1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright IBM Corp. 2024
*/
#define KMSG_COMPONENT "hd"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
/*
* Hiperdispatch:
* Dynamically calculates the optimum number of high capacity COREs
* by considering the state the system is in. When hiperdispatch decides
* that a capacity update is necessary, it schedules a topology update.
* During topology updates the CPU capacities are always re-adjusted.
*
* There is two places where CPU capacities are being accessed within
* hiperdispatch.
* -> hiperdispatch's reoccuring work function reads CPU capacities to
* determine high capacity CPU count.
* -> during a topology update hiperdispatch's adjustment function
* updates CPU capacities.
* These two can run on different CPUs in parallel which can cause
* hiperdispatch to make wrong decisions. This can potentially cause
* some overhead by leading to extra rebuild_sched_domains() calls
* for correction. Access to capacities within hiperdispatch has to be
* serialized to prevent the overhead.
*
* Hiperdispatch decision making revolves around steal time.
* HD_STEAL_THRESHOLD value is taken as reference. Whenever steal time
* crosses the threshold value hiperdispatch falls back to giving high
* capacities to entitled CPUs. When steal time drops below the
* threshold boundary, hiperdispatch utilizes all CPUs by giving all
* of them high capacity.
*
* The theory behind HD_STEAL_THRESHOLD is related to the SMP thread
* performance. Comparing the throughput of;
* - single CORE, with N threads, running N tasks
* - N separate COREs running N tasks,
* using individual COREs for individual tasks yield better
* performance. This performance difference is roughly ~30% (can change
* between machine generations)
*
* Hiperdispatch tries to hint scheduler to use individual COREs for
* each task, as long as steal time on those COREs are less than 30%,
* therefore delaying the throughput loss caused by using SMP threads.
*/
#include <linux/cpufeature.h>
#include <linux/cpumask.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/kernel_stat.h>
#include <linux/kstrtox.h>
#include <linux/ktime.h>
#include <linux/sysctl.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include <asm/hiperdispatch.h>
#include <asm/setup.h>
#include <asm/smp.h>
#include <asm/topology.h>
#define CREATE_TRACE_POINTS
#include <asm/trace/hiperdispatch.h>
#define HD_DELAY_FACTOR (4)
#define HD_DELAY_INTERVAL (HZ / 4)
#define HD_STEAL_THRESHOLD 30
#define HD_STEAL_AVG_WEIGHT 16
static cpumask_t hd_vl_coremask; /* Mask containing all vertical low COREs */
static cpumask_t hd_vmvl_cpumask; /* Mask containing vertical medium and low CPUs */
static int hd_high_capacity_cores; /* Current CORE count with high capacity */
static int hd_entitled_cores; /* Total vertical high and medium CORE count */
static int hd_online_cores; /* Current online CORE count */
static unsigned long hd_previous_steal; /* Previous iteration's CPU steal timer total */
static unsigned long hd_high_time; /* Total time spent while all cpus have high capacity */
static unsigned long hd_low_time; /* Total time spent while vl cpus have low capacity */
static atomic64_t hd_adjustments; /* Total occurrence count of hiperdispatch adjustments */
static unsigned int hd_steal_threshold = HD_STEAL_THRESHOLD;
static unsigned int hd_delay_factor = HD_DELAY_FACTOR;
static int hd_enabled;
static void hd_capacity_work_fn(struct work_struct *work);
static DECLARE_DELAYED_WORK(hd_capacity_work, hd_capacity_work_fn);
static int hd_set_hiperdispatch_mode(int enable)
{
if (!cpu_has_topology())
enable = 0;
if (hd_enabled == enable)
return 0;
hd_enabled = enable;
return 1;
}
void hd_reset_state(void)
{
cpumask_clear(&hd_vl_coremask);
cpumask_clear(&hd_vmvl_cpumask);
hd_entitled_cores = 0;
hd_online_cores = 0;
}
void hd_add_core(int cpu)
{
const struct cpumask *siblings;
int polarization;
hd_online_cores++;
polarization = smp_cpu_get_polarization(cpu);
siblings = topology_sibling_cpumask(cpu);
switch (polarization) {
case POLARIZATION_VH:
hd_entitled_cores++;
break;
case POLARIZATION_VM:
hd_entitled_cores++;
cpumask_or(&hd_vmvl_cpumask, &hd_vmvl_cpumask, siblings);
break;
case POLARIZATION_VL:
cpumask_set_cpu(cpu, &hd_vl_coremask);
cpumask_or(&hd_vmvl_cpumask, &hd_vmvl_cpumask, siblings);
break;
}
}
/* Serialize update and read operations of debug counters. */
static DEFINE_MUTEX(hd_counter_mutex);
static void hd_update_times(void)
{
static ktime_t prev;
ktime_t now;
/*
* Check if hiperdispatch is active, if not set the prev to 0.
* This way it is possible to differentiate the first update iteration after
* enabling hiperdispatch.
*/
if (hd_entitled_cores == 0 || hd_enabled == 0) {
prev = ktime_set(0, 0);
return;
}
now = ktime_get();
if (ktime_after(prev, 0)) {
if (hd_high_capacity_cores == hd_online_cores)
hd_high_time += ktime_ms_delta(now, prev);
else
hd_low_time += ktime_ms_delta(now, prev);
}
prev = now;
}
static void hd_update_capacities(void)
{
int cpu, upscaling_cores;
unsigned long capacity;
upscaling_cores = hd_high_capacity_cores - hd_entitled_cores;
capacity = upscaling_cores > 0 ? CPU_CAPACITY_HIGH : CPU_CAPACITY_LOW;
hd_high_capacity_cores = hd_entitled_cores;
for_each_cpu(cpu, &hd_vl_coremask) {
smp_set_core_capacity(cpu, capacity);
if (capacity != CPU_CAPACITY_HIGH)
continue;
hd_high_capacity_cores++;
upscaling_cores--;
if (upscaling_cores == 0)
capacity = CPU_CAPACITY_LOW;
}
}
void hd_disable_hiperdispatch(void)
{
cancel_delayed_work_sync(&hd_capacity_work);
hd_high_capacity_cores = hd_online_cores;
hd_previous_steal = 0;
}
int hd_enable_hiperdispatch(void)
{
mutex_lock(&hd_counter_mutex);
hd_update_times();
mutex_unlock(&hd_counter_mutex);
if (hd_enabled == 0)
return 0;
if (hd_entitled_cores == 0)
return 0;
if (hd_online_cores <= hd_entitled_cores)
return 0;
mod_delayed_work(system_dfl_wq, &hd_capacity_work, HD_DELAY_INTERVAL * hd_delay_factor);
hd_update_capacities();
return 1;
}
static unsigned long hd_steal_avg(unsigned long new)
{
static unsigned long steal;
steal = (steal * (HD_STEAL_AVG_WEIGHT - 1) + new) / HD_STEAL_AVG_WEIGHT;
return steal;
}
static unsigned long hd_calculate_steal_percentage(void)
{
unsigned long time_delta, steal_delta, steal, percentage;
static ktime_t prev;
int cpus, cpu;
ktime_t now;
cpus = 0;
steal = 0;
percentage = 0;
for_each_cpu(cpu, &hd_vmvl_cpumask) {
steal += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
cpus++;
}
/*
* If there is no vertical medium and low CPUs steal time
* is 0 as vertical high CPUs shouldn't experience steal time.
*/
if (cpus == 0)
return percentage;
now = ktime_get();
time_delta = ktime_to_ns(ktime_sub(now, prev));
if (steal > hd_previous_steal && hd_previous_steal != 0) {
steal_delta = (steal - hd_previous_steal) * 100 / time_delta;
percentage = steal_delta / cpus;
}
hd_previous_steal = steal;
prev = now;
return percentage;
}
static void hd_capacity_work_fn(struct work_struct *work)
{
unsigned long steal_percentage, new_cores;
mutex_lock(&smp_cpu_state_mutex);
/*
* If online cores are less or equal to entitled cores hiperdispatch
* does not need to make any adjustments, call a topology update to
* disable hiperdispatch.
* Normally this check is handled on topology update, but during cpu
* unhotplug, topology and cpu mask updates are done in reverse
* order, causing hd_enable_hiperdispatch() to get stale data.
*/
if (hd_online_cores <= hd_entitled_cores) {
topology_schedule_update();
mutex_unlock(&smp_cpu_state_mutex);
return;
}
steal_percentage = hd_steal_avg(hd_calculate_steal_percentage());
if (steal_percentage < hd_steal_threshold)
new_cores = hd_online_cores;
else
new_cores = hd_entitled_cores;
if (hd_high_capacity_cores != new_cores) {
trace_s390_hd_rebuild_domains(hd_high_capacity_cores, new_cores);
hd_high_capacity_cores = new_cores;
atomic64_inc(&hd_adjustments);
topology_schedule_update();
}
trace_s390_hd_work_fn(steal_percentage, hd_entitled_cores, hd_high_capacity_cores);
mutex_unlock(&smp_cpu_state_mutex);
schedule_delayed_work(&hd_capacity_work, HD_DELAY_INTERVAL);
}
static int hiperdispatch_ctl_handler(const struct ctl_table *ctl, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
int hiperdispatch;
int rc;
struct ctl_table ctl_entry = {
.procname = ctl->procname,
.data = &hiperdispatch,
.maxlen = sizeof(int),
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
};
hiperdispatch = hd_enabled;
rc = proc_douintvec_minmax(&ctl_entry, write, buffer, lenp, ppos);
if (rc < 0 || !write)
return rc;
mutex_lock(&smp_cpu_state_mutex);
if (hd_set_hiperdispatch_mode(hiperdispatch))
topology_schedule_update();
mutex_unlock(&smp_cpu_state_mutex);
return 0;
}
static const struct ctl_table hiperdispatch_ctl_table[] = {
{
.procname = "hiperdispatch",
.mode = 0644,
.proc_handler = hiperdispatch_ctl_handler,
},
};
static ssize_t hd_steal_threshold_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%u\n", hd_steal_threshold);
}
static ssize_t hd_steal_threshold_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
unsigned int val;
int rc;
rc = kstrtouint(buf, 0, &val);
if (rc)
return rc;
if (val > 100)
return -ERANGE;
hd_steal_threshold = val;
return count;
}
static DEVICE_ATTR_RW(hd_steal_threshold);
static ssize_t hd_delay_factor_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%u\n", hd_delay_factor);
}
static ssize_t hd_delay_factor_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
unsigned int val;
int rc;
rc = kstrtouint(buf, 0, &val);
if (rc)
return rc;
if (!val)
return -ERANGE;
hd_delay_factor = val;
return count;
}
static DEVICE_ATTR_RW(hd_delay_factor);
static struct attribute *hd_attrs[] = {
&dev_attr_hd_steal_threshold.attr,
&dev_attr_hd_delay_factor.attr,
NULL,
};
static const struct attribute_group hd_attr_group = {
.name = "hiperdispatch",
.attrs = hd_attrs,
};
static int hd_greedy_time_get(void *unused, u64 *val)
{
mutex_lock(&hd_counter_mutex);
hd_update_times();
*val = hd_high_time;
mutex_unlock(&hd_counter_mutex);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(hd_greedy_time_fops, hd_greedy_time_get, NULL, "%llu\n");
static int hd_conservative_time_get(void *unused, u64 *val)
{
mutex_lock(&hd_counter_mutex);
hd_update_times();
*val = hd_low_time;
mutex_unlock(&hd_counter_mutex);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(hd_conservative_time_fops, hd_conservative_time_get, NULL, "%llu\n");
static int hd_adjustment_count_get(void *unused, u64 *val)
{
*val = atomic64_read(&hd_adjustments);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(hd_adjustments_fops, hd_adjustment_count_get, NULL, "%llu\n");
static void __init hd_create_debugfs_counters(void)
{
struct dentry *dir;
dir = debugfs_create_dir("hiperdispatch", arch_debugfs_dir);
debugfs_create_file("conservative_time_ms", 0400, dir, NULL, &hd_conservative_time_fops);
debugfs_create_file("greedy_time_ms", 0400, dir, NULL, &hd_greedy_time_fops);
debugfs_create_file("adjustment_count", 0400, dir, NULL, &hd_adjustments_fops);
}
static void __init hd_create_attributes(void)
{
struct device *dev;
dev = bus_get_dev_root(&cpu_subsys);
if (!dev)
return;
if (sysfs_create_group(&dev->kobj, &hd_attr_group))
pr_warn("Unable to create hiperdispatch attribute group\n");
put_device(dev);
}
static int __init hd_init(void)
{
if (IS_ENABLED(CONFIG_HIPERDISPATCH_ON)) {
hd_set_hiperdispatch_mode(1);
topology_schedule_update();
}
if (!register_sysctl("s390", hiperdispatch_ctl_table))
pr_warn("Failed to register s390.hiperdispatch sysctl attribute\n");
hd_create_debugfs_counters();
hd_create_attributes();
return 0;
}
late_initcall(hd_init);
|