1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
|
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2025 Google LLC.
use kernel::{
list::{AtomicTracker, List, ListArc, ListLinks, TryNewListArc},
prelude::*,
seq_file::SeqFile,
seq_print,
sync::lock::{spinlock::SpinLockBackend, Guard},
sync::{Arc, LockedBy, SpinLock},
};
use crate::{
defs::*,
error::BinderError,
process::{NodeRefInfo, Process, ProcessInner},
thread::Thread,
transaction::Transaction,
BinderReturnWriter, DArc, DLArc, DTRWrap, DeliverToRead,
};
use core::mem;
mod wrapper;
pub(crate) use self::wrapper::CritIncrWrapper;
#[derive(Debug)]
pub(crate) struct CouldNotDeliverCriticalIncrement;
/// Keeps track of how this node is scheduled.
///
/// There are two ways to schedule a node to a work list. Just schedule the node itself, or
/// allocate a wrapper that references the node and schedule the wrapper. These wrappers exists to
/// make it possible to "move" a node from one list to another - when `do_work` is called directly
/// on the `Node`, then it's a no-op if there's also a pending wrapper.
///
/// Wrappers are generally only needed for zero-to-one refcount increments, and there are two cases
/// of this: weak increments and strong increments. We call such increments "critical" because it
/// is critical that they are delivered to the thread doing the increment. Some examples:
///
/// * One thread makes a zero-to-one strong increment, and another thread makes a zero-to-one weak
/// increment. Delivering the node to the thread doing the weak increment is wrong, since the
/// thread doing the strong increment may have ended a long time ago when the command is actually
/// processed by userspace.
///
/// * We have a weak reference and are about to drop it on one thread. But then another thread does
/// a zero-to-one strong increment. If the strong increment gets sent to the thread that was
/// about to drop the weak reference, then the strong increment could be processed after the
/// other thread has already exited, which would be too late.
///
/// Note that trying to create a `ListArc` to the node can succeed even if `has_normal_push` is
/// set. This is because another thread might just have popped the node from a todo list, but not
/// yet called `do_work`. However, if `has_normal_push` is false, then creating a `ListArc` should
/// always succeed.
///
/// Like the other fields in `NodeInner`, the delivery state is protected by the process lock.
struct DeliveryState {
/// Is the `Node` currently scheduled?
has_pushed_node: bool,
/// Is a wrapper currently scheduled?
///
/// The wrapper is used only for strong zero2one increments.
has_pushed_wrapper: bool,
/// Is the currently scheduled `Node` scheduled due to a weak zero2one increment?
///
/// Weak zero2one operations are always scheduled using the `Node`.
has_weak_zero2one: bool,
/// Is the currently scheduled wrapper/`Node` scheduled due to a strong zero2one increment?
///
/// If `has_pushed_wrapper` is set, then the strong zero2one increment was scheduled using the
/// wrapper. Otherwise, `has_pushed_node` must be set and it was scheduled using the `Node`.
has_strong_zero2one: bool,
}
impl DeliveryState {
fn should_normal_push(&self) -> bool {
!self.has_pushed_node && !self.has_pushed_wrapper
}
fn did_normal_push(&mut self) {
assert!(self.should_normal_push());
self.has_pushed_node = true;
}
fn should_push_weak_zero2one(&self) -> bool {
!self.has_weak_zero2one && !self.has_strong_zero2one
}
fn can_push_weak_zero2one_normally(&self) -> bool {
!self.has_pushed_node
}
fn did_push_weak_zero2one(&mut self) {
assert!(self.should_push_weak_zero2one());
assert!(self.can_push_weak_zero2one_normally());
self.has_pushed_node = true;
self.has_weak_zero2one = true;
}
fn should_push_strong_zero2one(&self) -> bool {
!self.has_strong_zero2one
}
fn can_push_strong_zero2one_normally(&self) -> bool {
!self.has_pushed_node
}
fn did_push_strong_zero2one(&mut self) {
assert!(self.should_push_strong_zero2one());
assert!(self.can_push_strong_zero2one_normally());
self.has_pushed_node = true;
self.has_strong_zero2one = true;
}
fn did_push_strong_zero2one_wrapper(&mut self) {
assert!(self.should_push_strong_zero2one());
assert!(!self.can_push_strong_zero2one_normally());
self.has_pushed_wrapper = true;
self.has_strong_zero2one = true;
}
}
struct CountState {
/// The reference count.
count: usize,
/// Whether the process that owns this node thinks that we hold a refcount on it. (Note that
/// even if count is greater than one, we only increment it once in the owning process.)
has_count: bool,
}
impl CountState {
fn new() -> Self {
Self {
count: 0,
has_count: false,
}
}
}
struct NodeInner {
/// Strong refcounts held on this node by `NodeRef` objects.
strong: CountState,
/// Weak refcounts held on this node by `NodeRef` objects.
weak: CountState,
delivery_state: DeliveryState,
/// The binder driver guarantees that oneway transactions sent to the same node are serialized,
/// that is, userspace will not be given the next one until it has finished processing the
/// previous oneway transaction. This is done to avoid the case where two oneway transactions
/// arrive in opposite order from the order in which they were sent. (E.g., they could be
/// delivered to two different threads, which could appear as-if they were sent in opposite
/// order.)
///
/// To fix that, we store pending oneway transactions in a separate list in the node, and don't
/// deliver the next oneway transaction until userspace signals that it has finished processing
/// the previous oneway transaction by calling the `BC_FREE_BUFFER` ioctl.
oneway_todo: List<DTRWrap<Transaction>>,
/// Keeps track of whether this node has a pending oneway transaction.
///
/// When this is true, incoming oneway transactions are stored in `oneway_todo`, instead of
/// being delivered directly to the process.
has_oneway_transaction: bool,
/// List of processes to deliver a notification to when this node is destroyed (usually due to
/// the process dying).
death_list: List<DTRWrap<NodeDeath>, 1>,
/// List of processes to deliver freeze notifications to.
freeze_list: KVVec<Arc<Process>>,
/// The number of active BR_INCREFS or BR_ACQUIRE operations. (should be maximum two)
///
/// If this is non-zero, then we postpone any BR_RELEASE or BR_DECREFS notifications until the
/// active operations have ended. This avoids the situation an increment and decrement get
/// reordered from userspace's perspective.
active_inc_refs: u8,
/// List of `NodeRefInfo` objects that reference this node.
refs: List<NodeRefInfo, { NodeRefInfo::LIST_NODE }>,
}
#[pin_data]
pub(crate) struct Node {
pub(crate) debug_id: usize,
ptr: u64,
pub(crate) cookie: u64,
pub(crate) flags: u32,
pub(crate) owner: Arc<Process>,
inner: LockedBy<NodeInner, ProcessInner>,
#[pin]
links_track: AtomicTracker,
}
kernel::list::impl_list_arc_safe! {
impl ListArcSafe<0> for Node {
tracked_by links_track: AtomicTracker;
}
}
// Make `oneway_todo` work.
kernel::list::impl_list_item! {
impl ListItem<0> for DTRWrap<Transaction> {
using ListLinks { self.links.inner };
}
}
impl Node {
pub(crate) fn new(
ptr: u64,
cookie: u64,
flags: u32,
owner: Arc<Process>,
) -> impl PinInit<Self> {
pin_init!(Self {
inner: LockedBy::new(
&owner.inner,
NodeInner {
strong: CountState::new(),
weak: CountState::new(),
delivery_state: DeliveryState {
has_pushed_node: false,
has_pushed_wrapper: false,
has_weak_zero2one: false,
has_strong_zero2one: false,
},
death_list: List::new(),
oneway_todo: List::new(),
freeze_list: KVVec::new(),
has_oneway_transaction: false,
active_inc_refs: 0,
refs: List::new(),
},
),
debug_id: super::next_debug_id(),
ptr,
cookie,
flags,
owner,
links_track <- AtomicTracker::new(),
})
}
pub(crate) fn has_oneway_transaction(&self, owner_inner: &mut ProcessInner) -> bool {
let inner = self.inner.access_mut(owner_inner);
inner.has_oneway_transaction
}
#[inline(never)]
pub(crate) fn full_debug_print(
&self,
m: &SeqFile,
owner_inner: &mut ProcessInner,
) -> Result<()> {
let inner = self.inner.access_mut(owner_inner);
seq_print!(
m,
" node {}: u{:016x} c{:016x} hs {} hw {} cs {} cw {}",
self.debug_id,
self.ptr,
self.cookie,
inner.strong.has_count,
inner.weak.has_count,
inner.strong.count,
inner.weak.count,
);
if !inner.refs.is_empty() {
seq_print!(m, " proc");
for node_ref in &inner.refs {
seq_print!(m, " {}", node_ref.process.task.pid());
}
}
seq_print!(m, "\n");
for t in &inner.oneway_todo {
t.debug_print_inner(m, " pending async transaction ");
}
Ok(())
}
/// Insert the `NodeRef` into this `refs` list.
///
/// # Safety
///
/// It must be the case that `info.node_ref.node` is this node.
pub(crate) unsafe fn insert_node_info(
&self,
info: ListArc<NodeRefInfo, { NodeRefInfo::LIST_NODE }>,
) {
self.inner
.access_mut(&mut self.owner.inner.lock())
.refs
.push_front(info);
}
/// Insert the `NodeRef` into this `refs` list.
///
/// # Safety
///
/// It must be the case that `info.node_ref.node` is this node.
pub(crate) unsafe fn remove_node_info(
&self,
info: &NodeRefInfo,
) -> Option<ListArc<NodeRefInfo, { NodeRefInfo::LIST_NODE }>> {
// SAFETY: We always insert `NodeRefInfo` objects into the `refs` list of the node that it
// references in `info.node_ref.node`. That is this node, so `info` cannot possibly be in
// the `refs` list of another node.
unsafe {
self.inner
.access_mut(&mut self.owner.inner.lock())
.refs
.remove(info)
}
}
/// An id that is unique across all binder nodes on the system. Used as the key in the
/// `by_node` map.
pub(crate) fn global_id(&self) -> usize {
self as *const Node as usize
}
pub(crate) fn get_id(&self) -> (u64, u64) {
(self.ptr, self.cookie)
}
pub(crate) fn add_death(
&self,
death: ListArc<DTRWrap<NodeDeath>, 1>,
guard: &mut Guard<'_, ProcessInner, SpinLockBackend>,
) {
self.inner.access_mut(guard).death_list.push_back(death);
}
pub(crate) fn inc_ref_done_locked(
self: &DArc<Node>,
_strong: bool,
owner_inner: &mut ProcessInner,
) -> Option<DLArc<Node>> {
let inner = self.inner.access_mut(owner_inner);
if inner.active_inc_refs == 0 {
pr_err!("inc_ref_done called when no active inc_refs");
return None;
}
inner.active_inc_refs -= 1;
if inner.active_inc_refs == 0 {
// Having active inc_refs can inhibit dropping of ref-counts. Calculate whether we
// would send a refcount decrement, and if so, tell the caller to schedule us.
let strong = inner.strong.count > 0;
let has_strong = inner.strong.has_count;
let weak = strong || inner.weak.count > 0;
let has_weak = inner.weak.has_count;
let should_drop_weak = !weak && has_weak;
let should_drop_strong = !strong && has_strong;
// If we want to drop the ref-count again, tell the caller to schedule a work node for
// that.
let need_push = should_drop_weak || should_drop_strong;
if need_push && inner.delivery_state.should_normal_push() {
let list_arc = ListArc::try_from_arc(self.clone()).ok().unwrap();
inner.delivery_state.did_normal_push();
Some(list_arc)
} else {
None
}
} else {
None
}
}
pub(crate) fn update_refcount_locked(
self: &DArc<Node>,
inc: bool,
strong: bool,
count: usize,
owner_inner: &mut ProcessInner,
) -> Option<DLArc<Node>> {
let is_dead = owner_inner.is_dead;
let inner = self.inner.access_mut(owner_inner);
// Get a reference to the state we'll update.
let state = if strong {
&mut inner.strong
} else {
&mut inner.weak
};
// Update the count and determine whether we need to push work.
let need_push = if inc {
state.count += count;
// TODO: This method shouldn't be used for zero-to-one increments.
!is_dead && !state.has_count
} else {
if state.count < count {
pr_err!("Failure: refcount underflow!");
return None;
}
state.count -= count;
!is_dead && state.count == 0 && state.has_count
};
if need_push && inner.delivery_state.should_normal_push() {
let list_arc = ListArc::try_from_arc(self.clone()).ok().unwrap();
inner.delivery_state.did_normal_push();
Some(list_arc)
} else {
None
}
}
pub(crate) fn incr_refcount_allow_zero2one(
self: &DArc<Self>,
strong: bool,
owner_inner: &mut ProcessInner,
) -> Result<Option<DLArc<Node>>, CouldNotDeliverCriticalIncrement> {
let is_dead = owner_inner.is_dead;
let inner = self.inner.access_mut(owner_inner);
// Get a reference to the state we'll update.
let state = if strong {
&mut inner.strong
} else {
&mut inner.weak
};
// Update the count and determine whether we need to push work.
state.count += 1;
if is_dead || state.has_count {
return Ok(None);
}
// Userspace needs to be notified of this.
if !strong && inner.delivery_state.should_push_weak_zero2one() {
assert!(inner.delivery_state.can_push_weak_zero2one_normally());
let list_arc = ListArc::try_from_arc(self.clone()).ok().unwrap();
inner.delivery_state.did_push_weak_zero2one();
Ok(Some(list_arc))
} else if strong && inner.delivery_state.should_push_strong_zero2one() {
if inner.delivery_state.can_push_strong_zero2one_normally() {
let list_arc = ListArc::try_from_arc(self.clone()).ok().unwrap();
inner.delivery_state.did_push_strong_zero2one();
Ok(Some(list_arc))
} else {
state.count -= 1;
Err(CouldNotDeliverCriticalIncrement)
}
} else {
// Work is already pushed, and we don't need to push again.
Ok(None)
}
}
pub(crate) fn incr_refcount_allow_zero2one_with_wrapper(
self: &DArc<Self>,
strong: bool,
wrapper: CritIncrWrapper,
owner_inner: &mut ProcessInner,
) -> Option<DLArc<dyn DeliverToRead>> {
match self.incr_refcount_allow_zero2one(strong, owner_inner) {
Ok(Some(node)) => Some(node as _),
Ok(None) => None,
Err(CouldNotDeliverCriticalIncrement) => {
assert!(strong);
let inner = self.inner.access_mut(owner_inner);
inner.strong.count += 1;
inner.delivery_state.did_push_strong_zero2one_wrapper();
Some(wrapper.init(self.clone()))
}
}
}
pub(crate) fn update_refcount(self: &DArc<Self>, inc: bool, count: usize, strong: bool) {
self.owner
.inner
.lock()
.update_node_refcount(self, inc, strong, count, None);
}
pub(crate) fn populate_counts(
&self,
out: &mut BinderNodeInfoForRef,
guard: &Guard<'_, ProcessInner, SpinLockBackend>,
) {
let inner = self.inner.access(guard);
out.strong_count = inner.strong.count as _;
out.weak_count = inner.weak.count as _;
}
pub(crate) fn populate_debug_info(
&self,
out: &mut BinderNodeDebugInfo,
guard: &Guard<'_, ProcessInner, SpinLockBackend>,
) {
out.ptr = self.ptr as _;
out.cookie = self.cookie as _;
let inner = self.inner.access(guard);
if inner.strong.has_count {
out.has_strong_ref = 1;
}
if inner.weak.has_count {
out.has_weak_ref = 1;
}
}
pub(crate) fn force_has_count(&self, guard: &mut Guard<'_, ProcessInner, SpinLockBackend>) {
let inner = self.inner.access_mut(guard);
inner.strong.has_count = true;
inner.weak.has_count = true;
}
fn write(&self, writer: &mut BinderReturnWriter<'_>, code: u32) -> Result {
writer.write_code(code)?;
writer.write_payload(&self.ptr)?;
writer.write_payload(&self.cookie)?;
Ok(())
}
pub(crate) fn submit_oneway(
&self,
transaction: DLArc<Transaction>,
guard: &mut Guard<'_, ProcessInner, SpinLockBackend>,
) -> Result<(), (BinderError, DLArc<dyn DeliverToRead>)> {
if guard.is_dead {
return Err((BinderError::new_dead(), transaction));
}
let inner = self.inner.access_mut(guard);
if inner.has_oneway_transaction {
inner.oneway_todo.push_back(transaction);
} else {
inner.has_oneway_transaction = true;
guard.push_work(transaction)?;
}
Ok(())
}
pub(crate) fn release(&self) {
let mut guard = self.owner.inner.lock();
while let Some(work) = self.inner.access_mut(&mut guard).oneway_todo.pop_front() {
drop(guard);
work.into_arc().cancel();
guard = self.owner.inner.lock();
}
while let Some(death) = self.inner.access_mut(&mut guard).death_list.pop_front() {
drop(guard);
death.into_arc().set_dead();
guard = self.owner.inner.lock();
}
}
pub(crate) fn pending_oneway_finished(&self) {
let mut guard = self.owner.inner.lock();
if guard.is_dead {
// Cleanup will happen in `Process::deferred_release`.
return;
}
let inner = self.inner.access_mut(&mut guard);
let transaction = inner.oneway_todo.pop_front();
inner.has_oneway_transaction = transaction.is_some();
if let Some(transaction) = transaction {
match guard.push_work(transaction) {
Ok(()) => {}
Err((_err, work)) => {
// Process is dead.
// This shouldn't happen due to the `is_dead` check, but if it does, just drop
// the transaction and return.
drop(guard);
drop(work);
}
}
}
}
/// Finds an outdated transaction that the given transaction can replace.
///
/// If one is found, it is removed from the list and returned.
pub(crate) fn take_outdated_transaction(
&self,
new: &Transaction,
guard: &mut Guard<'_, ProcessInner, SpinLockBackend>,
) -> Option<DLArc<Transaction>> {
let inner = self.inner.access_mut(guard);
let mut cursor = inner.oneway_todo.cursor_front();
while let Some(next) = cursor.peek_next() {
if new.can_replace(&next) {
return Some(next.remove());
}
cursor.move_next();
}
None
}
/// This is split into a separate function since it's called by both `Node::do_work` and
/// `NodeWrapper::do_work`.
fn do_work_locked(
&self,
writer: &mut BinderReturnWriter<'_>,
mut guard: Guard<'_, ProcessInner, SpinLockBackend>,
) -> Result<bool> {
let inner = self.inner.access_mut(&mut guard);
let strong = inner.strong.count > 0;
let has_strong = inner.strong.has_count;
let weak = strong || inner.weak.count > 0;
let has_weak = inner.weak.has_count;
if weak && !has_weak {
inner.weak.has_count = true;
inner.active_inc_refs += 1;
}
if strong && !has_strong {
inner.strong.has_count = true;
inner.active_inc_refs += 1;
}
let no_active_inc_refs = inner.active_inc_refs == 0;
let should_drop_weak = no_active_inc_refs && (!weak && has_weak);
let should_drop_strong = no_active_inc_refs && (!strong && has_strong);
if should_drop_weak {
inner.weak.has_count = false;
}
if should_drop_strong {
inner.strong.has_count = false;
}
if no_active_inc_refs && !weak {
// Remove the node if there are no references to it.
guard.remove_node(self.ptr);
}
drop(guard);
if weak && !has_weak {
self.write(writer, BR_INCREFS)?;
}
if strong && !has_strong {
self.write(writer, BR_ACQUIRE)?;
}
if should_drop_strong {
self.write(writer, BR_RELEASE)?;
}
if should_drop_weak {
self.write(writer, BR_DECREFS)?;
}
Ok(true)
}
pub(crate) fn add_freeze_listener(
&self,
process: &Arc<Process>,
flags: kernel::alloc::Flags,
) -> Result {
let mut vec_alloc = KVVec::<Arc<Process>>::new();
loop {
let mut guard = self.owner.inner.lock();
// Do not check for `guard.dead`. The `dead` flag that matters here is the owner of the
// listener, no the target.
let inner = self.inner.access_mut(&mut guard);
let len = inner.freeze_list.len();
if len >= inner.freeze_list.capacity() {
if len >= vec_alloc.capacity() {
drop(guard);
vec_alloc = KVVec::with_capacity((1 + len).next_power_of_two(), flags)?;
continue;
}
mem::swap(&mut inner.freeze_list, &mut vec_alloc);
for elem in vec_alloc.drain_all() {
inner.freeze_list.push_within_capacity(elem)?;
}
}
inner.freeze_list.push_within_capacity(process.clone())?;
return Ok(());
}
}
pub(crate) fn remove_freeze_listener(&self, p: &Arc<Process>) {
let _unused_capacity;
let mut guard = self.owner.inner.lock();
let inner = self.inner.access_mut(&mut guard);
let len = inner.freeze_list.len();
inner.freeze_list.retain(|proc| !Arc::ptr_eq(proc, p));
if len == inner.freeze_list.len() {
pr_warn!(
"Could not remove freeze listener for {}\n",
p.pid_in_current_ns()
);
}
if inner.freeze_list.is_empty() {
_unused_capacity = mem::take(&mut inner.freeze_list);
}
}
pub(crate) fn freeze_list<'a>(&'a self, guard: &'a ProcessInner) -> &'a [Arc<Process>] {
&self.inner.access(guard).freeze_list
}
}
impl DeliverToRead for Node {
fn do_work(
self: DArc<Self>,
_thread: &Thread,
writer: &mut BinderReturnWriter<'_>,
) -> Result<bool> {
let mut owner_inner = self.owner.inner.lock();
let inner = self.inner.access_mut(&mut owner_inner);
assert!(inner.delivery_state.has_pushed_node);
if inner.delivery_state.has_pushed_wrapper {
// If the wrapper is scheduled, then we are either a normal push or weak zero2one
// increment, and the wrapper is a strong zero2one increment, so the wrapper always
// takes precedence over us.
assert!(inner.delivery_state.has_strong_zero2one);
inner.delivery_state.has_pushed_node = false;
inner.delivery_state.has_weak_zero2one = false;
return Ok(true);
}
inner.delivery_state.has_pushed_node = false;
inner.delivery_state.has_weak_zero2one = false;
inner.delivery_state.has_strong_zero2one = false;
self.do_work_locked(writer, owner_inner)
}
fn cancel(self: DArc<Self>) {}
fn should_sync_wakeup(&self) -> bool {
false
}
#[inline(never)]
fn debug_print(&self, m: &SeqFile, prefix: &str, _tprefix: &str) -> Result<()> {
seq_print!(
m,
"{}node work {}: u{:016x} c{:016x}\n",
prefix,
self.debug_id,
self.ptr,
self.cookie,
);
Ok(())
}
}
/// Represents something that holds one or more ref-counts to a `Node`.
///
/// Whenever process A holds a refcount to a node owned by a different process B, then process A
/// will store a `NodeRef` that refers to the `Node` in process B. When process A releases the
/// refcount, we destroy the NodeRef, which decrements the ref-count in process A.
///
/// This type is also used for some other cases. For example, a transaction allocation holds a
/// refcount on the target node, and this is implemented by storing a `NodeRef` in the allocation
/// so that the destructor of the allocation will drop a refcount of the `Node`.
pub(crate) struct NodeRef {
pub(crate) node: DArc<Node>,
/// How many times does this NodeRef hold a refcount on the Node?
strong_node_count: usize,
weak_node_count: usize,
/// How many times does userspace hold a refcount on this NodeRef?
strong_count: usize,
weak_count: usize,
}
impl NodeRef {
pub(crate) fn new(node: DArc<Node>, strong_count: usize, weak_count: usize) -> Self {
Self {
node,
strong_node_count: strong_count,
weak_node_count: weak_count,
strong_count,
weak_count,
}
}
pub(crate) fn absorb(&mut self, mut other: Self) {
assert!(
Arc::ptr_eq(&self.node, &other.node),
"absorb called with differing nodes"
);
self.strong_node_count += other.strong_node_count;
self.weak_node_count += other.weak_node_count;
self.strong_count += other.strong_count;
self.weak_count += other.weak_count;
other.strong_count = 0;
other.weak_count = 0;
other.strong_node_count = 0;
other.weak_node_count = 0;
if self.strong_node_count >= 2 || self.weak_node_count >= 2 {
let mut guard = self.node.owner.inner.lock();
let inner = self.node.inner.access_mut(&mut guard);
if self.strong_node_count >= 2 {
inner.strong.count -= self.strong_node_count - 1;
self.strong_node_count = 1;
assert_ne!(inner.strong.count, 0);
}
if self.weak_node_count >= 2 {
inner.weak.count -= self.weak_node_count - 1;
self.weak_node_count = 1;
assert_ne!(inner.weak.count, 0);
}
}
}
pub(crate) fn get_count(&self) -> (usize, usize) {
(self.strong_count, self.weak_count)
}
pub(crate) fn clone(&self, strong: bool) -> Result<NodeRef> {
if strong && self.strong_count == 0 {
return Err(EINVAL);
}
Ok(self
.node
.owner
.inner
.lock()
.new_node_ref(self.node.clone(), strong, None))
}
/// Updates (increments or decrements) the number of references held against the node. If the
/// count being updated transitions from 0 to 1 or from 1 to 0, the node is notified by having
/// its `update_refcount` function called.
///
/// Returns whether `self` should be removed (when both counts are zero).
pub(crate) fn update(&mut self, inc: bool, strong: bool) -> bool {
if strong && self.strong_count == 0 {
return false;
}
let (count, node_count, other_count) = if strong {
(
&mut self.strong_count,
&mut self.strong_node_count,
self.weak_count,
)
} else {
(
&mut self.weak_count,
&mut self.weak_node_count,
self.strong_count,
)
};
if inc {
if *count == 0 {
*node_count = 1;
self.node.update_refcount(true, 1, strong);
}
*count += 1;
} else {
if *count == 0 {
pr_warn!(
"pid {} performed invalid decrement on ref\n",
kernel::current!().pid()
);
return false;
}
*count -= 1;
if *count == 0 {
self.node.update_refcount(false, *node_count, strong);
*node_count = 0;
return other_count == 0;
}
}
false
}
}
impl Drop for NodeRef {
// This destructor is called conditionally from `Allocation::drop`. That branch is often
// mispredicted. Inlining this method call reduces the cost of those branch mispredictions.
#[inline(always)]
fn drop(&mut self) {
if self.strong_node_count > 0 {
self.node
.update_refcount(false, self.strong_node_count, true);
}
if self.weak_node_count > 0 {
self.node
.update_refcount(false, self.weak_node_count, false);
}
}
}
struct NodeDeathInner {
dead: bool,
cleared: bool,
notification_done: bool,
/// Indicates whether the normal flow was interrupted by removing the handle. In this case, we
/// need behave as if the death notification didn't exist (i.e., we don't deliver anything to
/// the user.
aborted: bool,
}
/// Used to deliver notifications when a process dies.
///
/// A process can request to be notified when a process dies using `BC_REQUEST_DEATH_NOTIFICATION`.
/// This will make the driver send a `BR_DEAD_BINDER` to userspace when the process dies (or
/// immediately if it is already dead). Userspace is supposed to respond with `BC_DEAD_BINDER_DONE`
/// once it has processed the notification.
///
/// Userspace can unregister from death notifications using the `BC_CLEAR_DEATH_NOTIFICATION`
/// command. In this case, the kernel will respond with `BR_CLEAR_DEATH_NOTIFICATION_DONE` once the
/// notification has been removed. Note that if the remote process dies before the kernel has
/// responded with `BR_CLEAR_DEATH_NOTIFICATION_DONE`, then the kernel will still send a
/// `BR_DEAD_BINDER`, which userspace must be able to process. In this case, the kernel will wait
/// for the `BC_DEAD_BINDER_DONE` command before it sends `BR_CLEAR_DEATH_NOTIFICATION_DONE`.
///
/// Note that even if the kernel sends a `BR_DEAD_BINDER`, this does not remove the death
/// notification. Userspace must still remove it manually using `BC_CLEAR_DEATH_NOTIFICATION`.
///
/// If a process uses `BC_RELEASE` to destroy its last refcount on a node that has an active death
/// registration, then the death registration is immediately deleted (we implement this using the
/// `aborted` field). However, userspace is not supposed to delete a `NodeRef` without first
/// deregistering death notifications, so this codepath is not executed under normal circumstances.
#[pin_data]
pub(crate) struct NodeDeath {
node: DArc<Node>,
process: Arc<Process>,
pub(crate) cookie: u64,
#[pin]
links_track: AtomicTracker<0>,
/// Used by the owner `Node` to store a list of registered death notifications.
///
/// # Invariants
///
/// Only ever used with the `death_list` list of `self.node`.
#[pin]
death_links: ListLinks<1>,
/// Used by the process to keep track of the death notifications for which we have sent a
/// `BR_DEAD_BINDER` but not yet received a `BC_DEAD_BINDER_DONE`.
///
/// # Invariants
///
/// Only ever used with the `delivered_deaths` list of `self.process`.
#[pin]
delivered_links: ListLinks<2>,
#[pin]
delivered_links_track: AtomicTracker<2>,
#[pin]
inner: SpinLock<NodeDeathInner>,
}
impl NodeDeath {
/// Constructs a new node death notification object.
pub(crate) fn new(
node: DArc<Node>,
process: Arc<Process>,
cookie: u64,
) -> impl PinInit<DTRWrap<Self>> {
DTRWrap::new(pin_init!(
Self {
node,
process,
cookie,
links_track <- AtomicTracker::new(),
death_links <- ListLinks::new(),
delivered_links <- ListLinks::new(),
delivered_links_track <- AtomicTracker::new(),
inner <- kernel::new_spinlock!(NodeDeathInner {
dead: false,
cleared: false,
notification_done: false,
aborted: false,
}, "NodeDeath::inner"),
}
))
}
/// Sets the cleared flag to `true`.
///
/// It removes `self` from the node's death notification list if needed.
///
/// Returns whether it needs to be queued.
pub(crate) fn set_cleared(self: &DArc<Self>, abort: bool) -> bool {
let (needs_removal, needs_queueing) = {
// Update state and determine if we need to queue a work item. We only need to do it
// when the node is not dead or if the user already completed the death notification.
let mut inner = self.inner.lock();
if abort {
inner.aborted = true;
}
if inner.cleared {
// Already cleared.
return false;
}
inner.cleared = true;
(!inner.dead, !inner.dead || inner.notification_done)
};
// Remove death notification from node.
if needs_removal {
let mut owner_inner = self.node.owner.inner.lock();
let node_inner = self.node.inner.access_mut(&mut owner_inner);
// SAFETY: A `NodeDeath` is never inserted into the death list of any node other than
// its owner, so it is either in this death list or in no death list.
unsafe { node_inner.death_list.remove(self) };
}
needs_queueing
}
/// Sets the 'notification done' flag to `true`.
pub(crate) fn set_notification_done(self: DArc<Self>, thread: &Thread) {
let needs_queueing = {
let mut inner = self.inner.lock();
inner.notification_done = true;
inner.cleared
};
if needs_queueing {
if let Some(death) = ListArc::try_from_arc_or_drop(self) {
let _ = thread.push_work_if_looper(death);
}
}
}
/// Sets the 'dead' flag to `true` and queues work item if needed.
pub(crate) fn set_dead(self: DArc<Self>) {
let needs_queueing = {
let mut inner = self.inner.lock();
if inner.cleared {
false
} else {
inner.dead = true;
true
}
};
if needs_queueing {
// Push the death notification to the target process. There is nothing else to do if
// it's already dead.
if let Some(death) = ListArc::try_from_arc_or_drop(self) {
let process = death.process.clone();
let _ = process.push_work(death);
}
}
}
}
kernel::list::impl_list_arc_safe! {
impl ListArcSafe<0> for NodeDeath {
tracked_by links_track: AtomicTracker;
}
}
kernel::list::impl_list_arc_safe! {
impl ListArcSafe<1> for DTRWrap<NodeDeath> { untracked; }
}
kernel::list::impl_list_item! {
impl ListItem<1> for DTRWrap<NodeDeath> {
using ListLinks { self.wrapped.death_links };
}
}
kernel::list::impl_list_arc_safe! {
impl ListArcSafe<2> for DTRWrap<NodeDeath> {
tracked_by wrapped: NodeDeath;
}
}
kernel::list::impl_list_arc_safe! {
impl ListArcSafe<2> for NodeDeath {
tracked_by delivered_links_track: AtomicTracker<2>;
}
}
kernel::list::impl_list_item! {
impl ListItem<2> for DTRWrap<NodeDeath> {
using ListLinks { self.wrapped.delivered_links };
}
}
impl DeliverToRead for NodeDeath {
fn do_work(
self: DArc<Self>,
_thread: &Thread,
writer: &mut BinderReturnWriter<'_>,
) -> Result<bool> {
let done = {
let inner = self.inner.lock();
if inner.aborted {
return Ok(true);
}
inner.cleared && (!inner.dead || inner.notification_done)
};
let cookie = self.cookie;
let cmd = if done {
BR_CLEAR_DEATH_NOTIFICATION_DONE
} else {
let process = self.process.clone();
let mut process_inner = process.inner.lock();
let inner = self.inner.lock();
if inner.aborted {
return Ok(true);
}
// We're still holding the inner lock, so it cannot be aborted while we insert it into
// the delivered list.
process_inner.death_delivered(self.clone());
BR_DEAD_BINDER
};
writer.write_code(cmd)?;
writer.write_payload(&cookie)?;
// DEAD_BINDER notifications can cause transactions, so stop processing work items when we
// get to a death notification.
Ok(cmd != BR_DEAD_BINDER)
}
fn cancel(self: DArc<Self>) {}
fn should_sync_wakeup(&self) -> bool {
false
}
#[inline(never)]
fn debug_print(&self, m: &SeqFile, prefix: &str, _tprefix: &str) -> Result<()> {
let inner = self.inner.lock();
let dead_binder = inner.dead && !inner.notification_done;
if dead_binder {
if inner.cleared {
seq_print!(m, "{}has cleared dead binder\n", prefix);
} else {
seq_print!(m, "{}has dead binder\n", prefix);
}
} else {
seq_print!(m, "{}has cleared death notification\n", prefix);
}
Ok(())
}
}
|