1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020, Google LLC.
*
* Tests for KVM paravirtual feature disablement
*/
#include <asm/kvm_para.h>
#include <linux/kvm_para.h>
#include <stdint.h>
#include "test_util.h"
#include "kvm_util.h"
#include "processor.h"
struct msr_data {
uint32_t idx;
const char *name;
};
#define TEST_MSR(msr) { .idx = msr, .name = #msr }
#define UCALL_PR_MSR 0xdeadbeef
#define PR_MSR(msr) ucall(UCALL_PR_MSR, 1, msr)
/*
* KVM paravirtual msrs to test. Expect a #GP if any of these msrs are read or
* written, as the KVM_CPUID_FEATURES leaf is cleared.
*/
static struct msr_data msrs_to_test[] = {
TEST_MSR(MSR_KVM_SYSTEM_TIME),
TEST_MSR(MSR_KVM_SYSTEM_TIME_NEW),
TEST_MSR(MSR_KVM_WALL_CLOCK),
TEST_MSR(MSR_KVM_WALL_CLOCK_NEW),
TEST_MSR(MSR_KVM_ASYNC_PF_EN),
TEST_MSR(MSR_KVM_STEAL_TIME),
TEST_MSR(MSR_KVM_PV_EOI_EN),
TEST_MSR(MSR_KVM_POLL_CONTROL),
TEST_MSR(MSR_KVM_ASYNC_PF_INT),
TEST_MSR(MSR_KVM_ASYNC_PF_ACK),
};
static void test_msr(struct msr_data *msr)
{
uint64_t ignored;
uint8_t vector;
PR_MSR(msr);
vector = rdmsr_safe(msr->idx, &ignored);
GUEST_ASSERT_EQ(vector, GP_VECTOR);
vector = wrmsr_safe(msr->idx, 0);
GUEST_ASSERT_EQ(vector, GP_VECTOR);
}
struct hcall_data {
uint64_t nr;
const char *name;
};
#define TEST_HCALL(hc) { .nr = hc, .name = #hc }
#define UCALL_PR_HCALL 0xdeadc0de
#define PR_HCALL(hc) ucall(UCALL_PR_HCALL, 1, hc)
/*
* KVM hypercalls to test. Expect -KVM_ENOSYS when called, as the corresponding
* features have been cleared in KVM_CPUID_FEATURES.
*/
static struct hcall_data hcalls_to_test[] = {
TEST_HCALL(KVM_HC_KICK_CPU),
TEST_HCALL(KVM_HC_SEND_IPI),
TEST_HCALL(KVM_HC_SCHED_YIELD),
};
static void test_hcall(struct hcall_data *hc)
{
uint64_t r;
PR_HCALL(hc);
r = kvm_hypercall(hc->nr, 0, 0, 0, 0);
GUEST_ASSERT_EQ(r, -KVM_ENOSYS);
}
static void guest_main(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(msrs_to_test); i++) {
test_msr(&msrs_to_test[i]);
}
for (i = 0; i < ARRAY_SIZE(hcalls_to_test); i++) {
test_hcall(&hcalls_to_test[i]);
}
GUEST_DONE();
}
static void pr_msr(struct ucall *uc)
{
struct msr_data *msr = (struct msr_data *)uc->args[0];
pr_info("testing msr: %s (%#x)\n", msr->name, msr->idx);
}
static void pr_hcall(struct ucall *uc)
{
struct hcall_data *hc = (struct hcall_data *)uc->args[0];
pr_info("testing hcall: %s (%lu)\n", hc->name, hc->nr);
}
static void enter_guest(struct kvm_vcpu *vcpu)
{
struct ucall uc;
while (true) {
vcpu_run(vcpu);
TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO);
switch (get_ucall(vcpu, &uc)) {
case UCALL_PR_MSR:
pr_msr(&uc);
break;
case UCALL_PR_HCALL:
pr_hcall(&uc);
break;
case UCALL_ABORT:
REPORT_GUEST_ASSERT(uc);
return;
case UCALL_DONE:
return;
}
}
}
static void test_pv_unhalt(void)
{
struct kvm_vcpu *vcpu;
struct kvm_vm *vm;
struct kvm_cpuid_entry2 *ent;
u32 kvm_sig_old;
int r;
if (!(kvm_check_cap(KVM_CAP_X86_DISABLE_EXITS) & KVM_X86_DISABLE_EXITS_HLT))
return;
pr_info("testing KVM_FEATURE_PV_UNHALT\n");
/* KVM_PV_UNHALT test */
vm = vm_create_with_one_vcpu(&vcpu, guest_main);
vcpu_set_cpuid_feature(vcpu, X86_FEATURE_KVM_PV_UNHALT);
TEST_ASSERT(vcpu_cpuid_has(vcpu, X86_FEATURE_KVM_PV_UNHALT),
"Enabling X86_FEATURE_KVM_PV_UNHALT had no effect");
/* Verify KVM disallows disabling exits after vCPU creation. */
r = __vm_enable_cap(vm, KVM_CAP_X86_DISABLE_EXITS, KVM_X86_DISABLE_EXITS_HLT);
TEST_ASSERT(r && errno == EINVAL,
"Disabling exits after vCPU creation didn't fail as expected");
kvm_vm_free(vm);
/* Verify that KVM clear PV_UNHALT from guest CPUID. */
vm = vm_create(1);
vm_enable_cap(vm, KVM_CAP_X86_DISABLE_EXITS, KVM_X86_DISABLE_EXITS_HLT);
vcpu = vm_vcpu_add(vm, 0, NULL);
TEST_ASSERT(!vcpu_cpuid_has(vcpu, X86_FEATURE_KVM_PV_UNHALT),
"vCPU created with PV_UNHALT set by default");
vcpu_set_cpuid_feature(vcpu, X86_FEATURE_KVM_PV_UNHALT);
TEST_ASSERT(!vcpu_cpuid_has(vcpu, X86_FEATURE_KVM_PV_UNHALT),
"PV_UNHALT set in guest CPUID when HLT-exiting is disabled");
/*
* Clobber the KVM PV signature and verify KVM does NOT clear PV_UNHALT
* when KVM PV is not present, and DOES clear PV_UNHALT when switching
* back to the correct signature..
*/
ent = vcpu_get_cpuid_entry(vcpu, KVM_CPUID_SIGNATURE);
kvm_sig_old = ent->ebx;
ent->ebx = 0xdeadbeef;
vcpu_set_cpuid(vcpu);
vcpu_set_cpuid_feature(vcpu, X86_FEATURE_KVM_PV_UNHALT);
TEST_ASSERT(vcpu_cpuid_has(vcpu, X86_FEATURE_KVM_PV_UNHALT),
"PV_UNHALT cleared when using bogus KVM PV signature");
ent = vcpu_get_cpuid_entry(vcpu, KVM_CPUID_SIGNATURE);
ent->ebx = kvm_sig_old;
vcpu_set_cpuid(vcpu);
TEST_ASSERT(!vcpu_cpuid_has(vcpu, X86_FEATURE_KVM_PV_UNHALT),
"PV_UNHALT set in guest CPUID when HLT-exiting is disabled");
/* FIXME: actually test KVM_FEATURE_PV_UNHALT feature */
kvm_vm_free(vm);
}
int main(void)
{
struct kvm_vcpu *vcpu;
struct kvm_vm *vm;
TEST_REQUIRE(kvm_has_cap(KVM_CAP_ENFORCE_PV_FEATURE_CPUID));
vm = vm_create_with_one_vcpu(&vcpu, guest_main);
vcpu_enable_cap(vcpu, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 1);
vcpu_clear_cpuid_entry(vcpu, KVM_CPUID_FEATURES);
enter_guest(vcpu);
kvm_vm_free(vm);
test_pv_unhalt();
}
|