1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
|
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2025 Google LLC.
//! This module defines the `Thread` type, which represents a userspace thread that is using
//! binder.
//!
//! The `Process` object stores all of the threads in an rb tree.
use kernel::{
bindings,
fs::{File, LocalFile},
list::{AtomicTracker, List, ListArc, ListLinks, TryNewListArc},
prelude::*,
security,
seq_file::SeqFile,
seq_print,
sync::poll::{PollCondVar, PollTable},
sync::{Arc, SpinLock},
task::Task,
types::ARef,
uaccess::UserSlice,
uapi,
};
use crate::{
allocation::{Allocation, AllocationView, BinderObject, BinderObjectRef, NewAllocation},
defs::*,
error::BinderResult,
process::{GetWorkOrRegister, Process},
ptr_align,
stats::GLOBAL_STATS,
transaction::Transaction,
BinderReturnWriter, DArc, DLArc, DTRWrap, DeliverCode, DeliverToRead,
};
use core::{
mem::size_of,
sync::atomic::{AtomicU32, Ordering},
};
/// Stores the layout of the scatter-gather entries. This is used during the `translate_objects`
/// call and is discarded when it returns.
struct ScatterGatherState {
/// A struct that tracks the amount of unused buffer space.
unused_buffer_space: UnusedBufferSpace,
/// Scatter-gather entries to copy.
sg_entries: KVec<ScatterGatherEntry>,
/// Indexes into `sg_entries` corresponding to the last binder_buffer_object that
/// was processed and all of its ancestors. The array is in sorted order.
ancestors: KVec<usize>,
}
/// This entry specifies an additional buffer that should be copied using the scatter-gather
/// mechanism.
struct ScatterGatherEntry {
/// The index in the offset array of the BINDER_TYPE_PTR that this entry originates from.
obj_index: usize,
/// Offset in target buffer.
offset: usize,
/// User address in source buffer.
sender_uaddr: usize,
/// Number of bytes to copy.
length: usize,
/// The minimum offset of the next fixup in this buffer.
fixup_min_offset: usize,
/// The offsets within this buffer that contain pointers which should be translated.
pointer_fixups: KVec<PointerFixupEntry>,
}
/// This entry specifies that a fixup should happen at `target_offset` of the
/// buffer. If `skip` is nonzero, then the fixup is a `binder_fd_array_object`
/// and is applied later. Otherwise if `skip` is zero, then the size of the
/// fixup is `sizeof::<u64>()` and `pointer_value` is written to the buffer.
struct PointerFixupEntry {
/// The number of bytes to skip, or zero for a `binder_buffer_object` fixup.
skip: usize,
/// The translated pointer to write when `skip` is zero.
pointer_value: u64,
/// The offset at which the value should be written. The offset is relative
/// to the original buffer.
target_offset: usize,
}
/// Return type of `apply_and_validate_fixup_in_parent`.
struct ParentFixupInfo {
/// The index of the parent buffer in `sg_entries`.
parent_sg_index: usize,
/// The number of ancestors of the buffer.
///
/// The buffer is considered an ancestor of itself, so this is always at
/// least one.
num_ancestors: usize,
/// New value of `fixup_min_offset` if this fixup is applied.
new_min_offset: usize,
/// The offset of the fixup in the target buffer.
target_offset: usize,
}
impl ScatterGatherState {
/// Called when a `binder_buffer_object` or `binder_fd_array_object` tries
/// to access a region in its parent buffer. These accesses have various
/// restrictions, which this method verifies.
///
/// The `parent_offset` and `length` arguments describe the offset and
/// length of the access in the parent buffer.
///
/// # Detailed restrictions
///
/// Obviously the fixup must be in-bounds for the parent buffer.
///
/// For safety reasons, we only allow fixups inside a buffer to happen
/// at increasing offsets; additionally, we only allow fixup on the last
/// buffer object that was verified, or one of its parents.
///
/// Example of what is allowed:
///
/// A
/// B (parent = A, offset = 0)
/// C (parent = A, offset = 16)
/// D (parent = C, offset = 0)
/// E (parent = A, offset = 32) // min_offset is 16 (C.parent_offset)
///
/// Examples of what is not allowed:
///
/// Decreasing offsets within the same parent:
/// A
/// C (parent = A, offset = 16)
/// B (parent = A, offset = 0) // decreasing offset within A
///
/// Arcerring to a parent that wasn't the last object or any of its parents:
/// A
/// B (parent = A, offset = 0)
/// C (parent = A, offset = 0)
/// C (parent = A, offset = 16)
/// D (parent = B, offset = 0) // B is not A or any of A's parents
fn validate_parent_fixup(
&self,
parent: usize,
parent_offset: usize,
length: usize,
) -> Result<ParentFixupInfo> {
// Using `position` would also be correct, but `rposition` avoids
// quadratic running times.
let ancestors_i = self
.ancestors
.iter()
.copied()
.rposition(|sg_idx| self.sg_entries[sg_idx].obj_index == parent)
.ok_or(EINVAL)?;
let sg_idx = self.ancestors[ancestors_i];
let sg_entry = match self.sg_entries.get(sg_idx) {
Some(sg_entry) => sg_entry,
None => {
pr_err!(
"self.ancestors[{}] is {}, but self.sg_entries.len() is {}",
ancestors_i,
sg_idx,
self.sg_entries.len()
);
return Err(EINVAL);
}
};
if sg_entry.fixup_min_offset > parent_offset {
pr_warn!(
"validate_parent_fixup: fixup_min_offset={}, parent_offset={}",
sg_entry.fixup_min_offset,
parent_offset
);
return Err(EINVAL);
}
let new_min_offset = parent_offset.checked_add(length).ok_or(EINVAL)?;
if new_min_offset > sg_entry.length {
pr_warn!(
"validate_parent_fixup: new_min_offset={}, sg_entry.length={}",
new_min_offset,
sg_entry.length
);
return Err(EINVAL);
}
let target_offset = sg_entry.offset.checked_add(parent_offset).ok_or(EINVAL)?;
// The `ancestors_i + 1` operation can't overflow since the output of the addition is at
// most `self.ancestors.len()`, which also fits in a usize.
Ok(ParentFixupInfo {
parent_sg_index: sg_idx,
num_ancestors: ancestors_i + 1,
new_min_offset,
target_offset,
})
}
}
/// Keeps track of how much unused buffer space is left. The initial amount is the number of bytes
/// requested by the user using the `buffers_size` field of `binder_transaction_data_sg`. Each time
/// we translate an object of type `BINDER_TYPE_PTR`, some of the unused buffer space is consumed.
struct UnusedBufferSpace {
/// The start of the remaining space.
offset: usize,
/// The end of the remaining space.
limit: usize,
}
impl UnusedBufferSpace {
/// Claim the next `size` bytes from the unused buffer space. The offset for the claimed chunk
/// into the buffer is returned.
fn claim_next(&mut self, size: usize) -> Result<usize> {
// We require every chunk to be aligned.
let size = ptr_align(size).ok_or(EINVAL)?;
let new_offset = self.offset.checked_add(size).ok_or(EINVAL)?;
if new_offset <= self.limit {
let offset = self.offset;
self.offset = new_offset;
Ok(offset)
} else {
Err(EINVAL)
}
}
}
pub(crate) enum PushWorkRes {
Ok,
FailedDead(DLArc<dyn DeliverToRead>),
}
impl PushWorkRes {
fn is_ok(&self) -> bool {
match self {
PushWorkRes::Ok => true,
PushWorkRes::FailedDead(_) => false,
}
}
}
/// The fields of `Thread` protected by the spinlock.
struct InnerThread {
/// Determines the looper state of the thread. It is a bit-wise combination of the constants
/// prefixed with `LOOPER_`.
looper_flags: u32,
/// Determines whether the looper should return.
looper_need_return: bool,
/// Determines if thread is dead.
is_dead: bool,
/// Work item used to deliver error codes to the thread that started a transaction. Stored here
/// so that it can be reused.
reply_work: DArc<ThreadError>,
/// Work item used to deliver error codes to the current thread. Stored here so that it can be
/// reused.
return_work: DArc<ThreadError>,
/// Determines whether the work list below should be processed. When set to false, `work_list`
/// is treated as if it were empty.
process_work_list: bool,
/// List of work items to deliver to userspace.
work_list: List<DTRWrap<dyn DeliverToRead>>,
current_transaction: Option<DArc<Transaction>>,
/// Extended error information for this thread.
extended_error: ExtendedError,
}
const LOOPER_REGISTERED: u32 = 0x01;
const LOOPER_ENTERED: u32 = 0x02;
const LOOPER_EXITED: u32 = 0x04;
const LOOPER_INVALID: u32 = 0x08;
const LOOPER_WAITING: u32 = 0x10;
const LOOPER_WAITING_PROC: u32 = 0x20;
const LOOPER_POLL: u32 = 0x40;
impl InnerThread {
fn new() -> Result<Self> {
fn next_err_id() -> u32 {
static EE_ID: AtomicU32 = AtomicU32::new(0);
EE_ID.fetch_add(1, Ordering::Relaxed)
}
Ok(Self {
looper_flags: 0,
looper_need_return: false,
is_dead: false,
process_work_list: false,
reply_work: ThreadError::try_new()?,
return_work: ThreadError::try_new()?,
work_list: List::new(),
current_transaction: None,
extended_error: ExtendedError::new(next_err_id(), BR_OK, 0),
})
}
fn pop_work(&mut self) -> Option<DLArc<dyn DeliverToRead>> {
if !self.process_work_list {
return None;
}
let ret = self.work_list.pop_front();
self.process_work_list = !self.work_list.is_empty();
ret
}
fn push_work(&mut self, work: DLArc<dyn DeliverToRead>) -> PushWorkRes {
if self.is_dead {
PushWorkRes::FailedDead(work)
} else {
self.work_list.push_back(work);
self.process_work_list = true;
PushWorkRes::Ok
}
}
fn push_reply_work(&mut self, code: u32) {
if let Ok(work) = ListArc::try_from_arc(self.reply_work.clone()) {
work.set_error_code(code);
self.push_work(work);
} else {
pr_warn!("Thread reply work is already in use.");
}
}
fn push_return_work(&mut self, reply: u32) {
if let Ok(work) = ListArc::try_from_arc(self.return_work.clone()) {
work.set_error_code(reply);
self.push_work(work);
} else {
pr_warn!("Thread return work is already in use.");
}
}
/// Used to push work items that do not need to be processed immediately and can wait until the
/// thread gets another work item.
fn push_work_deferred(&mut self, work: DLArc<dyn DeliverToRead>) {
self.work_list.push_back(work);
}
/// Fetches the transaction this thread can reply to. If the thread has a pending transaction
/// (that it could respond to) but it has also issued a transaction, it must first wait for the
/// previously-issued transaction to complete.
///
/// The `thread` parameter should be the thread containing this `ThreadInner`.
fn pop_transaction_to_reply(&mut self, thread: &Thread) -> Result<DArc<Transaction>> {
let transaction = self.current_transaction.take().ok_or(EINVAL)?;
if core::ptr::eq(thread, transaction.from.as_ref()) {
self.current_transaction = Some(transaction);
return Err(EINVAL);
}
// Find a new current transaction for this thread.
self.current_transaction = transaction.find_from(thread).cloned();
Ok(transaction)
}
fn pop_transaction_replied(&mut self, transaction: &DArc<Transaction>) -> bool {
match self.current_transaction.take() {
None => false,
Some(old) => {
if !Arc::ptr_eq(transaction, &old) {
self.current_transaction = Some(old);
return false;
}
self.current_transaction = old.clone_next();
true
}
}
}
fn looper_enter(&mut self) {
self.looper_flags |= LOOPER_ENTERED;
if self.looper_flags & LOOPER_REGISTERED != 0 {
self.looper_flags |= LOOPER_INVALID;
}
}
fn looper_register(&mut self, valid: bool) {
self.looper_flags |= LOOPER_REGISTERED;
if !valid || self.looper_flags & LOOPER_ENTERED != 0 {
self.looper_flags |= LOOPER_INVALID;
}
}
fn looper_exit(&mut self) {
self.looper_flags |= LOOPER_EXITED;
}
/// Determines whether the thread is part of a pool, i.e., if it is a looper.
fn is_looper(&self) -> bool {
self.looper_flags & (LOOPER_ENTERED | LOOPER_REGISTERED) != 0
}
/// Determines whether the thread should attempt to fetch work items from the process queue.
/// This is generally case when the thread is registered as a looper and not part of a
/// transaction stack. But if there is local work, we want to return to userspace before we
/// deliver any remote work.
fn should_use_process_work_queue(&self) -> bool {
self.current_transaction.is_none() && !self.process_work_list && self.is_looper()
}
fn poll(&mut self) -> u32 {
self.looper_flags |= LOOPER_POLL;
if self.process_work_list || self.looper_need_return {
bindings::POLLIN
} else {
0
}
}
}
/// This represents a thread that's used with binder.
#[pin_data]
pub(crate) struct Thread {
pub(crate) id: i32,
pub(crate) process: Arc<Process>,
pub(crate) task: ARef<Task>,
#[pin]
inner: SpinLock<InnerThread>,
#[pin]
work_condvar: PollCondVar,
/// Used to insert this thread into the process' `ready_threads` list.
///
/// INVARIANT: May never be used for any other list than the `self.process.ready_threads`.
#[pin]
links: ListLinks,
#[pin]
links_track: AtomicTracker,
}
kernel::list::impl_list_arc_safe! {
impl ListArcSafe<0> for Thread {
tracked_by links_track: AtomicTracker;
}
}
kernel::list::impl_list_item! {
impl ListItem<0> for Thread {
using ListLinks { self.links };
}
}
impl Thread {
pub(crate) fn new(id: i32, process: Arc<Process>) -> Result<Arc<Self>> {
let inner = InnerThread::new()?;
Arc::pin_init(
try_pin_init!(Thread {
id,
process,
task: ARef::from(&**kernel::current!()),
inner <- kernel::new_spinlock!(inner, "Thread::inner"),
work_condvar <- kernel::new_poll_condvar!("Thread::work_condvar"),
links <- ListLinks::new(),
links_track <- AtomicTracker::new(),
}),
GFP_KERNEL,
)
}
#[inline(never)]
pub(crate) fn debug_print(self: &Arc<Self>, m: &SeqFile, print_all: bool) -> Result<()> {
let inner = self.inner.lock();
if print_all || inner.current_transaction.is_some() || !inner.work_list.is_empty() {
seq_print!(
m,
" thread {}: l {:02x} need_return {}\n",
self.id,
inner.looper_flags,
inner.looper_need_return,
);
}
let mut t_opt = inner.current_transaction.as_ref();
while let Some(t) = t_opt {
if Arc::ptr_eq(&t.from, self) {
t.debug_print_inner(m, " outgoing transaction ");
t_opt = t.from_parent.as_ref();
} else if Arc::ptr_eq(&t.to, &self.process) {
t.debug_print_inner(m, " incoming transaction ");
t_opt = t.find_from(self);
} else {
t.debug_print_inner(m, " bad transaction ");
t_opt = None;
}
}
for work in &inner.work_list {
work.debug_print(m, " ", " pending transaction ")?;
}
Ok(())
}
pub(crate) fn get_extended_error(&self, data: UserSlice) -> Result {
let mut writer = data.writer();
let ee = self.inner.lock().extended_error;
writer.write(&ee)?;
Ok(())
}
pub(crate) fn set_current_transaction(&self, transaction: DArc<Transaction>) {
self.inner.lock().current_transaction = Some(transaction);
}
pub(crate) fn has_current_transaction(&self) -> bool {
self.inner.lock().current_transaction.is_some()
}
/// Attempts to fetch a work item from the thread-local queue. The behaviour if the queue is
/// empty depends on `wait`: if it is true, the function waits for some work to be queued (or a
/// signal); otherwise it returns indicating that none is available.
fn get_work_local(self: &Arc<Self>, wait: bool) -> Result<Option<DLArc<dyn DeliverToRead>>> {
{
let mut inner = self.inner.lock();
if inner.looper_need_return {
return Ok(inner.pop_work());
}
}
// Try once if the caller does not want to wait.
if !wait {
return self.inner.lock().pop_work().ok_or(EAGAIN).map(Some);
}
// Loop waiting only on the local queue (i.e., not registering with the process queue).
let mut inner = self.inner.lock();
loop {
if let Some(work) = inner.pop_work() {
return Ok(Some(work));
}
inner.looper_flags |= LOOPER_WAITING;
let signal_pending = self.work_condvar.wait_interruptible_freezable(&mut inner);
inner.looper_flags &= !LOOPER_WAITING;
if signal_pending {
return Err(EINTR);
}
if inner.looper_need_return {
return Ok(None);
}
}
}
/// Attempts to fetch a work item from the thread-local queue, falling back to the process-wide
/// queue if none is available locally.
///
/// This must only be called when the thread is not participating in a transaction chain. If it
/// is, the local version (`get_work_local`) should be used instead.
fn get_work(self: &Arc<Self>, wait: bool) -> Result<Option<DLArc<dyn DeliverToRead>>> {
// Try to get work from the thread's work queue, using only a local lock.
{
let mut inner = self.inner.lock();
if let Some(work) = inner.pop_work() {
return Ok(Some(work));
}
if inner.looper_need_return {
drop(inner);
return Ok(self.process.get_work());
}
}
// If the caller doesn't want to wait, try to grab work from the process queue.
//
// We know nothing will have been queued directly to the thread queue because it is not in
// a transaction and it is not in the process' ready list.
if !wait {
return self.process.get_work().ok_or(EAGAIN).map(Some);
}
// Get work from the process queue. If none is available, atomically register as ready.
let reg = match self.process.get_work_or_register(self) {
GetWorkOrRegister::Work(work) => return Ok(Some(work)),
GetWorkOrRegister::Register(reg) => reg,
};
let mut inner = self.inner.lock();
loop {
if let Some(work) = inner.pop_work() {
return Ok(Some(work));
}
inner.looper_flags |= LOOPER_WAITING | LOOPER_WAITING_PROC;
let signal_pending = self.work_condvar.wait_interruptible_freezable(&mut inner);
inner.looper_flags &= !(LOOPER_WAITING | LOOPER_WAITING_PROC);
if signal_pending || inner.looper_need_return {
// We need to return now. We need to pull the thread off the list of ready threads
// (by dropping `reg`), then check the state again after it's off the list to
// ensure that something was not queued in the meantime. If something has been
// queued, we just return it (instead of the error).
drop(inner);
drop(reg);
let res = match self.inner.lock().pop_work() {
Some(work) => Ok(Some(work)),
None if signal_pending => Err(EINTR),
None => Ok(None),
};
return res;
}
}
}
/// Push the provided work item to be delivered to user space via this thread.
///
/// Returns whether the item was successfully pushed. This can only fail if the thread is dead.
pub(crate) fn push_work(&self, work: DLArc<dyn DeliverToRead>) -> PushWorkRes {
let sync = work.should_sync_wakeup();
let res = self.inner.lock().push_work(work);
if res.is_ok() {
if sync {
self.work_condvar.notify_sync();
} else {
self.work_condvar.notify_one();
}
}
res
}
/// Attempts to push to given work item to the thread if it's a looper thread (i.e., if it's
/// part of a thread pool) and is alive. Otherwise, push the work item to the process instead.
pub(crate) fn push_work_if_looper(&self, work: DLArc<dyn DeliverToRead>) -> BinderResult {
let mut inner = self.inner.lock();
if inner.is_looper() && !inner.is_dead {
inner.push_work(work);
Ok(())
} else {
drop(inner);
self.process.push_work(work)
}
}
pub(crate) fn push_work_deferred(&self, work: DLArc<dyn DeliverToRead>) {
self.inner.lock().push_work_deferred(work);
}
pub(crate) fn push_return_work(&self, reply: u32) {
self.inner.lock().push_return_work(reply);
}
fn translate_object(
&self,
obj_index: usize,
offset: usize,
object: BinderObjectRef<'_>,
view: &mut AllocationView<'_>,
allow_fds: bool,
sg_state: &mut ScatterGatherState,
) -> BinderResult {
match object {
BinderObjectRef::Binder(obj) => {
let strong = obj.hdr.type_ == BINDER_TYPE_BINDER;
// SAFETY: `binder` is a `binder_uintptr_t`; any bit pattern is a valid
// representation.
let ptr = unsafe { obj.__bindgen_anon_1.binder } as _;
let cookie = obj.cookie as _;
let flags = obj.flags as _;
let node = self
.process
.as_arc_borrow()
.get_node(ptr, cookie, flags, strong, self)?;
security::binder_transfer_binder(&self.process.cred, &view.alloc.process.cred)?;
view.transfer_binder_object(offset, obj, strong, node)?;
}
BinderObjectRef::Handle(obj) => {
let strong = obj.hdr.type_ == BINDER_TYPE_HANDLE;
// SAFETY: `handle` is a `u32`; any bit pattern is a valid representation.
let handle = unsafe { obj.__bindgen_anon_1.handle } as _;
let node = self.process.get_node_from_handle(handle, strong)?;
security::binder_transfer_binder(&self.process.cred, &view.alloc.process.cred)?;
view.transfer_binder_object(offset, obj, strong, node)?;
}
BinderObjectRef::Fd(obj) => {
if !allow_fds {
return Err(EPERM.into());
}
// SAFETY: `fd` is a `u32`; any bit pattern is a valid representation.
let fd = unsafe { obj.__bindgen_anon_1.fd };
let file = LocalFile::fget(fd)?;
// SAFETY: The binder driver never calls `fdget_pos` and this code runs from an
// ioctl, so there are no active calls to `fdget_pos` on this thread.
let file = unsafe { LocalFile::assume_no_fdget_pos(file) };
security::binder_transfer_file(
&self.process.cred,
&view.alloc.process.cred,
&file,
)?;
let mut obj_write = BinderFdObject::default();
obj_write.hdr.type_ = BINDER_TYPE_FD;
// This will be overwritten with the actual fd when the transaction is received.
obj_write.__bindgen_anon_1.fd = u32::MAX;
obj_write.cookie = obj.cookie;
view.write::<BinderFdObject>(offset, &obj_write)?;
const FD_FIELD_OFFSET: usize =
core::mem::offset_of!(uapi::binder_fd_object, __bindgen_anon_1.fd);
let field_offset = offset + FD_FIELD_OFFSET;
view.alloc.info_add_fd(file, field_offset, false)?;
}
BinderObjectRef::Ptr(obj) => {
let obj_length = obj.length.try_into().map_err(|_| EINVAL)?;
let alloc_offset = match sg_state.unused_buffer_space.claim_next(obj_length) {
Ok(alloc_offset) => alloc_offset,
Err(err) => {
pr_warn!(
"Failed to claim space for a BINDER_TYPE_PTR. (offset: {}, limit: {}, size: {})",
sg_state.unused_buffer_space.offset,
sg_state.unused_buffer_space.limit,
obj_length,
);
return Err(err.into());
}
};
let sg_state_idx = sg_state.sg_entries.len();
sg_state.sg_entries.push(
ScatterGatherEntry {
obj_index,
offset: alloc_offset,
sender_uaddr: obj.buffer as _,
length: obj_length,
pointer_fixups: KVec::new(),
fixup_min_offset: 0,
},
GFP_KERNEL,
)?;
let buffer_ptr_in_user_space = (view.alloc.ptr + alloc_offset) as u64;
if obj.flags & uapi::BINDER_BUFFER_FLAG_HAS_PARENT == 0 {
sg_state.ancestors.clear();
sg_state.ancestors.push(sg_state_idx, GFP_KERNEL)?;
} else {
// Another buffer also has a pointer to this buffer, and we need to fixup that
// pointer too.
let parent_index = usize::try_from(obj.parent).map_err(|_| EINVAL)?;
let parent_offset = usize::try_from(obj.parent_offset).map_err(|_| EINVAL)?;
let info = sg_state.validate_parent_fixup(
parent_index,
parent_offset,
size_of::<u64>(),
)?;
sg_state.ancestors.truncate(info.num_ancestors);
sg_state.ancestors.push(sg_state_idx, GFP_KERNEL)?;
let parent_entry = match sg_state.sg_entries.get_mut(info.parent_sg_index) {
Some(parent_entry) => parent_entry,
None => {
pr_err!(
"validate_parent_fixup returned index out of bounds for sg.entries"
);
return Err(EINVAL.into());
}
};
parent_entry.fixup_min_offset = info.new_min_offset;
parent_entry.pointer_fixups.push(
PointerFixupEntry {
skip: 0,
pointer_value: buffer_ptr_in_user_space,
target_offset: info.target_offset,
},
GFP_KERNEL,
)?;
}
let mut obj_write = BinderBufferObject::default();
obj_write.hdr.type_ = BINDER_TYPE_PTR;
obj_write.flags = obj.flags;
obj_write.buffer = buffer_ptr_in_user_space;
obj_write.length = obj.length;
obj_write.parent = obj.parent;
obj_write.parent_offset = obj.parent_offset;
view.write::<BinderBufferObject>(offset, &obj_write)?;
}
BinderObjectRef::Fda(obj) => {
if !allow_fds {
return Err(EPERM.into());
}
let parent_index = usize::try_from(obj.parent).map_err(|_| EINVAL)?;
let parent_offset = usize::try_from(obj.parent_offset).map_err(|_| EINVAL)?;
let num_fds = usize::try_from(obj.num_fds).map_err(|_| EINVAL)?;
let fds_len = num_fds.checked_mul(size_of::<u32>()).ok_or(EINVAL)?;
let info = sg_state.validate_parent_fixup(parent_index, parent_offset, fds_len)?;
view.alloc.info_add_fd_reserve(num_fds)?;
sg_state.ancestors.truncate(info.num_ancestors);
let parent_entry = match sg_state.sg_entries.get_mut(info.parent_sg_index) {
Some(parent_entry) => parent_entry,
None => {
pr_err!(
"validate_parent_fixup returned index out of bounds for sg.entries"
);
return Err(EINVAL.into());
}
};
parent_entry.fixup_min_offset = info.new_min_offset;
parent_entry
.pointer_fixups
.push(
PointerFixupEntry {
skip: fds_len,
pointer_value: 0,
target_offset: info.target_offset,
},
GFP_KERNEL,
)
.map_err(|_| ENOMEM)?;
let fda_uaddr = parent_entry
.sender_uaddr
.checked_add(parent_offset)
.ok_or(EINVAL)?;
let mut fda_bytes = KVec::new();
UserSlice::new(UserPtr::from_addr(fda_uaddr as _), fds_len)
.read_all(&mut fda_bytes, GFP_KERNEL)?;
if fds_len != fda_bytes.len() {
pr_err!("UserSlice::read_all returned wrong length in BINDER_TYPE_FDA");
return Err(EINVAL.into());
}
for i in (0..fds_len).step_by(size_of::<u32>()) {
let fd = {
let mut fd_bytes = [0u8; size_of::<u32>()];
fd_bytes.copy_from_slice(&fda_bytes[i..i + size_of::<u32>()]);
u32::from_ne_bytes(fd_bytes)
};
let file = LocalFile::fget(fd)?;
// SAFETY: The binder driver never calls `fdget_pos` and this code runs from an
// ioctl, so there are no active calls to `fdget_pos` on this thread.
let file = unsafe { LocalFile::assume_no_fdget_pos(file) };
security::binder_transfer_file(
&self.process.cred,
&view.alloc.process.cred,
&file,
)?;
// The `validate_parent_fixup` call ensuers that this addition will not
// overflow.
view.alloc.info_add_fd(file, info.target_offset + i, true)?;
}
drop(fda_bytes);
let mut obj_write = BinderFdArrayObject::default();
obj_write.hdr.type_ = BINDER_TYPE_FDA;
obj_write.num_fds = obj.num_fds;
obj_write.parent = obj.parent;
obj_write.parent_offset = obj.parent_offset;
view.write::<BinderFdArrayObject>(offset, &obj_write)?;
}
}
Ok(())
}
fn apply_sg(&self, alloc: &mut Allocation, sg_state: &mut ScatterGatherState) -> BinderResult {
for sg_entry in &mut sg_state.sg_entries {
let mut end_of_previous_fixup = sg_entry.offset;
let offset_end = sg_entry.offset.checked_add(sg_entry.length).ok_or(EINVAL)?;
let mut reader =
UserSlice::new(UserPtr::from_addr(sg_entry.sender_uaddr), sg_entry.length).reader();
for fixup in &mut sg_entry.pointer_fixups {
let fixup_len = if fixup.skip == 0 {
size_of::<u64>()
} else {
fixup.skip
};
let target_offset_end = fixup.target_offset.checked_add(fixup_len).ok_or(EINVAL)?;
if fixup.target_offset < end_of_previous_fixup || offset_end < target_offset_end {
pr_warn!(
"Fixups oob {} {} {} {}",
fixup.target_offset,
end_of_previous_fixup,
offset_end,
target_offset_end
);
return Err(EINVAL.into());
}
let copy_off = end_of_previous_fixup;
let copy_len = fixup.target_offset - end_of_previous_fixup;
if let Err(err) = alloc.copy_into(&mut reader, copy_off, copy_len) {
pr_warn!("Failed copying into alloc: {:?}", err);
return Err(err.into());
}
if fixup.skip == 0 {
let res = alloc.write::<u64>(fixup.target_offset, &fixup.pointer_value);
if let Err(err) = res {
pr_warn!("Failed copying ptr into alloc: {:?}", err);
return Err(err.into());
}
}
if let Err(err) = reader.skip(fixup_len) {
pr_warn!("Failed skipping {} from reader: {:?}", fixup_len, err);
return Err(err.into());
}
end_of_previous_fixup = target_offset_end;
}
let copy_off = end_of_previous_fixup;
let copy_len = offset_end - end_of_previous_fixup;
if let Err(err) = alloc.copy_into(&mut reader, copy_off, copy_len) {
pr_warn!("Failed copying remainder into alloc: {:?}", err);
return Err(err.into());
}
}
Ok(())
}
/// This method copies the payload of a transaction into the target process.
///
/// The resulting payload will have several different components, which will be stored next to
/// each other in the allocation. Furthermore, various objects can be embedded in the payload,
/// and those objects have to be translated so that they make sense to the target transaction.
pub(crate) fn copy_transaction_data(
&self,
to_process: Arc<Process>,
tr: &BinderTransactionDataSg,
debug_id: usize,
allow_fds: bool,
txn_security_ctx_offset: Option<&mut usize>,
) -> BinderResult<NewAllocation> {
let trd = &tr.transaction_data;
let is_oneway = trd.flags & TF_ONE_WAY != 0;
let mut secctx = if let Some(offset) = txn_security_ctx_offset {
let secid = self.process.cred.get_secid();
let ctx = match security::SecurityCtx::from_secid(secid) {
Ok(ctx) => ctx,
Err(err) => {
pr_warn!("Failed to get security ctx for id {}: {:?}", secid, err);
return Err(err.into());
}
};
Some((offset, ctx))
} else {
None
};
let data_size = trd.data_size.try_into().map_err(|_| EINVAL)?;
let aligned_data_size = ptr_align(data_size).ok_or(EINVAL)?;
let offsets_size = trd.offsets_size.try_into().map_err(|_| EINVAL)?;
let aligned_offsets_size = ptr_align(offsets_size).ok_or(EINVAL)?;
let buffers_size = tr.buffers_size.try_into().map_err(|_| EINVAL)?;
let aligned_buffers_size = ptr_align(buffers_size).ok_or(EINVAL)?;
let aligned_secctx_size = match secctx.as_ref() {
Some((_offset, ctx)) => ptr_align(ctx.len()).ok_or(EINVAL)?,
None => 0,
};
// This guarantees that at least `sizeof(usize)` bytes will be allocated.
let len = usize::max(
aligned_data_size
.checked_add(aligned_offsets_size)
.and_then(|sum| sum.checked_add(aligned_buffers_size))
.and_then(|sum| sum.checked_add(aligned_secctx_size))
.ok_or(ENOMEM)?,
size_of::<usize>(),
);
let secctx_off = aligned_data_size + aligned_offsets_size + aligned_buffers_size;
let mut alloc =
match to_process.buffer_alloc(debug_id, len, is_oneway, self.process.task.pid()) {
Ok(alloc) => alloc,
Err(err) => {
pr_warn!(
"Failed to allocate buffer. len:{}, is_oneway:{}",
len,
is_oneway
);
return Err(err);
}
};
// SAFETY: This accesses a union field, but it's okay because the field's type is valid for
// all bit-patterns.
let trd_data_ptr = unsafe { &trd.data.ptr };
let mut buffer_reader =
UserSlice::new(UserPtr::from_addr(trd_data_ptr.buffer as _), data_size).reader();
let mut end_of_previous_object = 0;
let mut sg_state = None;
// Copy offsets if there are any.
if offsets_size > 0 {
{
let mut reader =
UserSlice::new(UserPtr::from_addr(trd_data_ptr.offsets as _), offsets_size)
.reader();
alloc.copy_into(&mut reader, aligned_data_size, offsets_size)?;
}
let offsets_start = aligned_data_size;
let offsets_end = aligned_data_size + aligned_offsets_size;
// This state is used for BINDER_TYPE_PTR objects.
let sg_state = sg_state.insert(ScatterGatherState {
unused_buffer_space: UnusedBufferSpace {
offset: offsets_end,
limit: len,
},
sg_entries: KVec::new(),
ancestors: KVec::new(),
});
// Traverse the objects specified.
let mut view = AllocationView::new(&mut alloc, data_size);
for (index, index_offset) in (offsets_start..offsets_end)
.step_by(size_of::<usize>())
.enumerate()
{
let offset = view.alloc.read(index_offset)?;
if offset < end_of_previous_object {
pr_warn!("Got transaction with invalid offset.");
return Err(EINVAL.into());
}
// Copy data between two objects.
if end_of_previous_object < offset {
view.copy_into(
&mut buffer_reader,
end_of_previous_object,
offset - end_of_previous_object,
)?;
}
let mut object = BinderObject::read_from(&mut buffer_reader)?;
match self.translate_object(
index,
offset,
object.as_ref(),
&mut view,
allow_fds,
sg_state,
) {
Ok(()) => end_of_previous_object = offset + object.size(),
Err(err) => {
pr_warn!("Error while translating object.");
return Err(err);
}
}
// Update the indexes containing objects to clean up.
let offset_after_object = index_offset + size_of::<usize>();
view.alloc
.set_info_offsets(offsets_start..offset_after_object);
}
}
// Copy remaining raw data.
alloc.copy_into(
&mut buffer_reader,
end_of_previous_object,
data_size - end_of_previous_object,
)?;
if let Some(sg_state) = sg_state.as_mut() {
if let Err(err) = self.apply_sg(&mut alloc, sg_state) {
pr_warn!("Failure in apply_sg: {:?}", err);
return Err(err);
}
}
if let Some((off_out, secctx)) = secctx.as_mut() {
if let Err(err) = alloc.write(secctx_off, secctx.as_bytes()) {
pr_warn!("Failed to write security context: {:?}", err);
return Err(err.into());
}
**off_out = secctx_off;
}
Ok(alloc)
}
fn unwind_transaction_stack(self: &Arc<Self>) {
let mut thread = self.clone();
while let Ok(transaction) = {
let mut inner = thread.inner.lock();
inner.pop_transaction_to_reply(thread.as_ref())
} {
let reply = Err(BR_DEAD_REPLY);
if !transaction.from.deliver_single_reply(reply, &transaction) {
break;
}
thread = transaction.from.clone();
}
}
pub(crate) fn deliver_reply(
&self,
reply: Result<DLArc<Transaction>, u32>,
transaction: &DArc<Transaction>,
) {
if self.deliver_single_reply(reply, transaction) {
transaction.from.unwind_transaction_stack();
}
}
/// Delivers a reply to the thread that started a transaction. The reply can either be a
/// reply-transaction or an error code to be delivered instead.
///
/// Returns whether the thread is dead. If it is, the caller is expected to unwind the
/// transaction stack by completing transactions for threads that are dead.
fn deliver_single_reply(
&self,
reply: Result<DLArc<Transaction>, u32>,
transaction: &DArc<Transaction>,
) -> bool {
if let Ok(transaction) = &reply {
transaction.set_outstanding(&mut self.process.inner.lock());
}
{
let mut inner = self.inner.lock();
if !inner.pop_transaction_replied(transaction) {
return false;
}
if inner.is_dead {
return true;
}
match reply {
Ok(work) => {
inner.push_work(work);
}
Err(code) => inner.push_reply_work(code),
}
}
// Notify the thread now that we've released the inner lock.
self.work_condvar.notify_sync();
false
}
/// Determines if the given transaction is the current transaction for this thread.
fn is_current_transaction(&self, transaction: &DArc<Transaction>) -> bool {
let inner = self.inner.lock();
match &inner.current_transaction {
None => false,
Some(current) => Arc::ptr_eq(current, transaction),
}
}
/// Determines the current top of the transaction stack. It fails if the top is in another
/// thread (i.e., this thread belongs to a stack but it has called another thread). The top is
/// [`None`] if the thread is not currently participating in a transaction stack.
fn top_of_transaction_stack(&self) -> Result<Option<DArc<Transaction>>> {
let inner = self.inner.lock();
if let Some(cur) = &inner.current_transaction {
if core::ptr::eq(self, cur.from.as_ref()) {
pr_warn!("got new transaction with bad transaction stack");
return Err(EINVAL);
}
Ok(Some(cur.clone()))
} else {
Ok(None)
}
}
fn transaction<T>(self: &Arc<Self>, tr: &BinderTransactionDataSg, inner: T)
where
T: FnOnce(&Arc<Self>, &BinderTransactionDataSg) -> BinderResult,
{
if let Err(err) = inner(self, tr) {
if err.should_pr_warn() {
let mut ee = self.inner.lock().extended_error;
ee.command = err.reply;
ee.param = err.as_errno();
pr_warn!(
"Transaction failed: {:?} my_pid:{}",
err,
self.process.pid_in_current_ns()
);
}
self.push_return_work(err.reply);
}
}
fn transaction_inner(self: &Arc<Self>, tr: &BinderTransactionDataSg) -> BinderResult {
// SAFETY: Handle's type has no invalid bit patterns.
let handle = unsafe { tr.transaction_data.target.handle };
let node_ref = self.process.get_transaction_node(handle)?;
security::binder_transaction(&self.process.cred, &node_ref.node.owner.cred)?;
// TODO: We need to ensure that there isn't a pending transaction in the work queue. How
// could this happen?
let top = self.top_of_transaction_stack()?;
let list_completion = DTRWrap::arc_try_new(DeliverCode::new(BR_TRANSACTION_COMPLETE))?;
let completion = list_completion.clone_arc();
let transaction = Transaction::new(node_ref, top, self, tr)?;
// Check that the transaction stack hasn't changed while the lock was released, then update
// it with the new transaction.
{
let mut inner = self.inner.lock();
if !transaction.is_stacked_on(&inner.current_transaction) {
pr_warn!("Transaction stack changed during transaction!");
return Err(EINVAL.into());
}
inner.current_transaction = Some(transaction.clone_arc());
// We push the completion as a deferred work so that we wait for the reply before
// returning to userland.
inner.push_work_deferred(list_completion);
}
if let Err(e) = transaction.submit() {
completion.skip();
// Define `transaction` first to drop it after `inner`.
let transaction;
let mut inner = self.inner.lock();
transaction = inner.current_transaction.take().unwrap();
inner.current_transaction = transaction.clone_next();
Err(e)
} else {
Ok(())
}
}
fn reply_inner(self: &Arc<Self>, tr: &BinderTransactionDataSg) -> BinderResult {
let orig = self.inner.lock().pop_transaction_to_reply(self)?;
if !orig.from.is_current_transaction(&orig) {
return Err(EINVAL.into());
}
// We need to complete the transaction even if we cannot complete building the reply.
let out = (|| -> BinderResult<_> {
let completion = DTRWrap::arc_try_new(DeliverCode::new(BR_TRANSACTION_COMPLETE))?;
let process = orig.from.process.clone();
let allow_fds = orig.flags & TF_ACCEPT_FDS != 0;
let reply = Transaction::new_reply(self, process, tr, allow_fds)?;
self.inner.lock().push_work(completion);
orig.from.deliver_reply(Ok(reply), &orig);
Ok(())
})()
.map_err(|mut err| {
// At this point we only return `BR_TRANSACTION_COMPLETE` to the caller, and we must let
// the sender know that the transaction has completed (with an error in this case).
pr_warn!(
"Failure {:?} during reply - delivering BR_FAILED_REPLY to sender.",
err
);
let reply = Err(BR_FAILED_REPLY);
orig.from.deliver_reply(reply, &orig);
err.reply = BR_TRANSACTION_COMPLETE;
err
});
out
}
fn oneway_transaction_inner(self: &Arc<Self>, tr: &BinderTransactionDataSg) -> BinderResult {
// SAFETY: The `handle` field is valid for all possible byte values, so reading from the
// union is okay.
let handle = unsafe { tr.transaction_data.target.handle };
let node_ref = self.process.get_transaction_node(handle)?;
security::binder_transaction(&self.process.cred, &node_ref.node.owner.cred)?;
let transaction = Transaction::new(node_ref, None, self, tr)?;
let code = if self.process.is_oneway_spam_detection_enabled()
&& transaction.oneway_spam_detected
{
BR_ONEWAY_SPAM_SUSPECT
} else {
BR_TRANSACTION_COMPLETE
};
let list_completion = DTRWrap::arc_try_new(DeliverCode::new(code))?;
let completion = list_completion.clone_arc();
self.inner.lock().push_work(list_completion);
match transaction.submit() {
Ok(()) => Ok(()),
Err(err) => {
completion.skip();
Err(err)
}
}
}
fn write(self: &Arc<Self>, req: &mut BinderWriteRead) -> Result {
let write_start = req.write_buffer.wrapping_add(req.write_consumed);
let write_len = req.write_size.saturating_sub(req.write_consumed);
let mut reader =
UserSlice::new(UserPtr::from_addr(write_start as _), write_len as _).reader();
while reader.len() >= size_of::<u32>() && self.inner.lock().return_work.is_unused() {
let before = reader.len();
let cmd = reader.read::<u32>()?;
GLOBAL_STATS.inc_bc(cmd);
self.process.stats.inc_bc(cmd);
match cmd {
BC_TRANSACTION => {
let tr = reader.read::<BinderTransactionData>()?.with_buffers_size(0);
if tr.transaction_data.flags & TF_ONE_WAY != 0 {
self.transaction(&tr, Self::oneway_transaction_inner);
} else {
self.transaction(&tr, Self::transaction_inner);
}
}
BC_TRANSACTION_SG => {
let tr = reader.read::<BinderTransactionDataSg>()?;
if tr.transaction_data.flags & TF_ONE_WAY != 0 {
self.transaction(&tr, Self::oneway_transaction_inner);
} else {
self.transaction(&tr, Self::transaction_inner);
}
}
BC_REPLY => {
let tr = reader.read::<BinderTransactionData>()?.with_buffers_size(0);
self.transaction(&tr, Self::reply_inner)
}
BC_REPLY_SG => {
let tr = reader.read::<BinderTransactionDataSg>()?;
self.transaction(&tr, Self::reply_inner)
}
BC_FREE_BUFFER => {
let buffer = self.process.buffer_get(reader.read()?);
if let Some(buffer) = &buffer {
if buffer.looper_need_return_on_free() {
self.inner.lock().looper_need_return = true;
}
}
drop(buffer);
}
BC_INCREFS => {
self.process
.as_arc_borrow()
.update_ref(reader.read()?, true, false)?
}
BC_ACQUIRE => {
self.process
.as_arc_borrow()
.update_ref(reader.read()?, true, true)?
}
BC_RELEASE => {
self.process
.as_arc_borrow()
.update_ref(reader.read()?, false, true)?
}
BC_DECREFS => {
self.process
.as_arc_borrow()
.update_ref(reader.read()?, false, false)?
}
BC_INCREFS_DONE => self.process.inc_ref_done(&mut reader, false)?,
BC_ACQUIRE_DONE => self.process.inc_ref_done(&mut reader, true)?,
BC_REQUEST_DEATH_NOTIFICATION => self.process.request_death(&mut reader, self)?,
BC_CLEAR_DEATH_NOTIFICATION => self.process.clear_death(&mut reader, self)?,
BC_DEAD_BINDER_DONE => self.process.dead_binder_done(reader.read()?, self),
BC_REGISTER_LOOPER => {
let valid = self.process.register_thread();
self.inner.lock().looper_register(valid);
}
BC_ENTER_LOOPER => self.inner.lock().looper_enter(),
BC_EXIT_LOOPER => self.inner.lock().looper_exit(),
BC_REQUEST_FREEZE_NOTIFICATION => self.process.request_freeze_notif(&mut reader)?,
BC_CLEAR_FREEZE_NOTIFICATION => self.process.clear_freeze_notif(&mut reader)?,
BC_FREEZE_NOTIFICATION_DONE => self.process.freeze_notif_done(&mut reader)?,
// Fail if given an unknown error code.
// BC_ATTEMPT_ACQUIRE and BC_ACQUIRE_RESULT are no longer supported.
_ => return Err(EINVAL),
}
// Update the number of write bytes consumed.
req.write_consumed += (before - reader.len()) as u64;
}
Ok(())
}
fn read(self: &Arc<Self>, req: &mut BinderWriteRead, wait: bool) -> Result {
let read_start = req.read_buffer.wrapping_add(req.read_consumed);
let read_len = req.read_size.saturating_sub(req.read_consumed);
let mut writer = BinderReturnWriter::new(
UserSlice::new(UserPtr::from_addr(read_start as _), read_len as _).writer(),
self,
);
let (in_pool, use_proc_queue) = {
let inner = self.inner.lock();
(inner.is_looper(), inner.should_use_process_work_queue())
};
let getter = if use_proc_queue {
Self::get_work
} else {
Self::get_work_local
};
// Reserve some room at the beginning of the read buffer so that we can send a
// BR_SPAWN_LOOPER if we need to.
let mut has_noop_placeholder = false;
if req.read_consumed == 0 {
if let Err(err) = writer.write_code(BR_NOOP) {
pr_warn!("Failure when writing BR_NOOP at beginning of buffer.");
return Err(err);
}
has_noop_placeholder = true;
}
// Loop doing work while there is room in the buffer.
let initial_len = writer.len();
while writer.len() >= size_of::<uapi::binder_transaction_data_secctx>() + 4 {
match getter(self, wait && initial_len == writer.len()) {
Ok(Some(work)) => match work.into_arc().do_work(self, &mut writer) {
Ok(true) => {}
Ok(false) => break,
Err(err) => {
return Err(err);
}
},
Ok(None) => {
break;
}
Err(err) => {
// Propagate the error if we haven't written anything else.
if err != EINTR && err != EAGAIN {
pr_warn!("Failure in work getter: {:?}", err);
}
if initial_len == writer.len() {
return Err(err);
} else {
break;
}
}
}
}
req.read_consumed += read_len - writer.len() as u64;
// Write BR_SPAWN_LOOPER if the process needs more threads for its pool.
if has_noop_placeholder && in_pool && self.process.needs_thread() {
let mut writer =
UserSlice::new(UserPtr::from_addr(req.read_buffer as _), req.read_size as _)
.writer();
writer.write(&BR_SPAWN_LOOPER)?;
}
Ok(())
}
pub(crate) fn write_read(self: &Arc<Self>, data: UserSlice, wait: bool) -> Result {
let (mut reader, mut writer) = data.reader_writer();
let mut req = reader.read::<BinderWriteRead>()?;
// Go through the write buffer.
let mut ret = Ok(());
if req.write_size > 0 {
ret = self.write(&mut req);
if let Err(err) = ret {
pr_warn!(
"Write failure {:?} in pid:{}",
err,
self.process.pid_in_current_ns()
);
req.read_consumed = 0;
writer.write(&req)?;
self.inner.lock().looper_need_return = false;
return ret;
}
}
// Go through the work queue.
if req.read_size > 0 {
ret = self.read(&mut req, wait);
if ret.is_err() && ret != Err(EINTR) {
pr_warn!(
"Read failure {:?} in pid:{}",
ret,
self.process.pid_in_current_ns()
);
}
}
// Write the request back so that the consumed fields are visible to the caller.
writer.write(&req)?;
self.inner.lock().looper_need_return = false;
ret
}
pub(crate) fn poll(&self, file: &File, table: PollTable<'_>) -> (bool, u32) {
table.register_wait(file, &self.work_condvar);
let mut inner = self.inner.lock();
(inner.should_use_process_work_queue(), inner.poll())
}
/// Make the call to `get_work` or `get_work_local` return immediately, if any.
pub(crate) fn exit_looper(&self) {
let mut inner = self.inner.lock();
let should_notify = inner.looper_flags & LOOPER_WAITING != 0;
if should_notify {
inner.looper_need_return = true;
}
drop(inner);
if should_notify {
self.work_condvar.notify_one();
}
}
pub(crate) fn notify_if_poll_ready(&self, sync: bool) {
// Determine if we need to notify. This requires the lock.
let inner = self.inner.lock();
let notify = inner.looper_flags & LOOPER_POLL != 0 && inner.should_use_process_work_queue();
drop(inner);
// Now that the lock is no longer held, notify the waiters if we have to.
if notify {
if sync {
self.work_condvar.notify_sync();
} else {
self.work_condvar.notify_one();
}
}
}
pub(crate) fn release(self: &Arc<Self>) {
self.inner.lock().is_dead = true;
//self.work_condvar.clear();
self.unwind_transaction_stack();
// Cancel all pending work items.
while let Ok(Some(work)) = self.get_work_local(false) {
work.into_arc().cancel();
}
}
}
#[pin_data]
struct ThreadError {
error_code: AtomicU32,
#[pin]
links_track: AtomicTracker,
}
impl ThreadError {
fn try_new() -> Result<DArc<Self>> {
DTRWrap::arc_pin_init(pin_init!(Self {
error_code: AtomicU32::new(BR_OK),
links_track <- AtomicTracker::new(),
}))
.map(ListArc::into_arc)
}
fn set_error_code(&self, code: u32) {
self.error_code.store(code, Ordering::Relaxed);
}
fn is_unused(&self) -> bool {
self.error_code.load(Ordering::Relaxed) == BR_OK
}
}
impl DeliverToRead for ThreadError {
fn do_work(
self: DArc<Self>,
_thread: &Thread,
writer: &mut BinderReturnWriter<'_>,
) -> Result<bool> {
let code = self.error_code.load(Ordering::Relaxed);
self.error_code.store(BR_OK, Ordering::Relaxed);
writer.write_code(code)?;
Ok(true)
}
fn cancel(self: DArc<Self>) {}
fn should_sync_wakeup(&self) -> bool {
false
}
fn debug_print(&self, m: &SeqFile, prefix: &str, _tprefix: &str) -> Result<()> {
seq_print!(
m,
"{}transaction error: {}\n",
prefix,
self.error_code.load(Ordering::Relaxed)
);
Ok(())
}
}
kernel::list::impl_list_arc_safe! {
impl ListArcSafe<0> for ThreadError {
tracked_by links_track: AtomicTracker;
}
}
|