift; r |= shift;
r |= (v >> 1);
return r;
}
/*
* log2_u64 - Compute the base 2 logarithm of a 64-bit exponential value.
* @v: The value for which we're computing the base 2 logarithm.
*/
static inline u32 log2_u64(u64 v)
{
u32 hi = v >> 32;
if (hi)
return log2_u32(hi) + 32 + 1;
else
return log2_u32(v) + 1;
}
/*
* Return a value proportionally scaled to the task's weight.
*/
static inline u64 scale_by_task_weight(const struct task_struct *p, u64 value)
{
return (value * p->scx.weight) / 100;
}
/*
* Return a value inversely proportional to the task's weight.
*/
static inline u64 scale_by_task_weight_inverse(const struct task_struct *p, u64 value)
{
return value * 100 / p->scx.weight;
}
#include "compat.bpf.h"
#include "enums.bpf.h"
#endif /* __SCX_COMMON_BPF_H */
|