1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
// SPDX-License-Identifier: GPL-2.0
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/socket.h>
#include <linux/if_xdp.h>
#include <linux/if_link.h>
#include <net/if.h>
#include <inttypes.h>
#include "ksft.h"
#define UMEM_SZ (1U << 16)
#define NUM_DESC (UMEM_SZ / 2048)
static void print_usage(const char *bin)
{
fprintf(stderr, "Usage: %s ifindex queue_id [-z]\n\n"
"where:\n\t-z: force zerocopy mode", bin);
}
/* this is a simple helper program that creates an XDP socket and does the
* minimum necessary to get bind() to succeed.
*
* this test program is not intended to actually process packets, but could be
* extended in the future if that is actually needed.
*
* it is used by queues.py to ensure the xsk netlinux attribute is set
* correctly.
*/
int main(int argc, char **argv)
{
struct xdp_umem_reg umem_reg = { 0 };
struct sockaddr_xdp sxdp = { 0 };
int num_desc = NUM_DESC;
void *umem_area;
int retry = 0;
int ifindex;
int sock_fd;
int queue;
if (argc != 3 && argc != 4) {
print_usage(argv[0]);
return 1;
}
sock_fd = socket(AF_XDP, SOCK_RAW, 0);
if (sock_fd < 0) {
perror("socket creation failed");
/* if the kernel doesn't support AF_XDP, let the test program
* know with -1. All other error paths return 1.
*/
if (errno == EAFNOSUPPORT)
return -1;
return 1;
}
/* "Probing mode", just checking if AF_XDP sockets are supported */
if (!strcmp(argv[1], "-") && !strcmp(argv[2], "-")) {
printf("AF_XDP support detected\n");
close(sock_fd);
return 0;
}
ifindex = atoi(argv[1]);
queue = atoi(argv[2]);
umem_area = mmap(NULL, UMEM_SZ, PROT_READ | PROT_WRITE, MAP_PRIVATE |
MAP_ANONYMOUS, -1, 0);
if (umem_area == MAP_FAILED) {
perror("mmap failed");
return 1;
}
umem_reg.addr = (uintptr_t)umem_area;
umem_reg.len = UMEM_SZ;
umem_reg.chunk_size = 2048;
umem_reg.headroom = 0;
setsockopt(sock_fd, SOL_XDP, XDP_UMEM_REG, &umem_reg,
sizeof(umem_reg));
setsockopt(sock_fd, SOL_XDP, XDP_UMEM_FILL_RING, &num_desc,
sizeof(num_desc));
setsockopt(sock_fd, SOL_XDP, XDP_UMEM_COMPLETION_RING, &num_desc,
sizeof(num_desc));
setsockopt(sock_fd, SOL_XDP, XDP_RX_RING, &num_desc, sizeof(num_desc));
sxdp.sxdp_family = AF_XDP;
sxdp.sxdp_ifindex = ifindex;
sxdp.sxdp_queue_id = queue;
sxdp.sxdp_flags = 0;
if (argc > 3) {
if (!strcmp(argv[3], "-z")) {
sxdp.sxdp_flags = XDP_ZEROCOPY;
} else {
print_usage(argv[0]);
return 1;
}
}
while (1) {
if (bind(sock_fd, (struct sockaddr *)&sxdp, sizeof(sxdp)) == 0)
break;
if (errno == EBUSY && retry < 3) {
retry++;
sleep(1);
continue;
} else {
perror("bind failed");
munmap(umem_area, UMEM_SZ);
close(sock_fd);
return 1;
}
}
ksft_ready();
ksft_wait();
/* parent program will write a byte to stdin when its ready for this
* helper to exit
*/
close(sock_fd);
return 0;
}
|