1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2025 Google LLC.
use kernel::{
page::{PAGE_MASK, PAGE_SIZE},
prelude::*,
seq_file::SeqFile,
seq_print,
task::Pid,
};
use crate::range_alloc::{DescriptorState, FreedRange, Range};
/// Keeps track of allocations in a process' mmap.
///
/// Each process has an mmap where the data for incoming transactions will be placed. This struct
/// keeps track of allocations made in the mmap. For each allocation, we store a descriptor that
/// has metadata related to the allocation. We also keep track of available free space.
pub(super) struct ArrayRangeAllocator<T> {
/// This stores all ranges that are allocated. Unlike the tree based allocator, we do *not*
/// store the free ranges.
///
/// Sorted by offset.
pub(super) ranges: KVec<Range<T>>,
size: usize,
free_oneway_space: usize,
}
struct FindEmptyRes {
/// Which index in `ranges` should we insert the new range at?
///
/// Inserting the new range at this index keeps `ranges` sorted.
insert_at_idx: usize,
/// Which offset should we insert the new range at?
insert_at_offset: usize,
}
impl<T> ArrayRangeAllocator<T> {
pub(crate) fn new(size: usize, alloc: EmptyArrayAlloc<T>) -> Self {
Self {
ranges: alloc.ranges,
size,
free_oneway_space: size / 2,
}
}
pub(crate) fn free_oneway_space(&self) -> usize {
self.free_oneway_space
}
pub(crate) fn count_buffers(&self) -> usize {
self.ranges.len()
}
pub(crate) fn total_size(&self) -> usize {
self.size
}
pub(crate) fn is_full(&self) -> bool {
self.ranges.len() == self.ranges.capacity()
}
pub(crate) fn debug_print(&self, m: &SeqFile) -> Result<()> {
for range in &self.ranges {
seq_print!(
m,
" buffer {}: {} size {} pid {} oneway {}",
0,
range.offset,
range.size,
range.state.pid(),
range.state.is_oneway(),
);
if let DescriptorState::Reserved(_) = range.state {
seq_print!(m, " reserved\n");
} else {
seq_print!(m, " allocated\n");
}
}
Ok(())
}
/// Find somewhere to put a new range.
///
/// Unlike the tree implementation, we do not bother to find the smallest gap. The idea is that
/// fragmentation isn't a big issue when we don't have many ranges.
///
/// Returns the index that the new range should have in `self.ranges` after insertion.
fn find_empty_range(&self, size: usize) -> Option<FindEmptyRes> {
let after_last_range = self.ranges.last().map(Range::endpoint).unwrap_or(0);
if size <= self.total_size() - after_last_range {
// We can put the range at the end, so just do that.
Some(FindEmptyRes {
insert_at_idx: self.ranges.len(),
insert_at_offset: after_last_range,
})
} else {
let mut end_of_prev = 0;
for (i, range) in self.ranges.iter().enumerate() {
// Does it fit before the i'th range?
if size <= range.offset - end_of_prev {
return Some(FindEmptyRes {
insert_at_idx: i,
insert_at_offset: end_of_prev,
});
}
end_of_prev = range.endpoint();
}
None
}
}
pub(crate) fn reserve_new(
&mut self,
debug_id: usize,
size: usize,
is_oneway: bool,
pid: Pid,
) -> Result<usize> {
// Compute new value of free_oneway_space, which is set only on success.
let new_oneway_space = if is_oneway {
match self.free_oneway_space.checked_sub(size) {
Some(new_oneway_space) => new_oneway_space,
None => return Err(ENOSPC),
}
} else {
self.free_oneway_space
};
let FindEmptyRes {
insert_at_idx,
insert_at_offset,
} = self.find_empty_range(size).ok_or(ENOSPC)?;
self.free_oneway_space = new_oneway_space;
let new_range = Range {
offset: insert_at_offset,
size,
state: DescriptorState::new(is_oneway, debug_id, pid),
};
// Insert the value at the given index to keep the array sorted.
self.ranges
.insert_within_capacity(insert_at_idx, new_range)
.ok()
.unwrap();
Ok(insert_at_offset)
}
pub(crate) fn reservation_abort(&mut self, offset: usize) -> Result<FreedRange> {
// This could use a binary search, but linear scans are usually faster for small arrays.
let i = self
.ranges
.iter()
.position(|range| range.offset == offset)
.ok_or(EINVAL)?;
let range = &self.ranges[i];
if let DescriptorState::Allocated(_) = range.state {
return Err(EPERM);
}
let size = range.size;
let offset = range.offset;
if range.state.is_oneway() {
self.free_oneway_space += size;
}
// This computes the range of pages that are no longer used by *any* allocated range. The
// caller will mark them as unused, which means that they can be freed if the system comes
// under memory pressure.
let mut freed_range = FreedRange::interior_pages(offset, size);
#[expect(clippy::collapsible_if)] // reads better like this
if offset % PAGE_SIZE != 0 {
if i == 0 || self.ranges[i - 1].endpoint() <= (offset & PAGE_MASK) {
freed_range.start_page_idx -= 1;
}
}
if range.endpoint() % PAGE_SIZE != 0 {
let page_after = (range.endpoint() & PAGE_MASK) + PAGE_SIZE;
if i + 1 == self.ranges.len() || page_after <= self.ranges[i + 1].offset {
freed_range.end_page_idx += 1;
}
}
self.ranges.remove(i)?;
Ok(freed_range)
}
pub(crate) fn reservation_commit(&mut self, offset: usize, data: &mut Option<T>) -> Result {
// This could use a binary search, but linear scans are usually faster for small arrays.
let range = self
.ranges
.iter_mut()
.find(|range| range.offset == offset)
.ok_or(ENOENT)?;
let DescriptorState::Reserved(reservation) = &range.state else {
return Err(ENOENT);
};
range.state = DescriptorState::Allocated(reservation.clone().allocate(data.take()));
Ok(())
}
pub(crate) fn reserve_existing(&mut self, offset: usize) -> Result<(usize, usize, Option<T>)> {
// This could use a binary search, but linear scans are usually faster for small arrays.
let range = self
.ranges
.iter_mut()
.find(|range| range.offset == offset)
.ok_or(ENOENT)?;
let DescriptorState::Allocated(allocation) = &mut range.state else {
return Err(ENOENT);
};
let data = allocation.take();
let debug_id = allocation.reservation.debug_id;
range.state = DescriptorState::Reserved(allocation.reservation.clone());
Ok((range.size, debug_id, data))
}
pub(crate) fn take_for_each<F: Fn(usize, usize, usize, Option<T>)>(&mut self, callback: F) {
for range in self.ranges.iter_mut() {
if let DescriptorState::Allocated(allocation) = &mut range.state {
callback(
range.offset,
range.size,
allocation.reservation.debug_id,
allocation.data.take(),
);
}
}
}
}
pub(crate) struct EmptyArrayAlloc<T> {
ranges: KVec<Range<T>>,
}
impl<T> EmptyArrayAlloc<T> {
pub(crate) fn try_new(capacity: usize) -> Result<Self> {
Ok(Self {
ranges: KVec::with_capacity(capacity, GFP_KERNEL)?,
})
}
}
|