1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2025 Google LLC.
use core::sync::atomic::{AtomicBool, Ordering};
use kernel::{
prelude::*,
seq_file::SeqFile,
seq_print,
sync::{Arc, SpinLock},
task::Kuid,
time::{Instant, Monotonic},
types::ScopeGuard,
};
use crate::{
allocation::{Allocation, TranslatedFds},
defs::*,
error::{BinderError, BinderResult},
node::{Node, NodeRef},
process::{Process, ProcessInner},
ptr_align,
thread::{PushWorkRes, Thread},
BinderReturnWriter, DArc, DLArc, DTRWrap, DeliverToRead,
};
#[pin_data(PinnedDrop)]
pub(crate) struct Transaction {
pub(crate) debug_id: usize,
target_node: Option<DArc<Node>>,
pub(crate) from_parent: Option<DArc<Transaction>>,
pub(crate) from: Arc<Thread>,
pub(crate) to: Arc<Process>,
#[pin]
allocation: SpinLock<Option<Allocation>>,
is_outstanding: AtomicBool,
code: u32,
pub(crate) flags: u32,
data_size: usize,
offsets_size: usize,
data_address: usize,
sender_euid: Kuid,
txn_security_ctx_off: Option<usize>,
pub(crate) oneway_spam_detected: bool,
start_time: Instant<Monotonic>,
}
kernel::list::impl_list_arc_safe! {
impl ListArcSafe<0> for Transaction { untracked; }
}
impl Transaction {
pub(crate) fn new(
node_ref: NodeRef,
from_parent: Option<DArc<Transaction>>,
from: &Arc<Thread>,
tr: &BinderTransactionDataSg,
) -> BinderResult<DLArc<Self>> {
let debug_id = super::next_debug_id();
let trd = &tr.transaction_data;
let allow_fds = node_ref.node.flags & FLAT_BINDER_FLAG_ACCEPTS_FDS != 0;
let txn_security_ctx = node_ref.node.flags & FLAT_BINDER_FLAG_TXN_SECURITY_CTX != 0;
let mut txn_security_ctx_off = if txn_security_ctx { Some(0) } else { None };
let to = node_ref.node.owner.clone();
let mut alloc = match from.copy_transaction_data(
to.clone(),
tr,
debug_id,
allow_fds,
txn_security_ctx_off.as_mut(),
) {
Ok(alloc) => alloc,
Err(err) => {
if !err.is_dead() {
pr_warn!("Failure in copy_transaction_data: {:?}", err);
}
return Err(err);
}
};
let oneway_spam_detected = alloc.oneway_spam_detected;
if trd.flags & TF_ONE_WAY != 0 {
if from_parent.is_some() {
pr_warn!("Oneway transaction should not be in a transaction stack.");
return Err(EINVAL.into());
}
alloc.set_info_oneway_node(node_ref.node.clone());
}
if trd.flags & TF_CLEAR_BUF != 0 {
alloc.set_info_clear_on_drop();
}
let target_node = node_ref.node.clone();
alloc.set_info_target_node(node_ref);
let data_address = alloc.ptr;
Ok(DTRWrap::arc_pin_init(pin_init!(Transaction {
debug_id,
target_node: Some(target_node),
from_parent,
sender_euid: from.process.task.euid(),
from: from.clone(),
to,
code: trd.code,
flags: trd.flags,
data_size: trd.data_size as _,
offsets_size: trd.offsets_size as _,
data_address,
allocation <- kernel::new_spinlock!(Some(alloc.success()), "Transaction::new"),
is_outstanding: AtomicBool::new(false),
txn_security_ctx_off,
oneway_spam_detected,
start_time: Instant::now(),
}))?)
}
pub(crate) fn new_reply(
from: &Arc<Thread>,
to: Arc<Process>,
tr: &BinderTransactionDataSg,
allow_fds: bool,
) -> BinderResult<DLArc<Self>> {
let debug_id = super::next_debug_id();
let trd = &tr.transaction_data;
let mut alloc = match from.copy_transaction_data(to.clone(), tr, debug_id, allow_fds, None)
{
Ok(alloc) => alloc,
Err(err) => {
pr_warn!("Failure in copy_transaction_data: {:?}", err);
return Err(err);
}
};
let oneway_spam_detected = alloc.oneway_spam_detected;
if trd.flags & TF_CLEAR_BUF != 0 {
alloc.set_info_clear_on_drop();
}
Ok(DTRWrap::arc_pin_init(pin_init!(Transaction {
debug_id,
target_node: None,
from_parent: None,
sender_euid: from.process.task.euid(),
from: from.clone(),
to,
code: trd.code,
flags: trd.flags,
data_size: trd.data_size as _,
offsets_size: trd.offsets_size as _,
data_address: alloc.ptr,
allocation <- kernel::new_spinlock!(Some(alloc.success()), "Transaction::new"),
is_outstanding: AtomicBool::new(false),
txn_security_ctx_off: None,
oneway_spam_detected,
start_time: Instant::now(),
}))?)
}
#[inline(never)]
pub(crate) fn debug_print_inner(&self, m: &SeqFile, prefix: &str) {
seq_print!(
m,
"{}{}: from {}:{} to {} code {:x} flags {:x} elapsed {}ms",
prefix,
self.debug_id,
self.from.process.task.pid(),
self.from.id,
self.to.task.pid(),
self.code,
self.flags,
self.start_time.elapsed().as_millis(),
);
if let Some(target_node) = &self.target_node {
seq_print!(m, " node {}", target_node.debug_id);
}
seq_print!(m, " size {}:{}\n", self.data_size, self.offsets_size);
}
/// Determines if the transaction is stacked on top of the given transaction.
pub(crate) fn is_stacked_on(&self, onext: &Option<DArc<Self>>) -> bool {
match (&self.from_parent, onext) {
(None, None) => true,
(Some(from_parent), Some(next)) => Arc::ptr_eq(from_parent, next),
_ => false,
}
}
/// Returns a pointer to the next transaction on the transaction stack, if there is one.
pub(crate) fn clone_next(&self) -> Option<DArc<Self>> {
Some(self.from_parent.as_ref()?.clone())
}
/// Searches in the transaction stack for a thread that belongs to the target process. This is
/// useful when finding a target for a new transaction: if the node belongs to a process that
/// is already part of the transaction stack, we reuse the thread.
fn find_target_thread(&self) -> Option<Arc<Thread>> {
let mut it = &self.from_parent;
while let Some(transaction) = it {
if Arc::ptr_eq(&transaction.from.process, &self.to) {
return Some(transaction.from.clone());
}
it = &transaction.from_parent;
}
None
}
/// Searches in the transaction stack for a transaction originating at the given thread.
pub(crate) fn find_from(&self, thread: &Thread) -> Option<&DArc<Transaction>> {
let mut it = &self.from_parent;
while let Some(transaction) = it {
if core::ptr::eq(thread, transaction.from.as_ref()) {
return Some(transaction);
}
it = &transaction.from_parent;
}
None
}
pub(crate) fn set_outstanding(&self, to_process: &mut ProcessInner) {
// No race because this method is only called once.
if !self.is_outstanding.load(Ordering::Relaxed) {
self.is_outstanding.store(true, Ordering::Relaxed);
to_process.add_outstanding_txn();
}
}
/// Decrement `outstanding_txns` in `to` if it hasn't already been decremented.
fn drop_outstanding_txn(&self) {
// No race because this is called at most twice, and one of the calls are in the
// destructor, which is guaranteed to not race with any other operations on the
// transaction. It also cannot race with `set_outstanding`, since submission happens
// before delivery.
if self.is_outstanding.load(Ordering::Relaxed) {
self.is_outstanding.store(false, Ordering::Relaxed);
self.to.drop_outstanding_txn();
}
}
/// Submits the transaction to a work queue. Uses a thread if there is one in the transaction
/// stack, otherwise uses the destination process.
///
/// Not used for replies.
pub(crate) fn submit(self: DLArc<Self>) -> BinderResult {
// Defined before `process_inner` so that the destructor runs after releasing the lock.
let mut _t_outdated;
let oneway = self.flags & TF_ONE_WAY != 0;
let process = self.to.clone();
let mut process_inner = process.inner.lock();
self.set_outstanding(&mut process_inner);
if oneway {
if let Some(target_node) = self.target_node.clone() {
if process_inner.is_frozen.is_frozen() {
process_inner.async_recv = true;
if self.flags & TF_UPDATE_TXN != 0 {
if let Some(t_outdated) =
target_node.take_outdated_transaction(&self, &mut process_inner)
{
// Save the transaction to be dropped after locks are released.
_t_outdated = t_outdated;
}
}
}
match target_node.submit_oneway(self, &mut process_inner) {
Ok(()) => {}
Err((err, work)) => {
drop(process_inner);
// Drop work after releasing process lock.
drop(work);
return Err(err);
}
}
if process_inner.is_frozen.is_frozen() {
return Err(BinderError::new_frozen_oneway());
} else {
return Ok(());
}
} else {
pr_err!("Failed to submit oneway transaction to node.");
}
}
if process_inner.is_frozen.is_frozen() {
process_inner.sync_recv = true;
return Err(BinderError::new_frozen());
}
let res = if let Some(thread) = self.find_target_thread() {
match thread.push_work(self) {
PushWorkRes::Ok => Ok(()),
PushWorkRes::FailedDead(me) => Err((BinderError::new_dead(), me)),
}
} else {
process_inner.push_work(self)
};
drop(process_inner);
match res {
Ok(()) => Ok(()),
Err((err, work)) => {
// Drop work after releasing process lock.
drop(work);
Err(err)
}
}
}
/// Check whether one oneway transaction can supersede another.
pub(crate) fn can_replace(&self, old: &Transaction) -> bool {
if self.from.process.task.pid() != old.from.process.task.pid() {
return false;
}
if self.flags & old.flags & (TF_ONE_WAY | TF_UPDATE_TXN) != (TF_ONE_WAY | TF_UPDATE_TXN) {
return false;
}
let target_node_match = match (self.target_node.as_ref(), old.target_node.as_ref()) {
(None, None) => true,
(Some(tn1), Some(tn2)) => Arc::ptr_eq(tn1, tn2),
_ => false,
};
self.code == old.code && self.flags == old.flags && target_node_match
}
fn prepare_file_list(&self) -> Result<TranslatedFds> {
let mut alloc = self.allocation.lock().take().ok_or(ESRCH)?;
match alloc.translate_fds() {
Ok(translated) => {
*self.allocation.lock() = Some(alloc);
Ok(translated)
}
Err(err) => {
// Free the allocation eagerly.
drop(alloc);
Err(err)
}
}
}
}
impl DeliverToRead for Transaction {
fn do_work(
self: DArc<Self>,
thread: &Thread,
writer: &mut BinderReturnWriter<'_>,
) -> Result<bool> {
let send_failed_reply = ScopeGuard::new(|| {
if self.target_node.is_some() && self.flags & TF_ONE_WAY == 0 {
let reply = Err(BR_FAILED_REPLY);
self.from.deliver_reply(reply, &self);
}
self.drop_outstanding_txn();
});
let files = if let Ok(list) = self.prepare_file_list() {
list
} else {
// On failure to process the list, we send a reply back to the sender and ignore the
// transaction on the recipient.
return Ok(true);
};
let mut tr_sec = BinderTransactionDataSecctx::default();
let tr = tr_sec.tr_data();
if let Some(target_node) = &self.target_node {
let (ptr, cookie) = target_node.get_id();
tr.target.ptr = ptr as _;
tr.cookie = cookie as _;
};
tr.code = self.code;
tr.flags = self.flags;
tr.data_size = self.data_size as _;
tr.data.ptr.buffer = self.data_address as _;
tr.offsets_size = self.offsets_size as _;
if tr.offsets_size > 0 {
tr.data.ptr.offsets = (self.data_address + ptr_align(self.data_size).unwrap()) as _;
}
tr.sender_euid = self.sender_euid.into_uid_in_current_ns();
tr.sender_pid = 0;
if self.target_node.is_some() && self.flags & TF_ONE_WAY == 0 {
// Not a reply and not one-way.
tr.sender_pid = self.from.process.pid_in_current_ns();
}
let code = if self.target_node.is_none() {
BR_REPLY
} else if self.txn_security_ctx_off.is_some() {
BR_TRANSACTION_SEC_CTX
} else {
BR_TRANSACTION
};
// Write the transaction code and data to the user buffer.
writer.write_code(code)?;
if let Some(off) = self.txn_security_ctx_off {
tr_sec.secctx = (self.data_address + off) as u64;
writer.write_payload(&tr_sec)?;
} else {
writer.write_payload(&*tr)?;
}
let mut alloc = self.allocation.lock().take().ok_or(ESRCH)?;
// Dismiss the completion of transaction with a failure. No failure paths are allowed from
// here on out.
send_failed_reply.dismiss();
// Commit files, and set FDs in FDA to be closed on buffer free.
let close_on_free = files.commit();
alloc.set_info_close_on_free(close_on_free);
// It is now the user's responsibility to clear the allocation.
alloc.keep_alive();
self.drop_outstanding_txn();
// When this is not a reply and not a oneway transaction, update `current_transaction`. If
// it's a reply, `current_transaction` has already been updated appropriately.
if self.target_node.is_some() && tr_sec.transaction_data.flags & TF_ONE_WAY == 0 {
thread.set_current_transaction(self);
}
Ok(false)
}
fn cancel(self: DArc<Self>) {
let allocation = self.allocation.lock().take();
drop(allocation);
// If this is not a reply or oneway transaction, then send a dead reply.
if self.target_node.is_some() && self.flags & TF_ONE_WAY == 0 {
let reply = Err(BR_DEAD_REPLY);
self.from.deliver_reply(reply, &self);
}
self.drop_outstanding_txn();
}
fn should_sync_wakeup(&self) -> bool {
self.flags & TF_ONE_WAY == 0
}
fn debug_print(&self, m: &SeqFile, _prefix: &str, tprefix: &str) -> Result<()> {
self.debug_print_inner(m, tprefix);
Ok(())
}
}
#[pinned_drop]
impl PinnedDrop for Transaction {
fn drop(self: Pin<&mut Self>) {
self.drop_outstanding_txn();
}
}
|