1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
|
// SPDX-License-Identifier: GPL-2.0-or-later
#include "cache.h"
#include "backing_dev.h"
#include "cache_dev.h"
#include "dm_pcache.h"
static int cache_data_head_init(struct pcache_cache *cache)
{
struct pcache_cache_segment *next_seg;
struct pcache_cache_data_head *data_head;
data_head = get_data_head(cache);
next_seg = get_cache_segment(cache);
if (!next_seg)
return -EBUSY;
cache_seg_get(next_seg);
data_head->head_pos.cache_seg = next_seg;
data_head->head_pos.seg_off = 0;
return 0;
}
/**
* cache_data_alloc - Allocate data for a cache key.
* @cache: Pointer to the cache structure.
* @key: Pointer to the cache key to allocate data for.
*
* This function tries to allocate space from the cache segment specified by the
* data head. If the remaining space in the segment is insufficient to allocate
* the requested length for the cache key, it will allocate whatever is available
* and adjust the key's length accordingly. This function does not allocate
* space that crosses segment boundaries.
*/
static int cache_data_alloc(struct pcache_cache *cache, struct pcache_cache_key *key)
{
struct pcache_cache_data_head *data_head;
struct pcache_cache_pos *head_pos;
struct pcache_cache_segment *cache_seg;
u32 seg_remain;
u32 allocated = 0, to_alloc;
int ret = 0;
preempt_disable();
data_head = get_data_head(cache);
again:
to_alloc = key->len - allocated;
if (!data_head->head_pos.cache_seg) {
seg_remain = 0;
} else {
cache_pos_copy(&key->cache_pos, &data_head->head_pos);
key->seg_gen = key->cache_pos.cache_seg->gen;
head_pos = &data_head->head_pos;
cache_seg = head_pos->cache_seg;
seg_remain = cache_seg_remain(head_pos);
}
if (seg_remain > to_alloc) {
/* If remaining space in segment is sufficient for the cache key, allocate it. */
cache_pos_advance(head_pos, to_alloc);
allocated += to_alloc;
cache_seg_get(cache_seg);
} else if (seg_remain) {
/* If remaining space is not enough, allocate the remaining space and adjust the cache key length. */
cache_pos_advance(head_pos, seg_remain);
key->len = seg_remain;
/* Get for key: obtain a reference to the cache segment for the key. */
cache_seg_get(cache_seg);
/* Put for head_pos->cache_seg: release the reference for the current head's segment. */
cache_seg_put(head_pos->cache_seg);
head_pos->cache_seg = NULL;
} else {
/* Initialize a new data head if no segment is available. */
ret = cache_data_head_init(cache);
if (ret)
goto out;
goto again;
}
out:
preempt_enable();
return ret;
}
static int cache_copy_from_req_bio(struct pcache_cache *cache, struct pcache_cache_key *key,
struct pcache_request *pcache_req, u32 bio_off)
{
struct pcache_cache_pos *pos = &key->cache_pos;
struct pcache_segment *segment;
segment = &pos->cache_seg->segment;
return segment_copy_from_bio(segment, pos->seg_off, key->len, pcache_req->bio, bio_off);
}
static int cache_copy_to_req_bio(struct pcache_cache *cache, struct pcache_request *pcache_req,
u32 bio_off, u32 len, struct pcache_cache_pos *pos, u64 key_gen)
{
struct pcache_cache_segment *cache_seg = pos->cache_seg;
struct pcache_segment *segment = &cache_seg->segment;
int ret;
spin_lock(&cache_seg->gen_lock);
if (key_gen < cache_seg->gen) {
spin_unlock(&cache_seg->gen_lock);
return -EINVAL;
}
ret = segment_copy_to_bio(segment, pos->seg_off, len, pcache_req->bio, bio_off);
spin_unlock(&cache_seg->gen_lock);
return ret;
}
/**
* miss_read_end_req - Handle the end of a miss read request.
* @backing_req: Pointer to the request structure.
* @read_ret: Return value of read.
*
* This function is called when a backing request to read data from
* the backing_dev is completed. If the key associated with the request
* is empty (a placeholder), it allocates cache space for the key,
* copies the data read from the bio into the cache, and updates
* the key's status. If the key has been overwritten by a write
* request during this process, it will be deleted from the cache
* tree and no further action will be taken.
*/
static void miss_read_end_req(struct pcache_backing_dev_req *backing_req, int read_ret)
{
void *priv_data = backing_req->priv_data;
struct pcache_request *pcache_req = backing_req->req.upper_req;
struct pcache_cache *cache = backing_req->backing_dev->cache;
int ret;
if (priv_data) {
struct pcache_cache_key *key;
struct pcache_cache_subtree *cache_subtree;
key = (struct pcache_cache_key *)priv_data;
cache_subtree = key->cache_subtree;
/* if this key was deleted from cache_subtree by a write, key->flags should be cleared,
* so if cache_key_empty() return true, this key is still in cache_subtree
*/
spin_lock(&cache_subtree->tree_lock);
if (cache_key_empty(key)) {
/* Check if the backing request was successful. */
if (read_ret) {
cache_key_delete(key);
goto unlock;
}
/* Allocate cache space for the key and copy data from the backing_dev. */
ret = cache_data_alloc(cache, key);
if (ret) {
cache_key_delete(key);
goto unlock;
}
ret = cache_copy_from_req_bio(cache, key, pcache_req, backing_req->req.bio_off);
if (ret) {
cache_seg_put(key->cache_pos.cache_seg);
cache_key_delete(key);
goto unlock;
}
key->flags &= ~PCACHE_CACHE_KEY_FLAGS_EMPTY;
key->flags |= PCACHE_CACHE_KEY_FLAGS_CLEAN;
/* Append the key to the cache. */
ret = cache_key_append(cache, key, false);
if (ret) {
cache_seg_put(key->cache_pos.cache_seg);
cache_key_delete(key);
goto unlock;
}
}
unlock:
spin_unlock(&cache_subtree->tree_lock);
cache_key_put(key);
}
}
/**
* submit_cache_miss_req - Submit a backing request when cache data is missing
* @cache: The cache context that manages cache operations
* @backing_req: The cache request containing information about the read request
*
* This function is used to handle cases where a cache read request cannot locate
* the required data in the cache. When such a miss occurs during `cache_subtree_walk`,
* it triggers a backing read request to fetch data from the backing storage.
*
* If `pcache_req->priv_data` is set, it points to a `pcache_cache_key`, representing
* a new cache key to be inserted into the cache. The function calls `cache_key_insert`
* to attempt adding the key. On insertion failure, it releases the key reference and
* clears `priv_data` to avoid further processing.
*/
static void submit_cache_miss_req(struct pcache_cache *cache, struct pcache_backing_dev_req *backing_req)
{
if (backing_req->priv_data) {
struct pcache_cache_key *key;
/* Attempt to insert the key into the cache if priv_data is set */
key = (struct pcache_cache_key *)backing_req->priv_data;
cache_key_insert(&cache->req_key_tree, key, true);
}
backing_dev_req_submit(backing_req, false);
}
static void cache_miss_req_free(struct pcache_backing_dev_req *backing_req)
{
struct pcache_cache_key *key;
if (backing_req->priv_data) {
key = backing_req->priv_data;
backing_req->priv_data = NULL;
cache_key_put(key); /* for ->priv_data */
cache_key_put(key); /* for init ref in alloc */
}
backing_dev_req_end(backing_req);
}
static struct pcache_backing_dev_req *cache_miss_req_alloc(struct pcache_cache *cache,
struct pcache_request *parent,
gfp_t gfp_mask)
{
struct pcache_backing_dev *backing_dev = cache->backing_dev;
struct pcache_backing_dev_req *backing_req;
struct pcache_cache_key *key = NULL;
struct pcache_backing_dev_req_opts req_opts = { 0 };
req_opts.type = BACKING_DEV_REQ_TYPE_REQ;
req_opts.gfp_mask = gfp_mask;
req_opts.req.upper_req = parent;
backing_req = backing_dev_req_alloc(backing_dev, &req_opts);
if (!backing_req)
return NULL;
key = cache_key_alloc(&cache->req_key_tree, gfp_mask);
if (!key)
goto free_backing_req;
cache_key_get(key);
backing_req->priv_data = key;
return backing_req;
free_backing_req:
cache_miss_req_free(backing_req);
return NULL;
}
static void cache_miss_req_init(struct pcache_cache *cache,
struct pcache_backing_dev_req *backing_req,
struct pcache_request *parent,
u32 off, u32 len, bool insert_key)
{
struct pcache_cache_key *key;
struct pcache_backing_dev_req_opts req_opts = { 0 };
req_opts.type = BACKING_DEV_REQ_TYPE_REQ;
req_opts.req.upper_req = parent;
req_opts.req.req_off = off;
req_opts.req.len = len;
req_opts.end_fn = miss_read_end_req;
backing_dev_req_init(backing_req, &req_opts);
if (insert_key) {
key = backing_req->priv_data;
key->off = parent->off + off;
key->len = len;
key->flags |= PCACHE_CACHE_KEY_FLAGS_EMPTY;
} else {
key = backing_req->priv_data;
backing_req->priv_data = NULL;
cache_key_put(key);
cache_key_put(key);
}
}
static struct pcache_backing_dev_req *get_pre_alloc_req(struct pcache_cache_subtree_walk_ctx *ctx)
{
struct pcache_cache *cache = ctx->cache_tree->cache;
struct pcache_request *pcache_req = ctx->pcache_req;
struct pcache_backing_dev_req *backing_req;
if (ctx->pre_alloc_req) {
backing_req = ctx->pre_alloc_req;
ctx->pre_alloc_req = NULL;
return backing_req;
}
return cache_miss_req_alloc(cache, pcache_req, GFP_NOWAIT);
}
/*
* In the process of walking the cache tree to locate cached data, this
* function handles the situation where the requested data range lies
* entirely before an existing cache node (`key_tmp`). This outcome
* signifies that the target data is absent from the cache (cache miss).
*
* To fulfill this portion of the read request, the function creates a
* backing request (`backing_req`) for the missing data range represented
* by `key`. It then appends this request to the submission list in the
* `ctx`, which will later be processed to retrieve the data from backing
* storage. After setting up the backing request, `req_done` in `ctx` is
* updated to reflect the length of the handled range, and the range
* in `key` is adjusted by trimming off the portion that is now handled.
*
* The scenario handled here:
*
* |--------| key_tmp (existing cached range)
* |====| key (requested range, preceding key_tmp)
*
* Since `key` is before `key_tmp`, it signifies that the requested data
* range is missing in the cache (cache miss) and needs retrieval from
* backing storage.
*/
static int read_before(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp,
struct pcache_cache_subtree_walk_ctx *ctx)
{
struct pcache_backing_dev_req *backing_req;
struct pcache_cache *cache = ctx->cache_tree->cache;
/*
* In this scenario, `key` represents a range that precedes `key_tmp`,
* meaning the requested data range is missing from the cache tree
* and must be retrieved from the backing_dev.
*/
backing_req = get_pre_alloc_req(ctx);
if (!backing_req)
return SUBTREE_WALK_RET_NEED_REQ;
cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, key->len, true);
list_add(&backing_req->node, ctx->submit_req_list);
ctx->req_done += key->len;
cache_key_cutfront(key, key->len);
return SUBTREE_WALK_RET_OK;
}
/*
* During cache_subtree_walk, this function manages a scenario where part of the
* requested data range overlaps with an existing cache node (`key_tmp`).
*
* |----------------| key_tmp (existing cached range)
* |===========| key (requested range, overlapping the tail of key_tmp)
*/
static int read_overlap_tail(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp,
struct pcache_cache_subtree_walk_ctx *ctx)
{
struct pcache_cache *cache = ctx->cache_tree->cache;
struct pcache_backing_dev_req *backing_req;
u32 io_len;
int ret;
/*
* Calculate the length of the non-overlapping portion of `key`
* before `key_tmp`, representing the data missing in the cache.
*/
io_len = cache_key_lstart(key_tmp) - cache_key_lstart(key);
if (io_len) {
backing_req = get_pre_alloc_req(ctx);
if (!backing_req)
return SUBTREE_WALK_RET_NEED_REQ;
cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, io_len, true);
list_add(&backing_req->node, ctx->submit_req_list);
ctx->req_done += io_len;
cache_key_cutfront(key, io_len);
}
/*
* Handle the overlapping portion by calculating the length of
* the remaining data in `key` that coincides with `key_tmp`.
*/
io_len = cache_key_lend(key) - cache_key_lstart(key_tmp);
if (cache_key_empty(key_tmp)) {
backing_req = get_pre_alloc_req(ctx);
if (!backing_req)
return SUBTREE_WALK_RET_NEED_REQ;
cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, io_len, false);
submit_cache_miss_req(cache, backing_req);
} else {
ret = cache_copy_to_req_bio(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done,
io_len, &key_tmp->cache_pos, key_tmp->seg_gen);
if (ret) {
if (ret == -EINVAL) {
cache_key_delete(key_tmp);
return SUBTREE_WALK_RET_RESEARCH;
}
ctx->ret = ret;
return SUBTREE_WALK_RET_ERR;
}
}
ctx->req_done += io_len;
cache_key_cutfront(key, io_len);
return SUBTREE_WALK_RET_OK;
}
/*
* |----| key_tmp (existing cached range)
* |==========| key (requested range)
*/
static int read_overlap_contain(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp,
struct pcache_cache_subtree_walk_ctx *ctx)
{
struct pcache_cache *cache = ctx->cache_tree->cache;
struct pcache_backing_dev_req *backing_req;
u32 io_len;
int ret;
/*
* Calculate the non-overlapping part of `key` before `key_tmp`
* to identify the missing data length.
*/
io_len = cache_key_lstart(key_tmp) - cache_key_lstart(key);
if (io_len) {
backing_req = get_pre_alloc_req(ctx);
if (!backing_req)
return SUBTREE_WALK_RET_NEED_REQ;
cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, io_len, true);
list_add(&backing_req->node, ctx->submit_req_list);
ctx->req_done += io_len;
cache_key_cutfront(key, io_len);
}
/*
* Handle the overlapping portion between `key` and `key_tmp`.
*/
io_len = key_tmp->len;
if (cache_key_empty(key_tmp)) {
backing_req = get_pre_alloc_req(ctx);
if (!backing_req)
return SUBTREE_WALK_RET_NEED_REQ;
cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, io_len, false);
submit_cache_miss_req(cache, backing_req);
} else {
ret = cache_copy_to_req_bio(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done,
io_len, &key_tmp->cache_pos, key_tmp->seg_gen);
if (ret) {
if (ret == -EINVAL) {
cache_key_delete(key_tmp);
return SUBTREE_WALK_RET_RESEARCH;
}
ctx->ret = ret;
return SUBTREE_WALK_RET_ERR;
}
}
ctx->req_done += io_len;
cache_key_cutfront(key, io_len);
return SUBTREE_WALK_RET_OK;
}
/*
* |-----------| key_tmp (existing cached range)
* |====| key (requested range, fully within key_tmp)
*
* If `key_tmp` contains valid cached data, this function copies the relevant
* portion to the request's bio. Otherwise, it sends a backing request to
* fetch the required data range.
*/
static int read_overlap_contained(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp,
struct pcache_cache_subtree_walk_ctx *ctx)
{
struct pcache_cache *cache = ctx->cache_tree->cache;
struct pcache_backing_dev_req *backing_req;
struct pcache_cache_pos pos;
int ret;
/*
* Check if `key_tmp` is empty, indicating a miss. If so, initiate
* a backing request to fetch the required data for `key`.
*/
if (cache_key_empty(key_tmp)) {
backing_req = get_pre_alloc_req(ctx);
if (!backing_req)
return SUBTREE_WALK_RET_NEED_REQ;
cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, key->len, false);
submit_cache_miss_req(cache, backing_req);
} else {
cache_pos_copy(&pos, &key_tmp->cache_pos);
cache_pos_advance(&pos, cache_key_lstart(key) - cache_key_lstart(key_tmp));
ret = cache_copy_to_req_bio(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done,
key->len, &pos, key_tmp->seg_gen);
if (ret) {
if (ret == -EINVAL) {
cache_key_delete(key_tmp);
return SUBTREE_WALK_RET_RESEARCH;
}
ctx->ret = ret;
return SUBTREE_WALK_RET_ERR;
}
}
ctx->req_done += key->len;
cache_key_cutfront(key, key->len);
return SUBTREE_WALK_RET_OK;
}
/*
* |--------| key_tmp (existing cached range)
* |==========| key (requested range, overlapping the head of key_tmp)
*/
static int read_overlap_head(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp,
struct pcache_cache_subtree_walk_ctx *ctx)
{
struct pcache_cache *cache = ctx->cache_tree->cache;
struct pcache_backing_dev_req *backing_req;
struct pcache_cache_pos pos;
u32 io_len;
int ret;
io_len = cache_key_lend(key_tmp) - cache_key_lstart(key);
if (cache_key_empty(key_tmp)) {
backing_req = get_pre_alloc_req(ctx);
if (!backing_req)
return SUBTREE_WALK_RET_NEED_REQ;
cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, io_len, false);
submit_cache_miss_req(cache, backing_req);
} else {
cache_pos_copy(&pos, &key_tmp->cache_pos);
cache_pos_advance(&pos, cache_key_lstart(key) - cache_key_lstart(key_tmp));
ret = cache_copy_to_req_bio(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done,
io_len, &pos, key_tmp->seg_gen);
if (ret) {
if (ret == -EINVAL) {
cache_key_delete(key_tmp);
return SUBTREE_WALK_RET_RESEARCH;
}
ctx->ret = ret;
return SUBTREE_WALK_RET_ERR;
}
}
ctx->req_done += io_len;
cache_key_cutfront(key, io_len);
return SUBTREE_WALK_RET_OK;
}
/**
* read_walk_finally - Finalizes the cache read tree walk by submitting any
* remaining backing requests
* @ctx: Context structure holding information about the cache,
* read request, and submission list
* @ret: the return value after this walk.
*
* This function is called at the end of the `cache_subtree_walk` during a
* cache read operation. It completes the walk by checking if any data
* requested by `key` was not found in the cache tree, and if so, it sends
* a backing request to retrieve that data. Then, it iterates through the
* submission list of backing requests created during the walk, removing
* each request from the list and submitting it.
*
* The scenario managed here includes:
* - Sending a backing request for the remaining length of `key` if it was
* not fulfilled by existing cache entries.
* - Iterating through `ctx->submit_req_list` to submit each backing request
* enqueued during the walk.
*
* This ensures all necessary backing requests for cache misses are submitted
* to the backing storage to retrieve any data that could not be found in
* the cache.
*/
static int read_walk_finally(struct pcache_cache_subtree_walk_ctx *ctx, int ret)
{
struct pcache_cache *cache = ctx->cache_tree->cache;
struct pcache_backing_dev_req *backing_req, *next_req;
struct pcache_cache_key *key = ctx->key;
list_for_each_entry_safe(backing_req, next_req, ctx->submit_req_list, node) {
list_del_init(&backing_req->node);
submit_cache_miss_req(ctx->cache_tree->cache, backing_req);
}
if (ret != SUBTREE_WALK_RET_OK)
return ret;
if (key->len) {
backing_req = get_pre_alloc_req(ctx);
if (!backing_req)
return SUBTREE_WALK_RET_NEED_REQ;
cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, key->len, true);
submit_cache_miss_req(cache, backing_req);
ctx->req_done += key->len;
}
return SUBTREE_WALK_RET_OK;
}
/*
* This function is used within `cache_subtree_walk` to determine whether the
* read operation has covered the requested data length. It compares the
* amount of data processed (`ctx->req_done`) with the total data length
* specified in the original request (`ctx->pcache_req->data_len`).
*
* If `req_done` meets or exceeds the required data length, the function
* returns `true`, indicating the walk is complete. Otherwise, it returns `false`,
* signaling that additional data processing is needed to fulfill the request.
*/
static bool read_walk_done(struct pcache_cache_subtree_walk_ctx *ctx)
{
return (ctx->req_done >= ctx->pcache_req->data_len);
}
/**
* cache_read - Process a read request by traversing the cache tree
* @cache: Cache structure holding cache trees and related configurations
* @pcache_req: Request structure with information about the data to read
*
* This function attempts to fulfill a read request by traversing the cache tree(s)
* to locate cached data for the requested range. If parts of the data are missing
* in the cache, backing requests are generated to retrieve the required segments.
*
* The function operates by initializing a key for the requested data range and
* preparing a context (`walk_ctx`) to manage the cache tree traversal. The context
* includes pointers to functions (e.g., `read_before`, `read_overlap_tail`) that handle
* specific conditions encountered during the traversal. The `walk_finally` and `walk_done`
* functions manage the end stages of the traversal, while the `delete_key_list` and
* `submit_req_list` lists track any keys to be deleted or requests to be submitted.
*
* The function first calculates the requested range and checks if it fits within the
* current cache tree (based on the tree's size limits). It then locks the cache tree
* and performs a search to locate any matching keys. If there are outdated keys,
* these are deleted, and the search is restarted to ensure accurate data retrieval.
*
* If the requested range spans multiple cache trees, the function moves on to the
* next tree once the current range has been processed. This continues until the
* entire requested data length has been handled.
*/
static int cache_read(struct pcache_cache *cache, struct pcache_request *pcache_req)
{
struct pcache_cache_key key_data = { .off = pcache_req->off, .len = pcache_req->data_len };
struct pcache_cache_subtree *cache_subtree;
struct pcache_cache_key *key_tmp = NULL, *key_next;
struct rb_node *prev_node = NULL;
struct pcache_cache_key *key = &key_data;
struct pcache_cache_subtree_walk_ctx walk_ctx = { 0 };
struct pcache_backing_dev_req *backing_req, *next_req;
LIST_HEAD(delete_key_list);
LIST_HEAD(submit_req_list);
int ret;
walk_ctx.cache_tree = &cache->req_key_tree;
walk_ctx.req_done = 0;
walk_ctx.pcache_req = pcache_req;
walk_ctx.before = read_before;
walk_ctx.overlap_tail = read_overlap_tail;
walk_ctx.overlap_head = read_overlap_head;
walk_ctx.overlap_contain = read_overlap_contain;
walk_ctx.overlap_contained = read_overlap_contained;
walk_ctx.walk_finally = read_walk_finally;
walk_ctx.walk_done = read_walk_done;
walk_ctx.delete_key_list = &delete_key_list;
walk_ctx.submit_req_list = &submit_req_list;
next:
key->off = pcache_req->off + walk_ctx.req_done;
key->len = pcache_req->data_len - walk_ctx.req_done;
if (key->len > PCACHE_CACHE_SUBTREE_SIZE - (key->off & PCACHE_CACHE_SUBTREE_SIZE_MASK))
key->len = PCACHE_CACHE_SUBTREE_SIZE - (key->off & PCACHE_CACHE_SUBTREE_SIZE_MASK);
cache_subtree = get_subtree(&cache->req_key_tree, key->off);
spin_lock(&cache_subtree->tree_lock);
search:
prev_node = cache_subtree_search(cache_subtree, key, NULL, NULL, &delete_key_list);
if (!list_empty(&delete_key_list)) {
list_for_each_entry_safe(key_tmp, key_next, &delete_key_list, list_node) {
list_del_init(&key_tmp->list_node);
cache_key_delete(key_tmp);
}
goto search;
}
walk_ctx.start_node = prev_node;
walk_ctx.key = key;
ret = cache_subtree_walk(&walk_ctx);
if (ret == SUBTREE_WALK_RET_RESEARCH)
goto search;
spin_unlock(&cache_subtree->tree_lock);
if (ret == SUBTREE_WALK_RET_ERR) {
ret = walk_ctx.ret;
goto out;
}
if (ret == SUBTREE_WALK_RET_NEED_REQ) {
walk_ctx.pre_alloc_req = cache_miss_req_alloc(cache, pcache_req, GFP_NOIO);
pcache_dev_debug(CACHE_TO_PCACHE(cache), "allocate pre_alloc_req with GFP_NOIO");
}
if (walk_ctx.req_done < pcache_req->data_len)
goto next;
ret = 0;
out:
if (walk_ctx.pre_alloc_req)
cache_miss_req_free(walk_ctx.pre_alloc_req);
list_for_each_entry_safe(backing_req, next_req, &submit_req_list, node) {
list_del_init(&backing_req->node);
backing_dev_req_end(backing_req);
}
return ret;
}
static int cache_write(struct pcache_cache *cache, struct pcache_request *pcache_req)
{
struct pcache_cache_subtree *cache_subtree;
struct pcache_cache_key *key;
u64 offset = pcache_req->off;
u32 length = pcache_req->data_len;
u32 io_done = 0;
int ret;
while (true) {
if (io_done >= length)
break;
key = cache_key_alloc(&cache->req_key_tree, GFP_NOIO);
key->off = offset + io_done;
key->len = length - io_done;
if (key->len > PCACHE_CACHE_SUBTREE_SIZE - (key->off & PCACHE_CACHE_SUBTREE_SIZE_MASK))
key->len = PCACHE_CACHE_SUBTREE_SIZE - (key->off & PCACHE_CACHE_SUBTREE_SIZE_MASK);
ret = cache_data_alloc(cache, key);
if (ret) {
cache_key_put(key);
goto err;
}
ret = cache_copy_from_req_bio(cache, key, pcache_req, io_done);
if (ret) {
cache_seg_put(key->cache_pos.cache_seg);
cache_key_put(key);
goto err;
}
cache_subtree = get_subtree(&cache->req_key_tree, key->off);
spin_lock(&cache_subtree->tree_lock);
cache_key_insert(&cache->req_key_tree, key, true);
ret = cache_key_append(cache, key, pcache_req->bio->bi_opf & REQ_FUA);
if (ret) {
cache_seg_put(key->cache_pos.cache_seg);
cache_key_delete(key);
goto unlock;
}
io_done += key->len;
spin_unlock(&cache_subtree->tree_lock);
}
return 0;
unlock:
spin_unlock(&cache_subtree->tree_lock);
err:
return ret;
}
/**
* pcache_cache_flush - Flush all ksets to persist any pending cache data
* @cache: Pointer to the cache structure
*
* This function iterates through all ksets associated with the provided `cache`
* and ensures that any data marked for persistence is written to media. For each
* kset, it acquires the kset lock, then invokes `cache_kset_close`, which handles
* the persistence logic for that kset.
*
* If `cache_kset_close` encounters an error, the function exits immediately with
* the respective error code, preventing the flush operation from proceeding to
* subsequent ksets.
*/
int pcache_cache_flush(struct pcache_cache *cache)
{
struct pcache_cache_kset *kset;
int ret;
u32 i;
for (i = 0; i < cache->n_ksets; i++) {
kset = get_kset(cache, i);
spin_lock(&kset->kset_lock);
ret = cache_kset_close(cache, kset);
spin_unlock(&kset->kset_lock);
if (ret)
return ret;
}
return 0;
}
int pcache_cache_handle_req(struct pcache_cache *cache, struct pcache_request *pcache_req)
{
struct bio *bio = pcache_req->bio;
if (unlikely(bio->bi_opf & REQ_PREFLUSH))
return pcache_cache_flush(cache);
if (bio_data_dir(bio) == READ)
return cache_read(cache, pcache_req);
return cache_write(cache, pcache_req);
}
|