1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
|
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2025 Google LLC.
use kernel::{
page::PAGE_SIZE,
prelude::*,
rbtree::{RBTree, RBTreeNode, RBTreeNodeReservation},
seq_file::SeqFile,
seq_print,
task::Pid,
};
use crate::range_alloc::{DescriptorState, FreedRange, Range};
/// Keeps track of allocations in a process' mmap.
///
/// Each process has an mmap where the data for incoming transactions will be placed. This struct
/// keeps track of allocations made in the mmap. For each allocation, we store a descriptor that
/// has metadata related to the allocation. We also keep track of available free space.
pub(super) struct TreeRangeAllocator<T> {
/// This collection contains descriptors for *both* ranges containing an allocation, *and* free
/// ranges between allocations. The free ranges get merged, so there are never two free ranges
/// next to each other.
tree: RBTree<usize, Descriptor<T>>,
/// Contains an entry for every free range in `self.tree`. This tree sorts the ranges by size,
/// letting us look up the smallest range whose size is at least some lower bound.
free_tree: RBTree<FreeKey, ()>,
size: usize,
free_oneway_space: usize,
}
impl<T> TreeRangeAllocator<T> {
pub(crate) fn from_array(
size: usize,
ranges: &mut KVec<Range<T>>,
alloc: &mut FromArrayAllocs<T>,
) -> Self {
let mut tree = TreeRangeAllocator {
tree: RBTree::new(),
free_tree: RBTree::new(),
size,
free_oneway_space: size / 2,
};
let mut free_offset = 0;
for range in ranges.drain_all() {
let free_size = range.offset - free_offset;
if free_size > 0 {
let free_node = alloc.free_tree.pop().unwrap();
tree.free_tree
.insert(free_node.into_node((free_size, free_offset), ()));
let tree_node = alloc.tree.pop().unwrap();
tree.tree.insert(
tree_node.into_node(free_offset, Descriptor::new(free_offset, free_size)),
);
}
free_offset = range.endpoint();
if range.state.is_oneway() {
tree.free_oneway_space = tree.free_oneway_space.saturating_sub(range.size);
}
let free_res = alloc.free_tree.pop().unwrap();
let tree_node = alloc.tree.pop().unwrap();
let mut desc = Descriptor::new(range.offset, range.size);
desc.state = Some((range.state, free_res));
tree.tree.insert(tree_node.into_node(range.offset, desc));
}
// After the last range, we may need a free range.
if free_offset < size {
let free_size = size - free_offset;
let free_node = alloc.free_tree.pop().unwrap();
tree.free_tree
.insert(free_node.into_node((free_size, free_offset), ()));
let tree_node = alloc.tree.pop().unwrap();
tree.tree
.insert(tree_node.into_node(free_offset, Descriptor::new(free_offset, free_size)));
}
tree
}
pub(crate) fn is_empty(&self) -> bool {
let mut tree_iter = self.tree.values();
// There's always at least one range, because index zero is either the start of a free or
// allocated range.
let first_value = tree_iter.next().unwrap();
if tree_iter.next().is_some() {
// There are never two free ranges next to each other, so if there is more than one
// descriptor, then at least one of them must hold an allocated range.
return false;
}
// There is only one descriptor. Return true if it is for a free range.
first_value.state.is_none()
}
pub(crate) fn total_size(&self) -> usize {
self.size
}
pub(crate) fn free_oneway_space(&self) -> usize {
self.free_oneway_space
}
pub(crate) fn count_buffers(&self) -> usize {
self.tree
.values()
.filter(|desc| desc.state.is_some())
.count()
}
pub(crate) fn debug_print(&self, m: &SeqFile) -> Result<()> {
for desc in self.tree.values() {
let state = match &desc.state {
Some(state) => &state.0,
None => continue,
};
seq_print!(
m,
" buffer: {} size {} pid {}",
desc.offset,
desc.size,
state.pid(),
);
if state.is_oneway() {
seq_print!(m, " oneway");
}
match state {
DescriptorState::Reserved(_res) => {
seq_print!(m, " reserved\n");
}
DescriptorState::Allocated(_alloc) => {
seq_print!(m, " allocated\n");
}
}
}
Ok(())
}
fn find_best_match(&mut self, size: usize) -> Option<&mut Descriptor<T>> {
let free_cursor = self.free_tree.cursor_lower_bound(&(size, 0))?;
let ((_, offset), ()) = free_cursor.current();
self.tree.get_mut(offset)
}
/// Try to reserve a new buffer, using the provided allocation if necessary.
pub(crate) fn reserve_new(
&mut self,
debug_id: usize,
size: usize,
is_oneway: bool,
pid: Pid,
alloc: ReserveNewTreeAlloc<T>,
) -> Result<(usize, bool)> {
// Compute new value of free_oneway_space, which is set only on success.
let new_oneway_space = if is_oneway {
match self.free_oneway_space.checked_sub(size) {
Some(new_oneway_space) => new_oneway_space,
None => return Err(ENOSPC),
}
} else {
self.free_oneway_space
};
// Start detecting spammers once we have less than 20%
// of async space left (which is less than 10% of total
// buffer size).
//
// (This will short-circut, so `low_oneway_space` is
// only called when necessary.)
let oneway_spam_detected =
is_oneway && new_oneway_space < self.size / 10 && self.low_oneway_space(pid);
let (found_size, found_off, tree_node, free_tree_node) = match self.find_best_match(size) {
None => {
pr_warn!("ENOSPC from range_alloc.reserve_new - size: {}", size);
return Err(ENOSPC);
}
Some(desc) => {
let found_size = desc.size;
let found_offset = desc.offset;
// In case we need to break up the descriptor
let new_desc = Descriptor::new(found_offset + size, found_size - size);
let (tree_node, free_tree_node, desc_node_res) = alloc.initialize(new_desc);
desc.state = Some((
DescriptorState::new(is_oneway, debug_id, pid),
desc_node_res,
));
desc.size = size;
(found_size, found_offset, tree_node, free_tree_node)
}
};
self.free_oneway_space = new_oneway_space;
self.free_tree.remove(&(found_size, found_off));
if found_size != size {
self.tree.insert(tree_node);
self.free_tree.insert(free_tree_node);
}
Ok((found_off, oneway_spam_detected))
}
pub(crate) fn reservation_abort(&mut self, offset: usize) -> Result<FreedRange> {
let mut cursor = self.tree.cursor_lower_bound(&offset).ok_or_else(|| {
pr_warn!(
"EINVAL from range_alloc.reservation_abort - offset: {}",
offset
);
EINVAL
})?;
let (_, desc) = cursor.current_mut();
if desc.offset != offset {
pr_warn!(
"EINVAL from range_alloc.reservation_abort - offset: {}",
offset
);
return Err(EINVAL);
}
let (reservation, free_node_res) = desc.try_change_state(|state| match state {
Some((DescriptorState::Reserved(reservation), free_node_res)) => {
(None, Ok((reservation, free_node_res)))
}
None => {
pr_warn!(
"EINVAL from range_alloc.reservation_abort - offset: {}",
offset
);
(None, Err(EINVAL))
}
allocated => {
pr_warn!(
"EPERM from range_alloc.reservation_abort - offset: {}",
offset
);
(allocated, Err(EPERM))
}
})?;
let mut size = desc.size;
let mut offset = desc.offset;
let free_oneway_space_add = if reservation.is_oneway { size } else { 0 };
self.free_oneway_space += free_oneway_space_add;
let mut freed_range = FreedRange::interior_pages(offset, size);
// Compute how large the next free region needs to be to include one more page in
// the newly freed range.
let add_next_page_needed = match (offset + size) % PAGE_SIZE {
0 => usize::MAX,
unalign => PAGE_SIZE - unalign,
};
// Compute how large the previous free region needs to be to include one more page
// in the newly freed range.
let add_prev_page_needed = match offset % PAGE_SIZE {
0 => usize::MAX,
unalign => unalign,
};
// Merge next into current if next is free
let remove_next = match cursor.peek_next() {
Some((_, next)) if next.state.is_none() => {
if next.size >= add_next_page_needed {
freed_range.end_page_idx += 1;
}
self.free_tree.remove(&(next.size, next.offset));
size += next.size;
true
}
_ => false,
};
if remove_next {
let (_, desc) = cursor.current_mut();
desc.size = size;
cursor.remove_next();
}
// Merge current into prev if prev is free
match cursor.peek_prev_mut() {
Some((_, prev)) if prev.state.is_none() => {
if prev.size >= add_prev_page_needed {
freed_range.start_page_idx -= 1;
}
// merge previous with current, remove current
self.free_tree.remove(&(prev.size, prev.offset));
offset = prev.offset;
size += prev.size;
prev.size = size;
cursor.remove_current();
}
_ => {}
};
self.free_tree
.insert(free_node_res.into_node((size, offset), ()));
Ok(freed_range)
}
pub(crate) fn reservation_commit(&mut self, offset: usize, data: &mut Option<T>) -> Result {
let desc = self.tree.get_mut(&offset).ok_or(ENOENT)?;
desc.try_change_state(|state| match state {
Some((DescriptorState::Reserved(reservation), free_node_res)) => (
Some((
DescriptorState::Allocated(reservation.allocate(data.take())),
free_node_res,
)),
Ok(()),
),
other => (other, Err(ENOENT)),
})
}
/// Takes an entry at the given offset from [`DescriptorState::Allocated`] to
/// [`DescriptorState::Reserved`].
///
/// Returns the size of the existing entry and the data associated with it.
pub(crate) fn reserve_existing(&mut self, offset: usize) -> Result<(usize, usize, Option<T>)> {
let desc = self.tree.get_mut(&offset).ok_or_else(|| {
pr_warn!(
"ENOENT from range_alloc.reserve_existing - offset: {}",
offset
);
ENOENT
})?;
let (debug_id, data) = desc.try_change_state(|state| match state {
Some((DescriptorState::Allocated(allocation), free_node_res)) => {
let (reservation, data) = allocation.deallocate();
let debug_id = reservation.debug_id;
(
Some((DescriptorState::Reserved(reservation), free_node_res)),
Ok((debug_id, data)),
)
}
other => {
pr_warn!(
"ENOENT from range_alloc.reserve_existing - offset: {}",
offset
);
(other, Err(ENOENT))
}
})?;
Ok((desc.size, debug_id, data))
}
/// Call the provided callback at every allocated region.
///
/// This destroys the range allocator. Used only during shutdown.
pub(crate) fn take_for_each<F: Fn(usize, usize, usize, Option<T>)>(&mut self, callback: F) {
for (_, desc) in self.tree.iter_mut() {
if let Some((DescriptorState::Allocated(allocation), _)) = &mut desc.state {
callback(
desc.offset,
desc.size,
allocation.debug_id(),
allocation.take(),
);
}
}
}
/// Find the amount and size of buffers allocated by the current caller.
///
/// The idea is that once we cross the threshold, whoever is responsible
/// for the low async space is likely to try to send another async transaction,
/// and at some point we'll catch them in the act. This is more efficient
/// than keeping a map per pid.
fn low_oneway_space(&self, calling_pid: Pid) -> bool {
let mut total_alloc_size = 0;
let mut num_buffers = 0;
for (_, desc) in self.tree.iter() {
if let Some((state, _)) = &desc.state {
if state.is_oneway() && state.pid() == calling_pid {
total_alloc_size += desc.size;
num_buffers += 1;
}
}
}
// Warn if this pid has more than 50 transactions, or more than 50% of
// async space (which is 25% of total buffer size). Oneway spam is only
// detected when the threshold is exceeded.
num_buffers > 50 || total_alloc_size > self.size / 4
}
}
type TreeDescriptorState<T> = (DescriptorState<T>, FreeNodeRes);
struct Descriptor<T> {
size: usize,
offset: usize,
state: Option<TreeDescriptorState<T>>,
}
impl<T> Descriptor<T> {
fn new(offset: usize, size: usize) -> Self {
Self {
size,
offset,
state: None,
}
}
fn try_change_state<F, Data>(&mut self, f: F) -> Result<Data>
where
F: FnOnce(Option<TreeDescriptorState<T>>) -> (Option<TreeDescriptorState<T>>, Result<Data>),
{
let (new_state, result) = f(self.state.take());
self.state = new_state;
result
}
}
// (Descriptor.size, Descriptor.offset)
type FreeKey = (usize, usize);
type FreeNodeRes = RBTreeNodeReservation<FreeKey, ()>;
/// An allocation for use by `reserve_new`.
pub(crate) struct ReserveNewTreeAlloc<T> {
tree_node_res: RBTreeNodeReservation<usize, Descriptor<T>>,
free_tree_node_res: FreeNodeRes,
desc_node_res: FreeNodeRes,
}
impl<T> ReserveNewTreeAlloc<T> {
pub(crate) fn try_new() -> Result<Self> {
let tree_node_res = RBTreeNodeReservation::new(GFP_KERNEL)?;
let free_tree_node_res = RBTreeNodeReservation::new(GFP_KERNEL)?;
let desc_node_res = RBTreeNodeReservation::new(GFP_KERNEL)?;
Ok(Self {
tree_node_res,
free_tree_node_res,
desc_node_res,
})
}
fn initialize(
self,
desc: Descriptor<T>,
) -> (
RBTreeNode<usize, Descriptor<T>>,
RBTreeNode<FreeKey, ()>,
FreeNodeRes,
) {
let size = desc.size;
let offset = desc.offset;
(
self.tree_node_res.into_node(offset, desc),
self.free_tree_node_res.into_node((size, offset), ()),
self.desc_node_res,
)
}
}
/// An allocation for creating a tree from an `ArrayRangeAllocator`.
pub(crate) struct FromArrayAllocs<T> {
tree: KVec<RBTreeNodeReservation<usize, Descriptor<T>>>,
free_tree: KVec<RBTreeNodeReservation<FreeKey, ()>>,
}
impl<T> FromArrayAllocs<T> {
pub(crate) fn try_new(len: usize) -> Result<Self> {
let num_descriptors = 2 * len + 1;
let mut tree = KVec::with_capacity(num_descriptors, GFP_KERNEL)?;
for _ in 0..num_descriptors {
tree.push(RBTreeNodeReservation::new(GFP_KERNEL)?, GFP_KERNEL)?;
}
let mut free_tree = KVec::with_capacity(num_descriptors, GFP_KERNEL)?;
for _ in 0..num_descriptors {
free_tree.push(RBTreeNodeReservation::new(GFP_KERNEL)?, GFP_KERNEL)?;
}
Ok(Self { tree, free_tree })
}
}
|