1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
|
// SPDX-License-Identifier: GPL-2.0-or-later
#include "cache.h"
#include "backing_dev.h"
#include "cache_dev.h"
#include "dm_pcache.h"
struct pcache_cache_kset_onmedia pcache_empty_kset = { 0 };
void cache_key_init(struct pcache_cache_tree *cache_tree, struct pcache_cache_key *key)
{
kref_init(&key->ref);
key->cache_tree = cache_tree;
INIT_LIST_HEAD(&key->list_node);
RB_CLEAR_NODE(&key->rb_node);
}
struct pcache_cache_key *cache_key_alloc(struct pcache_cache_tree *cache_tree, gfp_t gfp_mask)
{
struct pcache_cache_key *key;
key = mempool_alloc(&cache_tree->key_pool, gfp_mask);
if (!key)
return NULL;
memset(key, 0, sizeof(struct pcache_cache_key));
cache_key_init(cache_tree, key);
return key;
}
/**
* cache_key_get - Increment the reference count of a cache key.
* @key: Pointer to the pcache_cache_key structure.
*
* This function increments the reference count of the specified cache key,
* ensuring that it is not freed while still in use.
*/
void cache_key_get(struct pcache_cache_key *key)
{
kref_get(&key->ref);
}
/**
* cache_key_destroy - Free a cache key structure when its reference count drops to zero.
* @ref: Pointer to the kref structure.
*
* This function is called when the reference count of the cache key reaches zero.
* It frees the allocated cache key back to the slab cache.
*/
static void cache_key_destroy(struct kref *ref)
{
struct pcache_cache_key *key = container_of(ref, struct pcache_cache_key, ref);
struct pcache_cache_tree *cache_tree = key->cache_tree;
mempool_free(key, &cache_tree->key_pool);
}
void cache_key_put(struct pcache_cache_key *key)
{
kref_put(&key->ref, cache_key_destroy);
}
void cache_pos_advance(struct pcache_cache_pos *pos, u32 len)
{
/* Ensure enough space remains in the current segment */
BUG_ON(cache_seg_remain(pos) < len);
pos->seg_off += len;
}
static void cache_key_encode(struct pcache_cache *cache,
struct pcache_cache_key_onmedia *key_onmedia,
struct pcache_cache_key *key)
{
key_onmedia->off = key->off;
key_onmedia->len = key->len;
key_onmedia->cache_seg_id = key->cache_pos.cache_seg->cache_seg_id;
key_onmedia->cache_seg_off = key->cache_pos.seg_off;
key_onmedia->seg_gen = key->seg_gen;
key_onmedia->flags = key->flags;
if (cache_data_crc_on(cache))
key_onmedia->data_crc = cache_key_data_crc(key);
}
int cache_key_decode(struct pcache_cache *cache,
struct pcache_cache_key_onmedia *key_onmedia,
struct pcache_cache_key *key)
{
struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
key->off = key_onmedia->off;
key->len = key_onmedia->len;
key->cache_pos.cache_seg = &cache->segments[key_onmedia->cache_seg_id];
key->cache_pos.seg_off = key_onmedia->cache_seg_off;
key->seg_gen = key_onmedia->seg_gen;
key->flags = key_onmedia->flags;
if (cache_data_crc_on(cache) &&
key_onmedia->data_crc != cache_key_data_crc(key)) {
pcache_dev_err(pcache, "key: %llu:%u seg %u:%u data_crc error: %x, expected: %x\n",
key->off, key->len, key->cache_pos.cache_seg->cache_seg_id,
key->cache_pos.seg_off, cache_key_data_crc(key), key_onmedia->data_crc);
return -EIO;
}
return 0;
}
static void append_last_kset(struct pcache_cache *cache, u32 next_seg)
{
struct pcache_cache_kset_onmedia kset_onmedia = { 0 };
kset_onmedia.flags |= PCACHE_KSET_FLAGS_LAST;
kset_onmedia.next_cache_seg_id = next_seg;
kset_onmedia.magic = PCACHE_KSET_MAGIC;
kset_onmedia.crc = cache_kset_crc(&kset_onmedia);
memcpy_flushcache(get_key_head_addr(cache), &kset_onmedia, sizeof(struct pcache_cache_kset_onmedia));
pmem_wmb();
cache_pos_advance(&cache->key_head, sizeof(struct pcache_cache_kset_onmedia));
}
int cache_kset_close(struct pcache_cache *cache, struct pcache_cache_kset *kset)
{
struct pcache_cache_kset_onmedia *kset_onmedia;
u32 kset_onmedia_size;
int ret;
kset_onmedia = &kset->kset_onmedia;
if (!kset_onmedia->key_num)
return 0;
kset_onmedia_size = struct_size(kset_onmedia, data, kset_onmedia->key_num);
spin_lock(&cache->key_head_lock);
again:
/* Reserve space for the last kset */
if (cache_seg_remain(&cache->key_head) < kset_onmedia_size + sizeof(struct pcache_cache_kset_onmedia)) {
struct pcache_cache_segment *next_seg;
next_seg = get_cache_segment(cache);
if (!next_seg) {
ret = -EBUSY;
goto out;
}
/* clear outdated kset in next seg */
memcpy_flushcache(next_seg->segment.data, &pcache_empty_kset,
sizeof(struct pcache_cache_kset_onmedia));
append_last_kset(cache, next_seg->cache_seg_id);
cache->key_head.cache_seg = next_seg;
cache->key_head.seg_off = 0;
goto again;
}
kset_onmedia->magic = PCACHE_KSET_MAGIC;
kset_onmedia->crc = cache_kset_crc(kset_onmedia);
/* clear outdated kset after current kset */
memcpy_flushcache(get_key_head_addr(cache) + kset_onmedia_size, &pcache_empty_kset,
sizeof(struct pcache_cache_kset_onmedia));
/* write current kset into segment */
memcpy_flushcache(get_key_head_addr(cache), kset_onmedia, kset_onmedia_size);
pmem_wmb();
/* reset kset_onmedia */
memset(kset_onmedia, 0, sizeof(struct pcache_cache_kset_onmedia));
cache_pos_advance(&cache->key_head, kset_onmedia_size);
ret = 0;
out:
spin_unlock(&cache->key_head_lock);
return ret;
}
/**
* cache_key_append - Append a cache key to the related kset.
* @cache: Pointer to the pcache_cache structure.
* @key: Pointer to the cache key structure to append.
* @force_close: Need to close current kset if true.
*
* This function appends a cache key to the appropriate kset. If the kset
* is full, it closes the kset. If not, it queues a flush work to write
* the kset to media.
*
* Returns 0 on success, or a negative error code on failure.
*/
int cache_key_append(struct pcache_cache *cache, struct pcache_cache_key *key, bool force_close)
{
struct pcache_cache_kset *kset;
struct pcache_cache_kset_onmedia *kset_onmedia;
struct pcache_cache_key_onmedia *key_onmedia;
u32 kset_id = get_kset_id(cache, key->off);
int ret = 0;
kset = get_kset(cache, kset_id);
kset_onmedia = &kset->kset_onmedia;
spin_lock(&kset->kset_lock);
key_onmedia = &kset_onmedia->data[kset_onmedia->key_num];
cache_key_encode(cache, key_onmedia, key);
/* Check if the current kset has reached the maximum number of keys */
if (++kset_onmedia->key_num == PCACHE_KSET_KEYS_MAX || force_close) {
/* If full, close the kset */
ret = cache_kset_close(cache, kset);
if (ret) {
kset_onmedia->key_num--;
goto out;
}
} else {
/* If not full, queue a delayed work to flush the kset */
queue_delayed_work(cache_get_wq(cache), &kset->flush_work, 1 * HZ);
}
out:
spin_unlock(&kset->kset_lock);
return ret;
}
/**
* cache_subtree_walk - Traverse the cache tree.
* @ctx: Pointer to the context structure for traversal.
*
* This function traverses the cache tree starting from the specified node.
* It calls the appropriate callback functions based on the relationships
* between the keys in the cache tree.
*
* Returns 0 on success, or a negative error code on failure.
*/
int cache_subtree_walk(struct pcache_cache_subtree_walk_ctx *ctx)
{
struct pcache_cache_key *key_tmp, *key;
struct rb_node *node_tmp;
int ret = SUBTREE_WALK_RET_OK;
key = ctx->key;
node_tmp = ctx->start_node;
while (node_tmp) {
if (ctx->walk_done && ctx->walk_done(ctx))
break;
key_tmp = CACHE_KEY(node_tmp);
/*
* If key_tmp ends before the start of key, continue to the next node.
* |----------|
* |=====|
*/
if (cache_key_lend(key_tmp) <= cache_key_lstart(key)) {
if (ctx->after) {
ret = ctx->after(key, key_tmp, ctx);
if (ret)
goto out;
}
goto next;
}
/*
* If key_tmp starts after the end of key, stop traversing.
* |--------|
* |====|
*/
if (cache_key_lstart(key_tmp) >= cache_key_lend(key)) {
if (ctx->before) {
ret = ctx->before(key, key_tmp, ctx);
if (ret)
goto out;
}
break;
}
/* Handle overlapping keys */
if (cache_key_lstart(key_tmp) >= cache_key_lstart(key)) {
/*
* If key_tmp encompasses key.
* |----------------| key_tmp
* |===========| key
*/
if (cache_key_lend(key_tmp) >= cache_key_lend(key)) {
if (ctx->overlap_tail) {
ret = ctx->overlap_tail(key, key_tmp, ctx);
if (ret)
goto out;
}
break;
}
/*
* If key_tmp is contained within key.
* |----| key_tmp
* |==========| key
*/
if (ctx->overlap_contain) {
ret = ctx->overlap_contain(key, key_tmp, ctx);
if (ret)
goto out;
}
goto next;
}
/*
* If key_tmp starts before key ends but ends after key.
* |-----------| key_tmp
* |====| key
*/
if (cache_key_lend(key_tmp) > cache_key_lend(key)) {
if (ctx->overlap_contained) {
ret = ctx->overlap_contained(key, key_tmp, ctx);
if (ret)
goto out;
}
break;
}
/*
* If key_tmp starts before key and ends within key.
* |--------| key_tmp
* |==========| key
*/
if (ctx->overlap_head) {
ret = ctx->overlap_head(key, key_tmp, ctx);
if (ret)
goto out;
}
next:
node_tmp = rb_next(node_tmp);
}
out:
if (ctx->walk_finally)
ret = ctx->walk_finally(ctx, ret);
return ret;
}
/**
* cache_subtree_search - Search for a key in the cache tree.
* @cache_subtree: Pointer to the cache tree structure.
* @key: Pointer to the cache key to search for.
* @parentp: Pointer to store the parent node of the found node.
* @newp: Pointer to store the location where the new node should be inserted.
* @delete_key_list: List to collect invalid keys for deletion.
*
* This function searches the cache tree for a specific key and returns
* the node that is the predecessor of the key, or first node if the key is
* less than all keys in the tree. If any invalid keys are found during
* the search, they are added to the delete_key_list for later cleanup.
*
* Returns a pointer to the previous node.
*/
struct rb_node *cache_subtree_search(struct pcache_cache_subtree *cache_subtree, struct pcache_cache_key *key,
struct rb_node **parentp, struct rb_node ***newp,
struct list_head *delete_key_list)
{
struct rb_node **new, *parent = NULL;
struct pcache_cache_key *key_tmp;
struct rb_node *prev_node = NULL;
new = &(cache_subtree->root.rb_node);
while (*new) {
key_tmp = container_of(*new, struct pcache_cache_key, rb_node);
if (cache_key_invalid(key_tmp))
list_add(&key_tmp->list_node, delete_key_list);
parent = *new;
if (key_tmp->off >= key->off) {
new = &((*new)->rb_left);
} else {
prev_node = *new;
new = &((*new)->rb_right);
}
}
if (!prev_node)
prev_node = rb_first(&cache_subtree->root);
if (parentp)
*parentp = parent;
if (newp)
*newp = new;
return prev_node;
}
static struct pcache_cache_key *get_pre_alloc_key(struct pcache_cache_subtree_walk_ctx *ctx)
{
struct pcache_cache_key *key;
if (ctx->pre_alloc_key) {
key = ctx->pre_alloc_key;
ctx->pre_alloc_key = NULL;
return key;
}
return cache_key_alloc(ctx->cache_tree, GFP_NOWAIT);
}
/**
* fixup_overlap_tail - Adjust the key when it overlaps at the tail.
* @key: Pointer to the new cache key being inserted.
* @key_tmp: Pointer to the existing key that overlaps.
* @ctx: Pointer to the context for walking the cache tree.
*
* This function modifies the existing key (key_tmp) when there is an
* overlap at the tail with the new key. If the modified key becomes
* empty, it is deleted.
*/
static int fixup_overlap_tail(struct pcache_cache_key *key,
struct pcache_cache_key *key_tmp,
struct pcache_cache_subtree_walk_ctx *ctx)
{
/*
* |----------------| key_tmp
* |===========| key
*/
BUG_ON(cache_key_empty(key));
if (cache_key_empty(key_tmp)) {
cache_key_delete(key_tmp);
return SUBTREE_WALK_RET_RESEARCH;
}
cache_key_cutfront(key_tmp, cache_key_lend(key) - cache_key_lstart(key_tmp));
if (key_tmp->len == 0) {
cache_key_delete(key_tmp);
return SUBTREE_WALK_RET_RESEARCH;
}
return SUBTREE_WALK_RET_OK;
}
/**
* fixup_overlap_contain - Handle case where new key completely contains an existing key.
* @key: Pointer to the new cache key being inserted.
* @key_tmp: Pointer to the existing key that is being contained.
* @ctx: Pointer to the context for walking the cache tree.
*
* This function deletes the existing key (key_tmp) when the new key
* completely contains it. It returns SUBTREE_WALK_RET_RESEARCH to indicate that the
* tree structure may have changed, necessitating a re-insertion of
* the new key.
*/
static int fixup_overlap_contain(struct pcache_cache_key *key,
struct pcache_cache_key *key_tmp,
struct pcache_cache_subtree_walk_ctx *ctx)
{
/*
* |----| key_tmp
* |==========| key
*/
BUG_ON(cache_key_empty(key));
cache_key_delete(key_tmp);
return SUBTREE_WALK_RET_RESEARCH;
}
/**
* fixup_overlap_contained - Handle overlap when a new key is contained in an existing key.
* @key: The new cache key being inserted.
* @key_tmp: The existing cache key that overlaps with the new key.
* @ctx: Context for the cache tree walk.
*
* This function adjusts the existing key if the new key is contained
* within it. If the existing key is empty, it indicates a placeholder key
* that was inserted during a miss read. This placeholder will later be
* updated with real data from the backing_dev, making it no longer an empty key.
*
* If we delete key or insert a key, the structure of the entire cache tree may change,
* requiring a full research of the tree to find a new insertion point.
*/
static int fixup_overlap_contained(struct pcache_cache_key *key,
struct pcache_cache_key *key_tmp, struct pcache_cache_subtree_walk_ctx *ctx)
{
struct pcache_cache_tree *cache_tree = ctx->cache_tree;
/*
* |-----------| key_tmp
* |====| key
*/
BUG_ON(cache_key_empty(key));
if (cache_key_empty(key_tmp)) {
/* If key_tmp is empty, don't split it;
* it's a placeholder key for miss reads that will be updated later.
*/
cache_key_cutback(key_tmp, cache_key_lend(key_tmp) - cache_key_lstart(key));
if (key_tmp->len == 0) {
cache_key_delete(key_tmp);
return SUBTREE_WALK_RET_RESEARCH;
}
} else {
struct pcache_cache_key *key_fixup;
bool need_research = false;
key_fixup = get_pre_alloc_key(ctx);
if (!key_fixup)
return SUBTREE_WALK_RET_NEED_KEY;
cache_key_copy(key_fixup, key_tmp);
/* Split key_tmp based on the new key's range */
cache_key_cutback(key_tmp, cache_key_lend(key_tmp) - cache_key_lstart(key));
if (key_tmp->len == 0) {
cache_key_delete(key_tmp);
need_research = true;
}
/* Create a new portion for key_fixup */
cache_key_cutfront(key_fixup, cache_key_lend(key) - cache_key_lstart(key_tmp));
if (key_fixup->len == 0) {
cache_key_put(key_fixup);
} else {
/* Insert the new key into the cache */
cache_key_insert(cache_tree, key_fixup, false);
need_research = true;
}
if (need_research)
return SUBTREE_WALK_RET_RESEARCH;
}
return SUBTREE_WALK_RET_OK;
}
/**
* fixup_overlap_head - Handle overlap when a new key overlaps with the head of an existing key.
* @key: The new cache key being inserted.
* @key_tmp: The existing cache key that overlaps with the new key.
* @ctx: Context for the cache tree walk.
*
* This function adjusts the existing key if the new key overlaps
* with the beginning of it. If the resulting key length is zero
* after the adjustment, the key is deleted. This indicates that
* the key no longer holds valid data and requires the tree to be
* re-researched for a new insertion point.
*/
static int fixup_overlap_head(struct pcache_cache_key *key,
struct pcache_cache_key *key_tmp, struct pcache_cache_subtree_walk_ctx *ctx)
{
/*
* |--------| key_tmp
* |==========| key
*/
BUG_ON(cache_key_empty(key));
/* Adjust key_tmp by cutting back based on the new key's start */
cache_key_cutback(key_tmp, cache_key_lend(key_tmp) - cache_key_lstart(key));
if (key_tmp->len == 0) {
/* If the adjusted key_tmp length is zero, delete it */
cache_key_delete(key_tmp);
return SUBTREE_WALK_RET_RESEARCH;
}
return SUBTREE_WALK_RET_OK;
}
/**
* cache_key_insert - Insert a new cache key into the cache tree.
* @cache_tree: Pointer to the cache_tree structure.
* @key: The cache key to insert.
* @fixup: Indicates if this is a new key being inserted.
*
* This function searches for the appropriate location to insert
* a new cache key into the cache tree. It handles key overlaps
* and ensures any invalid keys are removed before insertion.
*/
void cache_key_insert(struct pcache_cache_tree *cache_tree, struct pcache_cache_key *key, bool fixup)
{
struct pcache_cache *cache = cache_tree->cache;
struct pcache_cache_subtree_walk_ctx walk_ctx = { 0 };
struct rb_node **new, *parent = NULL;
struct pcache_cache_subtree *cache_subtree;
struct pcache_cache_key *key_tmp = NULL, *key_next;
struct rb_node *prev_node = NULL;
LIST_HEAD(delete_key_list);
int ret;
cache_subtree = get_subtree(cache_tree, key->off);
key->cache_subtree = cache_subtree;
search:
prev_node = cache_subtree_search(cache_subtree, key, &parent, &new, &delete_key_list);
if (!list_empty(&delete_key_list)) {
/* Remove invalid keys from the delete list */
list_for_each_entry_safe(key_tmp, key_next, &delete_key_list, list_node) {
list_del_init(&key_tmp->list_node);
cache_key_delete(key_tmp);
}
goto search;
}
if (fixup) {
/* Set up the context with the cache, start node, and new key */
walk_ctx.cache_tree = cache_tree;
walk_ctx.start_node = prev_node;
walk_ctx.key = key;
/* Assign overlap handling functions for different scenarios */
walk_ctx.overlap_tail = fixup_overlap_tail;
walk_ctx.overlap_head = fixup_overlap_head;
walk_ctx.overlap_contain = fixup_overlap_contain;
walk_ctx.overlap_contained = fixup_overlap_contained;
ret = cache_subtree_walk(&walk_ctx);
switch (ret) {
case SUBTREE_WALK_RET_OK:
break;
case SUBTREE_WALK_RET_RESEARCH:
goto search;
case SUBTREE_WALK_RET_NEED_KEY:
spin_unlock(&cache_subtree->tree_lock);
pcache_dev_debug(CACHE_TO_PCACHE(cache), "allocate pre_alloc_key with GFP_NOIO");
walk_ctx.pre_alloc_key = cache_key_alloc(cache_tree, GFP_NOIO);
spin_lock(&cache_subtree->tree_lock);
goto search;
default:
BUG();
}
}
if (walk_ctx.pre_alloc_key)
cache_key_put(walk_ctx.pre_alloc_key);
/* Link and insert the new key into the red-black tree */
rb_link_node(&key->rb_node, parent, new);
rb_insert_color(&key->rb_node, &cache_subtree->root);
}
/**
* clean_fn - Cleanup function to remove invalid keys from the cache tree.
* @work: Pointer to the work_struct associated with the cleanup.
*
* This function cleans up invalid keys from the cache tree in the background
* after a cache segment has been invalidated during cache garbage collection.
* It processes a maximum of PCACHE_CLEAN_KEYS_MAX keys per iteration and holds
* the tree lock to ensure thread safety.
*/
void clean_fn(struct work_struct *work)
{
struct pcache_cache *cache = container_of(work, struct pcache_cache, clean_work);
struct pcache_cache_subtree *cache_subtree;
struct rb_node *node;
struct pcache_cache_key *key;
int i, count;
for (i = 0; i < cache->req_key_tree.n_subtrees; i++) {
cache_subtree = &cache->req_key_tree.subtrees[i];
again:
if (pcache_is_stopping(CACHE_TO_PCACHE(cache)))
return;
/* Delete up to PCACHE_CLEAN_KEYS_MAX keys in one iteration */
count = 0;
spin_lock(&cache_subtree->tree_lock);
node = rb_first(&cache_subtree->root);
while (node) {
key = CACHE_KEY(node);
node = rb_next(node);
if (cache_key_invalid(key)) {
count++;
cache_key_delete(key);
}
if (count >= PCACHE_CLEAN_KEYS_MAX) {
/* Unlock and pause before continuing cleanup */
spin_unlock(&cache_subtree->tree_lock);
usleep_range(1000, 2000);
goto again;
}
}
spin_unlock(&cache_subtree->tree_lock);
}
}
/*
* kset_flush_fn - Flush work for a cache kset.
*
* This function is called when a kset flush work is queued from
* cache_key_append(). If the kset is full, it will be closed
* immediately. If not, the flush work will be queued for later closure.
*
* If cache_kset_close detects that a new segment is required to store
* the kset and there are no available segments, it will return an error.
* In this scenario, a retry will be attempted.
*/
void kset_flush_fn(struct work_struct *work)
{
struct pcache_cache_kset *kset = container_of(work, struct pcache_cache_kset, flush_work.work);
struct pcache_cache *cache = kset->cache;
int ret;
if (pcache_is_stopping(CACHE_TO_PCACHE(cache)))
return;
spin_lock(&kset->kset_lock);
ret = cache_kset_close(cache, kset);
spin_unlock(&kset->kset_lock);
if (ret) {
/* Failed to flush kset, schedule a retry. */
queue_delayed_work(cache_get_wq(cache), &kset->flush_work, msecs_to_jiffies(100));
}
}
static int kset_replay(struct pcache_cache *cache, struct pcache_cache_kset_onmedia *kset_onmedia)
{
struct pcache_cache_key_onmedia *key_onmedia;
struct pcache_cache_subtree *cache_subtree;
struct pcache_cache_key *key;
int ret;
int i;
for (i = 0; i < kset_onmedia->key_num; i++) {
key_onmedia = &kset_onmedia->data[i];
key = cache_key_alloc(&cache->req_key_tree, GFP_NOIO);
ret = cache_key_decode(cache, key_onmedia, key);
if (ret) {
cache_key_put(key);
goto err;
}
__set_bit(key->cache_pos.cache_seg->cache_seg_id, cache->seg_map);
/* Check if the segment generation is valid for insertion. */
if (key->seg_gen < key->cache_pos.cache_seg->gen) {
cache_key_put(key);
} else {
cache_subtree = get_subtree(&cache->req_key_tree, key->off);
spin_lock(&cache_subtree->tree_lock);
cache_key_insert(&cache->req_key_tree, key, true);
spin_unlock(&cache_subtree->tree_lock);
}
cache_seg_get(key->cache_pos.cache_seg);
}
return 0;
err:
return ret;
}
int cache_replay(struct pcache_cache *cache)
{
struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
struct pcache_cache_pos pos_tail;
struct pcache_cache_pos *pos;
struct pcache_cache_kset_onmedia *kset_onmedia;
u32 to_copy, count = 0;
int ret = 0;
kset_onmedia = kzalloc(PCACHE_KSET_ONMEDIA_SIZE_MAX, GFP_KERNEL);
if (!kset_onmedia)
return -ENOMEM;
cache_pos_copy(&pos_tail, &cache->key_tail);
pos = &pos_tail;
/*
* In cache replaying stage, there is no other one will access
* cache->seg_map, so we can set bit here without cache->seg_map_lock.
*/
__set_bit(pos->cache_seg->cache_seg_id, cache->seg_map);
while (true) {
to_copy = min(PCACHE_KSET_ONMEDIA_SIZE_MAX, PCACHE_SEG_SIZE - pos->seg_off);
ret = copy_mc_to_kernel(kset_onmedia, cache_pos_addr(pos), to_copy);
if (ret) {
ret = -EIO;
goto out;
}
if (kset_onmedia->magic != PCACHE_KSET_MAGIC ||
kset_onmedia->crc != cache_kset_crc(kset_onmedia)) {
break;
}
/* Process the last kset and prepare for the next segment. */
if (kset_onmedia->flags & PCACHE_KSET_FLAGS_LAST) {
struct pcache_cache_segment *next_seg;
pcache_dev_debug(pcache, "last kset replay, next: %u\n", kset_onmedia->next_cache_seg_id);
next_seg = &cache->segments[kset_onmedia->next_cache_seg_id];
pos->cache_seg = next_seg;
pos->seg_off = 0;
__set_bit(pos->cache_seg->cache_seg_id, cache->seg_map);
continue;
}
/* Replay the kset and check for errors. */
ret = kset_replay(cache, kset_onmedia);
if (ret)
goto out;
/* Advance the position after processing the kset. */
cache_pos_advance(pos, get_kset_onmedia_size(kset_onmedia));
if (++count > 512) {
cond_resched();
count = 0;
}
}
/* Update the key_head position after replaying. */
spin_lock(&cache->key_head_lock);
cache_pos_copy(&cache->key_head, pos);
spin_unlock(&cache->key_head_lock);
out:
kfree(kset_onmedia);
return ret;
}
int cache_tree_init(struct pcache_cache *cache, struct pcache_cache_tree *cache_tree, u32 n_subtrees)
{
int ret;
u32 i;
cache_tree->cache = cache;
cache_tree->n_subtrees = n_subtrees;
ret = mempool_init_slab_pool(&cache_tree->key_pool, 1024, key_cache);
if (ret)
goto err;
/*
* Allocate and initialize the subtrees array.
* Each element is a cache tree structure that contains
* an RB tree root and a spinlock for protecting its contents.
*/
cache_tree->subtrees = kvcalloc(cache_tree->n_subtrees, sizeof(struct pcache_cache_subtree), GFP_KERNEL);
if (!cache_tree->subtrees) {
ret = -ENOMEM;
goto key_pool_exit;
}
for (i = 0; i < cache_tree->n_subtrees; i++) {
struct pcache_cache_subtree *cache_subtree = &cache_tree->subtrees[i];
cache_subtree->root = RB_ROOT;
spin_lock_init(&cache_subtree->tree_lock);
}
return 0;
key_pool_exit:
mempool_exit(&cache_tree->key_pool);
err:
return ret;
}
void cache_tree_clear(struct pcache_cache_tree *cache_tree)
{
struct pcache_cache_subtree *cache_subtree;
struct rb_node *node;
struct pcache_cache_key *key;
u32 i;
for (i = 0; i < cache_tree->n_subtrees; i++) {
cache_subtree = &cache_tree->subtrees[i];
spin_lock(&cache_subtree->tree_lock);
node = rb_first(&cache_subtree->root);
while (node) {
key = CACHE_KEY(node);
node = rb_next(node);
cache_key_delete(key);
}
spin_unlock(&cache_subtree->tree_lock);
}
}
void cache_tree_exit(struct pcache_cache_tree *cache_tree)
{
cache_tree_clear(cache_tree);
kvfree(cache_tree->subtrees);
mempool_exit(&cache_tree->key_pool);
}
|