1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/nstree.h>
#include <linux/proc_ns.h>
#include <linux/vfsdebug.h>
/**
* struct ns_tree - Namespace tree
* @ns_tree: Rbtree of namespaces of a particular type
* @ns_list: Sequentially walkable list of all namespaces of this type
* @ns_tree_lock: Seqlock to protect the tree and list
* @type: type of namespaces in this tree
*/
struct ns_tree {
struct rb_root ns_tree;
struct list_head ns_list;
seqlock_t ns_tree_lock;
int type;
};
struct ns_tree mnt_ns_tree = {
.ns_tree = RB_ROOT,
.ns_list = LIST_HEAD_INIT(mnt_ns_tree.ns_list),
.ns_tree_lock = __SEQLOCK_UNLOCKED(mnt_ns_tree.ns_tree_lock),
.type = CLONE_NEWNS,
};
struct ns_tree net_ns_tree = {
.ns_tree = RB_ROOT,
.ns_list = LIST_HEAD_INIT(net_ns_tree.ns_list),
.ns_tree_lock = __SEQLOCK_UNLOCKED(net_ns_tree.ns_tree_lock),
.type = CLONE_NEWNET,
};
EXPORT_SYMBOL_GPL(net_ns_tree);
struct ns_tree uts_ns_tree = {
.ns_tree = RB_ROOT,
.ns_list = LIST_HEAD_INIT(uts_ns_tree.ns_list),
.ns_tree_lock = __SEQLOCK_UNLOCKED(uts_ns_tree.ns_tree_lock),
.type = CLONE_NEWUTS,
};
struct ns_tree user_ns_tree = {
.ns_tree = RB_ROOT,
.ns_list = LIST_HEAD_INIT(user_ns_tree.ns_list),
.ns_tree_lock = __SEQLOCK_UNLOCKED(user_ns_tree.ns_tree_lock),
.type = CLONE_NEWUSER,
};
struct ns_tree ipc_ns_tree = {
.ns_tree = RB_ROOT,
.ns_list = LIST_HEAD_INIT(ipc_ns_tree.ns_list),
.ns_tree_lock = __SEQLOCK_UNLOCKED(ipc_ns_tree.ns_tree_lock),
.type = CLONE_NEWIPC,
};
struct ns_tree pid_ns_tree = {
.ns_tree = RB_ROOT,
.ns_list = LIST_HEAD_INIT(pid_ns_tree.ns_list),
.ns_tree_lock = __SEQLOCK_UNLOCKED(pid_ns_tree.ns_tree_lock),
.type = CLONE_NEWPID,
};
struct ns_tree cgroup_ns_tree = {
.ns_tree = RB_ROOT,
.ns_list = LIST_HEAD_INIT(cgroup_ns_tree.ns_list),
.ns_tree_lock = __SEQLOCK_UNLOCKED(cgroup_ns_tree.ns_tree_lock),
.type = CLONE_NEWCGROUP,
};
struct ns_tree time_ns_tree = {
.ns_tree = RB_ROOT,
.ns_list = LIST_HEAD_INIT(time_ns_tree.ns_list),
.ns_tree_lock = __SEQLOCK_UNLOCKED(time_ns_tree.ns_tree_lock),
.type = CLONE_NEWTIME,
};
DEFINE_COOKIE(namespace_cookie);
static inline struct ns_common *node_to_ns(const struct rb_node *node)
{
if (!node)
return NULL;
return rb_entry(node, struct ns_common, ns_tree_node);
}
static inline int ns_cmp(struct rb_node *a, const struct rb_node *b)
{
struct ns_common *ns_a = node_to_ns(a);
struct ns_common *ns_b = node_to_ns(b);
u64 ns_id_a = ns_a->ns_id;
u64 ns_id_b = ns_b->ns_id;
if (ns_id_a < ns_id_b)
return -1;
if (ns_id_a > ns_id_b)
return 1;
return 0;
}
void __ns_tree_add_raw(struct ns_common *ns, struct ns_tree *ns_tree)
{
struct rb_node *node, *prev;
VFS_WARN_ON_ONCE(!ns->ns_id);
write_seqlock(&ns_tree->ns_tree_lock);
VFS_WARN_ON_ONCE(ns->ns_type != ns_tree->type);
node = rb_find_add_rcu(&ns->ns_tree_node, &ns_tree->ns_tree, ns_cmp);
/*
* If there's no previous entry simply add it after the
* head and if there is add it after the previous entry.
*/
prev = rb_prev(&ns->ns_tree_node);
if (!prev)
list_add_rcu(&ns->ns_list_node, &ns_tree->ns_list);
else
list_add_rcu(&ns->ns_list_node, &node_to_ns(prev)->ns_list_node);
write_sequnlock(&ns_tree->ns_tree_lock);
VFS_WARN_ON_ONCE(node);
}
void __ns_tree_remove(struct ns_common *ns, struct ns_tree *ns_tree)
{
VFS_WARN_ON_ONCE(RB_EMPTY_NODE(&ns->ns_tree_node));
VFS_WARN_ON_ONCE(list_empty(&ns->ns_list_node));
VFS_WARN_ON_ONCE(ns->ns_type != ns_tree->type);
write_seqlock(&ns_tree->ns_tree_lock);
rb_erase(&ns->ns_tree_node, &ns_tree->ns_tree);
list_bidir_del_rcu(&ns->ns_list_node);
RB_CLEAR_NODE(&ns->ns_tree_node);
write_sequnlock(&ns_tree->ns_tree_lock);
}
EXPORT_SYMBOL_GPL(__ns_tree_remove);
static int ns_find(const void *key, const struct rb_node *node)
{
const u64 ns_id = *(u64 *)key;
const struct ns_common *ns = node_to_ns(node);
if (ns_id < ns->ns_id)
return -1;
if (ns_id > ns->ns_id)
return 1;
return 0;
}
static struct ns_tree *ns_tree_from_type(int ns_type)
{
switch (ns_type) {
case CLONE_NEWCGROUP:
return &cgroup_ns_tree;
case CLONE_NEWIPC:
return &ipc_ns_tree;
case CLONE_NEWNS:
return &mnt_ns_tree;
case CLONE_NEWNET:
return &net_ns_tree;
case CLONE_NEWPID:
return &pid_ns_tree;
case CLONE_NEWUSER:
return &user_ns_tree;
case CLONE_NEWUTS:
return &uts_ns_tree;
case CLONE_NEWTIME:
return &time_ns_tree;
}
return NULL;
}
struct ns_common *ns_tree_lookup_rcu(u64 ns_id, int ns_type)
{
struct ns_tree *ns_tree;
struct rb_node *node;
unsigned int seq;
RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "suspicious ns_tree_lookup_rcu() usage");
ns_tree = ns_tree_from_type(ns_type);
if (!ns_tree)
return NULL;
do {
seq = read_seqbegin(&ns_tree->ns_tree_lock);
node = rb_find_rcu(&ns_id, &ns_tree->ns_tree, ns_find);
if (node)
break;
} while (read_seqretry(&ns_tree->ns_tree_lock, seq));
if (!node)
return NULL;
VFS_WARN_ON_ONCE(node_to_ns(node)->ns_type != ns_type);
return node_to_ns(node);
}
/**
* ns_tree_adjoined_rcu - find the next/previous namespace in the same
* tree
* @ns: namespace to start from
* @previous: if true find the previous namespace, otherwise the next
*
* Find the next or previous namespace in the same tree as @ns. If
* there is no next/previous namespace, -ENOENT is returned.
*/
struct ns_common *__ns_tree_adjoined_rcu(struct ns_common *ns,
struct ns_tree *ns_tree, bool previous)
{
struct list_head *list;
RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "suspicious ns_tree_adjoined_rcu() usage");
if (previous)
list = rcu_dereference(list_bidir_prev_rcu(&ns->ns_list_node));
else
list = rcu_dereference(list_next_rcu(&ns->ns_list_node));
if (list_is_head(list, &ns_tree->ns_list))
return ERR_PTR(-ENOENT);
VFS_WARN_ON_ONCE(list_entry_rcu(list, struct ns_common, ns_list_node)->ns_type != ns_tree->type);
return list_entry_rcu(list, struct ns_common, ns_list_node);
}
/**
* ns_tree_gen_id - generate a new namespace id
* @ns: namespace to generate id for
*
* Generates a new namespace id and assigns it to the namespace. All
* namespaces types share the same id space and thus can be compared
* directly. IOW, when two ids of two namespace are equal, they are
* identical.
*/
u64 ns_tree_gen_id(struct ns_common *ns)
{
guard(preempt)();
ns->ns_id = gen_cookie_next(&namespace_cookie);
return ns->ns_id;
}
|