1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
|
// SPDX-License-Identifier: GPL-2.0
/*
* RISC-V code
*
* Copyright (C) 2021 Western Digital Corporation or its affiliates.
*/
#include <linux/compiler.h>
#include <assert.h>
#include "kvm_util.h"
#include "processor.h"
#include "ucall_common.h"
#define DEFAULT_RISCV_GUEST_STACK_VADDR_MIN 0xac0000
static vm_vaddr_t exception_handlers;
bool __vcpu_has_ext(struct kvm_vcpu *vcpu, uint64_t ext)
{
unsigned long value = 0;
int ret;
ret = __vcpu_get_reg(vcpu, ext, &value);
return !ret && !!value;
}
static uint64_t page_align(struct kvm_vm *vm, uint64_t v)
{
return (v + vm->page_size) & ~(vm->page_size - 1);
}
static uint64_t pte_addr(struct kvm_vm *vm, uint64_t entry)
{
return ((entry & PGTBL_PTE_ADDR_MASK) >> PGTBL_PTE_ADDR_SHIFT) <<
PGTBL_PAGE_SIZE_SHIFT;
}
static uint64_t ptrs_per_pte(struct kvm_vm *vm)
{
return PGTBL_PAGE_SIZE / sizeof(uint64_t);
}
static uint64_t pte_index_mask[] = {
PGTBL_L0_INDEX_MASK,
PGTBL_L1_INDEX_MASK,
PGTBL_L2_INDEX_MASK,
PGTBL_L3_INDEX_MASK,
};
static uint32_t pte_index_shift[] = {
PGTBL_L0_INDEX_SHIFT,
PGTBL_L1_INDEX_SHIFT,
PGTBL_L2_INDEX_SHIFT,
PGTBL_L3_INDEX_SHIFT,
};
static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva, int level)
{
TEST_ASSERT(level > -1,
"Negative page table level (%d) not possible", level);
TEST_ASSERT(level < vm->pgtable_levels,
"Invalid page table level (%d)", level);
return (gva & pte_index_mask[level]) >> pte_index_shift[level];
}
void virt_arch_pgd_alloc(struct kvm_vm *vm)
{
size_t nr_pages = page_align(vm, ptrs_per_pte(vm) * 8) / vm->page_size;
if (vm->pgd_created)
return;
vm->pgd = vm_phy_pages_alloc(vm, nr_pages,
KVM_GUEST_PAGE_TABLE_MIN_PADDR,
vm->memslots[MEM_REGION_PT]);
vm->pgd_created = true;
}
void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
{
uint64_t *ptep, next_ppn;
int level = vm->pgtable_levels - 1;
TEST_ASSERT((vaddr % vm->page_size) == 0,
"Virtual address not on page boundary,\n"
" vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size);
TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
(vaddr >> vm->page_shift)),
"Invalid virtual address, vaddr: 0x%lx", vaddr);
TEST_ASSERT((paddr % vm->page_size) == 0,
"Physical address not on page boundary,\n"
" paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size);
TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
"Physical address beyond maximum supported,\n"
" paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
paddr, vm->max_gfn, vm->page_size);
ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, vaddr, level) * 8;
if (!*ptep) {
next_ppn = vm_alloc_page_table(vm) >> PGTBL_PAGE_SIZE_SHIFT;
*ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
PGTBL_PTE_VALID_MASK;
}
level--;
while (level > -1) {
ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
pte_index(vm, vaddr, level) * 8;
if (!*ptep && level > 0) {
next_ppn = vm_alloc_page_table(vm) >>
PGTBL_PAGE_SIZE_SHIFT;
*ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
PGTBL_PTE_VALID_MASK;
}
level--;
}
paddr = paddr >> PGTBL_PAGE_SIZE_SHIFT;
*ptep = (paddr << PGTBL_PTE_ADDR_SHIFT) |
PGTBL_PTE_PERM_MASK | PGTBL_PTE_VALID_MASK;
}
vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
{
uint64_t *ptep;
int level = vm->pgtable_levels - 1;
if (!vm->pgd_created)
goto unmapped_gva;
ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, gva, level) * 8;
if (!ptep)
goto unmapped_gva;
level--;
while (level > -1) {
ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
pte_index(vm, gva, level) * 8;
if (!ptep)
goto unmapped_gva;
level--;
}
return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1));
unmapped_gva:
TEST_FAIL("No mapping for vm virtual address gva: 0x%lx level: %d",
gva, level);
exit(1);
}
static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent,
uint64_t page, int level)
{
#ifdef DEBUG
static const char *const type[] = { "pte", "pmd", "pud", "p4d"};
uint64_t pte, *ptep;
if (level < 0)
return;
for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) {
ptep = addr_gpa2hva(vm, pte);
if (!*ptep)
continue;
fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "",
type[level], pte, *ptep, ptep);
pte_dump(stream, vm, indent + 1,
pte_addr(vm, *ptep), level - 1);
}
#endif
}
void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
{
int level = vm->pgtable_levels - 1;
uint64_t pgd, *ptep;
if (!vm->pgd_created)
return;
for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pte(vm) * 8; pgd += 8) {
ptep = addr_gpa2hva(vm, pgd);
if (!*ptep)
continue;
fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "",
pgd, *ptep, ptep);
pte_dump(stream, vm, indent + 1,
pte_addr(vm, *ptep), level - 1);
}
}
void riscv_vcpu_mmu_setup(struct kvm_vcpu *vcpu)
{
struct kvm_vm *vm = vcpu->vm;
unsigned long satp;
/*
* The RISC-V Sv48 MMU mode supports 56-bit physical address
* for 48-bit virtual address with 4KB last level page size.
*/
switch (vm->mode) {
case VM_MODE_P52V48_4K:
case VM_MODE_P48V48_4K:
case VM_MODE_P40V48_4K:
break;
default:
TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
}
satp = (vm->pgd >> PGTBL_PAGE_SIZE_SHIFT) & SATP_PPN;
satp |= SATP_MODE_48;
vcpu_set_reg(vcpu, RISCV_GENERAL_CSR_REG(satp), satp);
}
void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
{
struct kvm_riscv_core core;
core.mode = vcpu_get_reg(vcpu, RISCV_CORE_REG(mode));
core.regs.pc = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.pc));
core.regs.ra = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.ra));
core.regs.sp = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.sp));
core.regs.gp = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.gp));
core.regs.tp = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.tp));
core.regs.t0 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t0));
core.regs.t1 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t1));
core.regs.t2 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t2));
core.regs.s0 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s0));
core.regs.s1 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s1));
core.regs.a0 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a0));
core.regs.a1 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a1));
core.regs.a2 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a2));
core.regs.a3 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a3));
core.regs.a4 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a4));
core.regs.a5 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a5));
core.regs.a6 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a6));
core.regs.a7 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a7));
core.regs.s2 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s2));
core.regs.s3 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s3));
core.regs.s4 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s4));
core.regs.s5 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s5));
core.regs.s6 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s6));
core.regs.s7 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s7));
core.regs.s8 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s8));
core.regs.s9 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s9));
core.regs.s10 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s10));
core.regs.s11 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s11));
core.regs.t3 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t3));
core.regs.t4 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t4));
core.regs.t5 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t5));
core.regs.t6 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t6));
fprintf(stream,
" MODE: 0x%lx\n", core.mode);
fprintf(stream,
" PC: 0x%016lx RA: 0x%016lx SP: 0x%016lx GP: 0x%016lx\n",
core.regs.pc, core.regs.ra, core.regs.sp, core.regs.gp);
fprintf(stream,
" TP: 0x%016lx T0: 0x%016lx T1: 0x%016lx T2: 0x%016lx\n",
core.regs.tp, core.regs.t0, core.regs.t1, core.regs.t2);
fprintf(stream,
" S0: 0x%016lx S1: 0x%016lx A0: 0x%016lx A1: 0x%016lx\n",
core.regs.s0, core.regs.s1, core.regs.a0, core.regs.a1);
fprintf(stream,
" A2: 0x%016lx A3: 0x%016lx A4: 0x%016lx A5: 0x%016lx\n",
core.regs.a2, core.regs.a3, core.regs.a4, core.regs.a5);
fprintf(stream,
" A6: 0x%016lx A7: 0x%016lx S2: 0x%016lx S3: 0x%016lx\n",
core.regs.a6, core.regs.a7, core.regs.s2, core.regs.s3);
fprintf(stream,
" S4: 0x%016lx S5: 0x%016lx S6: 0x%016lx S7: 0x%016lx\n",
core.regs.s4, core.regs.s5, core.regs.s6, core.regs.s7);
fprintf(stream,
" S8: 0x%016lx S9: 0x%016lx S10: 0x%016lx S11: 0x%016lx\n",
core.regs.s8, core.regs.s9, core.regs.s10, core.regs.s11);
fprintf(stream,
" T3: 0x%016lx T4: 0x%016lx T5: 0x%016lx T6: 0x%016lx\n",
core.regs.t3, core.regs.t4, core.regs.t5, core.regs.t6);
}
static void __aligned(16) guest_unexp_trap(void)
{
sbi_ecall(KVM_RISCV_SELFTESTS_SBI_EXT,
KVM_RISCV_SELFTESTS_SBI_UNEXP,
0, 0, 0, 0, 0, 0);
}
void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code)
{
vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.pc), (unsigned long)guest_code);
}
struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
{
int r;
size_t stack_size;
unsigned long stack_vaddr;
unsigned long current_gp = 0;
struct kvm_mp_state mps;
struct kvm_vcpu *vcpu;
stack_size = vm->page_size == 4096 ? DEFAULT_STACK_PGS * vm->page_size :
vm->page_size;
stack_vaddr = __vm_vaddr_alloc(vm, stack_size,
DEFAULT_RISCV_GUEST_STACK_VADDR_MIN,
MEM_REGION_DATA);
vcpu = __vm_vcpu_add(vm, vcpu_id);
riscv_vcpu_mmu_setup(vcpu);
/*
* With SBI HSM support in KVM RISC-V, all secondary VCPUs are
* powered-off by default so we ensure that all secondary VCPUs
* are powered-on using KVM_SET_MP_STATE ioctl().
*/
mps.mp_state = KVM_MP_STATE_RUNNABLE;
r = __vcpu_ioctl(vcpu, KVM_SET_MP_STATE, &mps);
TEST_ASSERT(!r, "IOCTL KVM_SET_MP_STATE failed (error %d)", r);
/* Setup global pointer of guest to be same as the host */
asm volatile (
"add %0, gp, zero" : "=r" (current_gp) : : "memory");
vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.gp), current_gp);
/* Setup stack pointer and program counter of guest */
vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.sp), stack_vaddr + stack_size);
/* Setup sscratch for guest_get_vcpuid() */
vcpu_set_reg(vcpu, RISCV_GENERAL_CSR_REG(sscratch), vcpu_id);
/* Setup default exception vector of guest */
vcpu_set_reg(vcpu, RISCV_GENERAL_CSR_REG(stvec), (unsigned long)guest_unexp_trap);
return vcpu;
}
void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
{
va_list ap;
uint64_t id = RISCV_CORE_REG(regs.a0);
int i;
TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n"
" num: %u", num);
va_start(ap, num);
for (i = 0; i < num; i++) {
switch (i) {
case 0:
id = RISCV_CORE_REG(regs.a0);
break;
case 1:
id = RISCV_CORE_REG(regs.a1);
break;
case 2:
id = RISCV_CORE_REG(regs.a2);
break;
case 3:
id = RISCV_CORE_REG(regs.a3);
break;
case 4:
id = RISCV_CORE_REG(regs.a4);
break;
case 5:
id = RISCV_CORE_REG(regs.a5);
break;
case 6:
id = RISCV_CORE_REG(regs.a6);
break;
case 7:
id = RISCV_CORE_REG(regs.a7);
break;
}
vcpu_set_reg(vcpu, id, va_arg(ap, uint64_t));
}
va_end(ap);
}
void kvm_exit_unexpected_exception(int vector, int ec)
{
ucall(UCALL_UNHANDLED, 2, vector, ec);
}
void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
{
struct ucall uc;
if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED) {
TEST_FAIL("Unexpected exception (vector:0x%lx, ec:0x%lx)",
uc.args[0], uc.args[1]);
}
}
struct handlers {
exception_handler_fn exception_handlers[NR_VECTORS][NR_EXCEPTIONS];
};
void route_exception(struct pt_regs *regs)
{
struct handlers *handlers = (struct handlers *)exception_handlers;
int vector = 0, ec;
ec = regs->cause & ~CAUSE_IRQ_FLAG;
if (ec >= NR_EXCEPTIONS)
goto unexpected_exception;
/* Use the same handler for all the interrupts */
if (regs->cause & CAUSE_IRQ_FLAG) {
vector = 1;
ec = 0;
}
if (handlers && handlers->exception_handlers[vector][ec])
return handlers->exception_handlers[vector][ec](regs);
unexpected_exception:
return kvm_exit_unexpected_exception(vector, ec);
}
void vcpu_init_vector_tables(struct kvm_vcpu *vcpu)
{
extern char exception_vectors;
vcpu_set_reg(vcpu, RISCV_GENERAL_CSR_REG(stvec), (unsigned long)&exception_vectors);
}
void vm_init_vector_tables(struct kvm_vm *vm)
{
vm->handlers = __vm_vaddr_alloc(vm, sizeof(struct handlers),
vm->page_size, MEM_REGION_DATA);
*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
}
void vm_install_exception_handler(struct kvm_vm *vm, int vector, exception_handler_fn handler)
{
struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
assert(vector < NR_EXCEPTIONS);
handlers->exception_handlers[0][vector] = handler;
}
void vm_install_interrupt_handler(struct kvm_vm *vm, exception_handler_fn handler)
{
struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
handlers->exception_handlers[1][0] = handler;
}
uint32_t guest_get_vcpuid(void)
{
return csr_read(CSR_SSCRATCH);
}
struct sbiret sbi_ecall(int ext, int fid, unsigned long arg0,
unsigned long arg1, unsigned long arg2,
unsigned long arg3, unsigned long arg4,
unsigned long arg5)
{
register uintptr_t a0 asm ("a0") = (uintptr_t)(arg0);
register uintptr_t a1 asm ("a1") = (uintptr_t)(arg1);
register uintptr_t a2 asm ("a2") = (uintptr_t)(arg2);
register uintptr_t a3 asm ("a3") = (uintptr_t)(arg3);
register uintptr_t a4 asm ("a4") = (uintptr_t)(arg4);
register uintptr_t a5 asm ("a5") = (uintptr_t)(arg5);
register uintptr_t a6 asm ("a6") = (uintptr_t)(fid);
register uintptr_t a7 asm ("a7") = (uintptr_t)(ext);
struct sbiret ret;
asm volatile (
"ecall"
: "+r" (a0), "+r" (a1)
: "r" (a2), "r" (a3), "r" (a4), "r" (a5), "r" (a6), "r" (a7)
: "memory");
ret.error = a0;
ret.value = a1;
return ret;
}
bool guest_sbi_probe_extension(int extid, long *out_val)
{
struct sbiret ret;
ret = sbi_ecall(SBI_EXT_BASE, SBI_EXT_BASE_PROBE_EXT, extid,
0, 0, 0, 0, 0);
__GUEST_ASSERT(!ret.error || ret.error == SBI_ERR_NOT_SUPPORTED,
"ret.error=%ld, ret.value=%ld\n", ret.error, ret.value);
if (ret.error == SBI_ERR_NOT_SUPPORTED)
return false;
if (out_val)
*out_val = ret.value;
return true;
}
unsigned long get_host_sbi_spec_version(void)
{
struct sbiret ret;
ret = sbi_ecall(SBI_EXT_BASE, SBI_EXT_BASE_GET_SPEC_VERSION, 0,
0, 0, 0, 0, 0);
GUEST_ASSERT(!ret.error);
return ret.value;
}
|