1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright IBM Corp. 2024
*
* Authors:
* Hariharan Mari <hari55@linux.ibm.com>
*
* The tests compare the result of the KVM ioctl for obtaining CPU subfunction data with those
* from an ASM block performing the same CPU subfunction. Currently KVM doesn't mask instruction
* query data reported via the CPU Model, allowing us to directly compare it with the data
* acquired through executing the queries in the test.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include "facility.h"
#include "kvm_util.h"
#define PLO_FUNCTION_MAX 256
/* Query available CPU subfunctions */
struct kvm_s390_vm_cpu_subfunc cpu_subfunc;
static void get_cpu_machine_subfuntions(struct kvm_vm *vm,
struct kvm_s390_vm_cpu_subfunc *cpu_subfunc)
{
int r;
r = __kvm_device_attr_get(vm->fd, KVM_S390_VM_CPU_MODEL,
KVM_S390_VM_CPU_MACHINE_SUBFUNC, cpu_subfunc);
TEST_ASSERT(!r, "Get cpu subfunctions failed r=%d errno=%d", r, errno);
}
static inline int plo_test_bit(unsigned char nr)
{
unsigned long function = nr | 0x100;
int cc;
asm volatile(" lgr 0,%[function]\n"
/* Parameter registers are ignored for "test bit" */
" plo 0,0,0,0(0)\n"
" ipm %0\n"
" srl %0,28\n"
: "=d" (cc)
: [function] "d" (function)
: "cc", "0");
return cc == 0;
}
/* Testing Perform Locked Operation (PLO) CPU subfunction's ASM block */
static void test_plo_asm_block(u8 (*query)[32])
{
for (int i = 0; i < PLO_FUNCTION_MAX; ++i) {
if (plo_test_bit(i))
(*query)[i >> 3] |= 0x80 >> (i & 7);
}
}
/* Testing Crypto Compute Message Authentication Code (KMAC) CPU subfunction's ASM block */
static void test_kmac_asm_block(u8 (*query)[16])
{
asm volatile(" la %%r1,%[query]\n"
" xgr %%r0,%%r0\n"
" .insn rre,0xb91e0000,0,2\n"
: [query] "=R" (*query)
:
: "cc", "r0", "r1");
}
/* Testing Crypto Cipher Message with Chaining (KMC) CPU subfunction's ASM block */
static void test_kmc_asm_block(u8 (*query)[16])
{
asm volatile(" la %%r1,%[query]\n"
" xgr %%r0,%%r0\n"
" .insn rre,0xb92f0000,2,4\n"
: [query] "=R" (*query)
:
: "cc", "r0", "r1");
}
/* Testing Crypto Cipher Message (KM) CPU subfunction's ASM block */
static void test_km_asm_block(u8 (*query)[16])
{
asm volatile(" la %%r1,%[query]\n"
" xgr %%r0,%%r0\n"
" .insn rre,0xb92e0000,2,4\n"
: [query] "=R" (*query)
:
: "cc", "r0", "r1");
}
/* Testing Crypto Compute Intermediate Message Digest (KIMD) CPU subfunction's ASM block */
static void test_kimd_asm_block(u8 (*query)[16])
{
asm volatile(" la %%r1,%[query]\n"
" xgr %%r0,%%r0\n"
" .insn rre,0xb93e0000,0,2\n"
: [query] "=R" (*query)
:
: "cc", "r0", "r1");
}
/* Testing Crypto Compute Last Message Digest (KLMD) CPU subfunction's ASM block */
static void test_klmd_asm_block(u8 (*query)[16])
{
asm volatile(" la %%r1,%[query]\n"
" xgr %%r0,%%r0\n"
" .insn rre,0xb93f0000,0,2\n"
: [query] "=R" (*query)
:
: "cc", "r0", "r1");
}
/* Testing Crypto Cipher Message with Counter (KMCTR) CPU subfunction's ASM block */
static void test_kmctr_asm_block(u8 (*query)[16])
{
asm volatile(" la %%r1,%[query]\n"
" xgr %%r0,%%r0\n"
" .insn rrf,0xb92d0000,2,4,6,0\n"
: [query] "=R" (*query)
:
: "cc", "r0", "r1");
}
/* Testing Crypto Cipher Message with Cipher Feedback (KMF) CPU subfunction's ASM block */
static void test_kmf_asm_block(u8 (*query)[16])
{
asm volatile(" la %%r1,%[query]\n"
" xgr %%r0,%%r0\n"
" .insn rre,0xb92a0000,2,4\n"
: [query] "=R" (*query)
:
: "cc", "r0", "r1");
}
/* Testing Crypto Cipher Message with Output Feedback (KMO) CPU subfunction's ASM block */
static void test_kmo_asm_block(u8 (*query)[16])
{
asm volatile(" la %%r1,%[query]\n"
" xgr %%r0,%%r0\n"
" .insn rre,0xb92b0000,2,4\n"
: [query] "=R" (*query)
:
: "cc", "r0", "r1");
}
/* Testing Crypto Perform Cryptographic Computation (PCC) CPU subfunction's ASM block */
static void test_pcc_asm_block(u8 (*query)[16])
{
asm volatile(" la %%r1,%[query]\n"
" xgr %%r0,%%r0\n"
" .insn rre,0xb92c0000,0,0\n"
: [query] "=R" (*query)
:
: "cc", "r0", "r1");
}
/* Testing Crypto Perform Random Number Operation (PRNO) CPU subfunction's ASM block */
static void test_prno_asm_block(u8 (*query)[16])
{
asm volatile(" la %%r1,%[query]\n"
" xgr %%r0,%%r0\n"
" .insn rre,0xb93c0000,2,4\n"
: [query] "=R" (*query)
:
: "cc", "r0", "r1");
}
/* Testing Crypto Cipher Message with Authentication (KMA) CPU subfunction's ASM block */
static void test_kma_asm_block(u8 (*query)[16])
{
asm volatile(" la %%r1,%[query]\n"
" xgr %%r0,%%r0\n"
" .insn rrf,0xb9290000,2,4,6,0\n"
: [query] "=R" (*query)
:
: "cc", "r0", "r1");
}
/* Testing Crypto Compute Digital Signature Authentication (KDSA) CPU subfunction's ASM block */
static void test_kdsa_asm_block(u8 (*query)[16])
{
asm volatile(" la %%r1,%[query]\n"
" xgr %%r0,%%r0\n"
" .insn rre,0xb93a0000,0,2\n"
: [query] "=R" (*query)
:
: "cc", "r0", "r1");
}
/* Testing Sort Lists (SORTL) CPU subfunction's ASM block */
static void test_sortl_asm_block(u8 (*query)[32])
{
asm volatile(" lghi 0,0\n"
" la 1,%[query]\n"
" .insn rre,0xb9380000,2,4\n"
: [query] "=R" (*query)
:
: "cc", "0", "1");
}
/* Testing Deflate Conversion Call (DFLTCC) CPU subfunction's ASM block */
static void test_dfltcc_asm_block(u8 (*query)[32])
{
asm volatile(" lghi 0,0\n"
" la 1,%[query]\n"
" .insn rrf,0xb9390000,2,4,6,0\n"
: [query] "=R" (*query)
:
: "cc", "0", "1");
}
/*
* Testing Perform Function with Concurrent Results (PFCR)
* CPU subfunctions's ASM block
*/
static void test_pfcr_asm_block(u8 (*query)[16])
{
asm volatile(" lghi 0,0\n"
" .insn rsy,0xeb0000000016,0,0,%[query]\n"
: [query] "=QS" (*query)
:
: "cc", "0");
}
typedef void (*testfunc_t)(u8 (*array)[]);
struct testdef {
const char *subfunc_name;
u8 *subfunc_array;
size_t array_size;
testfunc_t test;
int facility_bit;
} testlist[] = {
/*
* PLO was introduced in the very first 64-bit machine generation.
* Hence it is assumed PLO is always installed in Z Arch.
*/
{ "PLO", cpu_subfunc.plo, sizeof(cpu_subfunc.plo), test_plo_asm_block, 1 },
/* MSA - Facility bit 17 */
{ "KMAC", cpu_subfunc.kmac, sizeof(cpu_subfunc.kmac), test_kmac_asm_block, 17 },
{ "KMC", cpu_subfunc.kmc, sizeof(cpu_subfunc.kmc), test_kmc_asm_block, 17 },
{ "KM", cpu_subfunc.km, sizeof(cpu_subfunc.km), test_km_asm_block, 17 },
{ "KIMD", cpu_subfunc.kimd, sizeof(cpu_subfunc.kimd), test_kimd_asm_block, 17 },
{ "KLMD", cpu_subfunc.klmd, sizeof(cpu_subfunc.klmd), test_klmd_asm_block, 17 },
/* MSA - Facility bit 77 */
{ "KMCTR", cpu_subfunc.kmctr, sizeof(cpu_subfunc.kmctr), test_kmctr_asm_block, 77 },
{ "KMF", cpu_subfunc.kmf, sizeof(cpu_subfunc.kmf), test_kmf_asm_block, 77 },
{ "KMO", cpu_subfunc.kmo, sizeof(cpu_subfunc.kmo), test_kmo_asm_block, 77 },
{ "PCC", cpu_subfunc.pcc, sizeof(cpu_subfunc.pcc), test_pcc_asm_block, 77 },
/* MSA5 - Facility bit 57 */
{ "PPNO", cpu_subfunc.ppno, sizeof(cpu_subfunc.ppno), test_prno_asm_block, 57 },
/* MSA8 - Facility bit 146 */
{ "KMA", cpu_subfunc.kma, sizeof(cpu_subfunc.kma), test_kma_asm_block, 146 },
/* MSA9 - Facility bit 155 */
{ "KDSA", cpu_subfunc.kdsa, sizeof(cpu_subfunc.kdsa), test_kdsa_asm_block, 155 },
/* SORTL - Facility bit 150 */
{ "SORTL", cpu_subfunc.sortl, sizeof(cpu_subfunc.sortl), test_sortl_asm_block, 150 },
/* DFLTCC - Facility bit 151 */
{ "DFLTCC", cpu_subfunc.dfltcc, sizeof(cpu_subfunc.dfltcc), test_dfltcc_asm_block, 151 },
/* Concurrent-function facility - Facility bit 201 */
{ "PFCR", cpu_subfunc.pfcr, sizeof(cpu_subfunc.pfcr), test_pfcr_asm_block, 201 },
};
int main(int argc, char *argv[])
{
struct kvm_vm *vm;
int idx;
ksft_print_header();
vm = vm_create(1);
memset(&cpu_subfunc, 0, sizeof(cpu_subfunc));
get_cpu_machine_subfuntions(vm, &cpu_subfunc);
ksft_set_plan(ARRAY_SIZE(testlist));
for (idx = 0; idx < ARRAY_SIZE(testlist); idx++) {
if (test_facility(testlist[idx].facility_bit)) {
u8 *array = malloc(testlist[idx].array_size);
testlist[idx].test((u8 (*)[testlist[idx].array_size])array);
TEST_ASSERT_EQ(memcmp(testlist[idx].subfunc_array,
array, testlist[idx].array_size), 0);
ksft_test_result_pass("%s\n", testlist[idx].subfunc_name);
free(array);
} else {
ksft_test_result_skip("%s feature is not avaialable\n",
testlist[idx].subfunc_name);
}
}
kvm_vm_free(vm);
ksft_finished();
}
|